]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
This commit was generated by cvs2svn to compensate for changes in r174223,
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/resourcevar.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41 #include <sys/sched.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/turnstile.h>
44 #include <sys/ktr.h>
45 #include <sys/umtx.h>
46
47 #include <security/audit/audit.h>
48
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/uma.h>
52 #include <sys/eventhandler.h>
53
54 /*
55  * thread related storage.
56  */
57 static uma_zone_t thread_zone;
58
59 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
60
61 int max_threads_per_proc = 1500;
62 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
63         &max_threads_per_proc, 0, "Limit on threads per proc");
64
65 int max_threads_hits;
66 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
67         &max_threads_hits, 0, "");
68
69 #ifdef KSE
70 int virtual_cpu;
71
72 #endif
73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74 static struct mtx zombie_lock;
75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76
77 static void thread_zombie(struct thread *);
78
79 #ifdef KSE
80 static int
81 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
82 {
83         int error, new_val;
84         int def_val;
85
86         def_val = mp_ncpus;
87         if (virtual_cpu == 0)
88                 new_val = def_val;
89         else
90                 new_val = virtual_cpu;
91         error = sysctl_handle_int(oidp, &new_val, 0, req);
92         if (error != 0 || req->newptr == NULL)
93                 return (error);
94         if (new_val < 0)
95                 return (EINVAL);
96         virtual_cpu = new_val;
97         return (0);
98 }
99
100 /* DEBUG ONLY */
101 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
102         0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
103         "debug virtual cpus");
104 #endif
105
106 struct mtx tid_lock;
107 static struct unrhdr *tid_unrhdr;
108
109 /*
110  * Prepare a thread for use.
111  */
112 static int
113 thread_ctor(void *mem, int size, void *arg, int flags)
114 {
115         struct thread   *td;
116
117         td = (struct thread *)mem;
118         td->td_state = TDS_INACTIVE;
119         td->td_oncpu = NOCPU;
120
121         td->td_tid = alloc_unr(tid_unrhdr);
122         td->td_syscalls = 0;
123
124         /*
125          * Note that td_critnest begins life as 1 because the thread is not
126          * running and is thereby implicitly waiting to be on the receiving
127          * end of a context switch.
128          */
129         td->td_critnest = 1;
130         EVENTHANDLER_INVOKE(thread_ctor, td);
131 #ifdef AUDIT
132         audit_thread_alloc(td);
133 #endif
134         umtx_thread_alloc(td);
135         return (0);
136 }
137
138 /*
139  * Reclaim a thread after use.
140  */
141 static void
142 thread_dtor(void *mem, int size, void *arg)
143 {
144         struct thread *td;
145
146         td = (struct thread *)mem;
147
148 #ifdef INVARIANTS
149         /* Verify that this thread is in a safe state to free. */
150         switch (td->td_state) {
151         case TDS_INHIBITED:
152         case TDS_RUNNING:
153         case TDS_CAN_RUN:
154         case TDS_RUNQ:
155                 /*
156                  * We must never unlink a thread that is in one of
157                  * these states, because it is currently active.
158                  */
159                 panic("bad state for thread unlinking");
160                 /* NOTREACHED */
161         case TDS_INACTIVE:
162                 break;
163         default:
164                 panic("bad thread state");
165                 /* NOTREACHED */
166         }
167 #endif
168 #ifdef AUDIT
169         audit_thread_free(td);
170 #endif
171         EVENTHANDLER_INVOKE(thread_dtor, td);
172         free_unr(tid_unrhdr, td->td_tid);
173         sched_newthread(td);
174 }
175
176 /*
177  * Initialize type-stable parts of a thread (when newly created).
178  */
179 static int
180 thread_init(void *mem, int size, int flags)
181 {
182         struct thread *td;
183
184         td = (struct thread *)mem;
185
186         td->td_sleepqueue = sleepq_alloc();
187         td->td_turnstile = turnstile_alloc();
188         EVENTHANDLER_INVOKE(thread_init, td);
189         td->td_sched = (struct td_sched *)&td[1];
190         sched_newthread(td);
191         umtx_thread_init(td);
192         td->td_kstack = 0;
193         return (0);
194 }
195
196 /*
197  * Tear down type-stable parts of a thread (just before being discarded).
198  */
199 static void
200 thread_fini(void *mem, int size)
201 {
202         struct thread *td;
203
204         td = (struct thread *)mem;
205         EVENTHANDLER_INVOKE(thread_fini, td);
206         turnstile_free(td->td_turnstile);
207         sleepq_free(td->td_sleepqueue);
208         umtx_thread_fini(td);
209 }
210
211 /*
212  * For a newly created process,
213  * link up all the structures and its initial threads etc.
214  * called from:
215  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
216  * proc_dtor() (should go away)
217  * proc_init()
218  */
219 void
220 proc_linkup0(struct proc *p, struct thread *td)
221 {
222         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
223         proc_linkup(p, td);
224 }
225
226 void
227 proc_linkup(struct proc *p, struct thread *td)
228 {
229
230 #ifdef KSE
231         TAILQ_INIT(&p->p_upcalls);           /* upcall list */
232 #endif
233         sigqueue_init(&p->p_sigqueue, p);
234         p->p_ksi = ksiginfo_alloc(1);
235         if (p->p_ksi != NULL) {
236                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
237                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
238         }
239         LIST_INIT(&p->p_mqnotifier);
240         p->p_numthreads = 0;
241         thread_link(td, p);
242 }
243
244 /*
245  * Initialize global thread allocation resources.
246  */
247 void
248 threadinit(void)
249 {
250
251         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
252         tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
253
254         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
255             thread_ctor, thread_dtor, thread_init, thread_fini,
256             16 - 1, 0);
257 #ifdef KSE
258         kseinit();      /* set up kse specific stuff  e.g. upcall zone*/
259 #endif
260 }
261
262 /*
263  * Place an unused thread on the zombie list.
264  * Use the slpq as that must be unused by now.
265  */
266 void
267 thread_zombie(struct thread *td)
268 {
269         mtx_lock_spin(&zombie_lock);
270         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
271         mtx_unlock_spin(&zombie_lock);
272 }
273
274 /*
275  * Release a thread that has exited after cpu_throw().
276  */
277 void
278 thread_stash(struct thread *td)
279 {
280         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
281         thread_zombie(td);
282 }
283
284 /*
285  * Reap zombie kse resource.
286  */
287 void
288 thread_reap(void)
289 {
290         struct thread *td_first, *td_next;
291
292         /*
293          * Don't even bother to lock if none at this instant,
294          * we really don't care about the next instant..
295          */
296         if (!TAILQ_EMPTY(&zombie_threads)) {
297                 mtx_lock_spin(&zombie_lock);
298                 td_first = TAILQ_FIRST(&zombie_threads);
299                 if (td_first)
300                         TAILQ_INIT(&zombie_threads);
301                 mtx_unlock_spin(&zombie_lock);
302                 while (td_first) {
303                         td_next = TAILQ_NEXT(td_first, td_slpq);
304                         if (td_first->td_ucred)
305                                 crfree(td_first->td_ucred);
306                         thread_free(td_first);
307                         td_first = td_next;
308                 }
309         }
310 #ifdef KSE
311         upcall_reap();
312 #endif
313 }
314
315 /*
316  * Allocate a thread.
317  */
318 struct thread *
319 thread_alloc(void)
320 {
321         struct thread *td;
322
323         thread_reap(); /* check if any zombies to get */
324
325         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
326         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
327         if (!vm_thread_new(td, 0)) {
328                 uma_zfree(thread_zone, td);
329                 return (NULL);
330         }
331         cpu_thread_alloc(td);
332         return (td);
333 }
334
335
336 /*
337  * Deallocate a thread.
338  */
339 void
340 thread_free(struct thread *td)
341 {
342
343         cpu_thread_free(td);
344         if (td->td_altkstack != 0)
345                 vm_thread_dispose_altkstack(td);
346         if (td->td_kstack != 0)
347                 vm_thread_dispose(td);
348         uma_zfree(thread_zone, td);
349 }
350
351 /*
352  * Discard the current thread and exit from its context.
353  * Always called with scheduler locked.
354  *
355  * Because we can't free a thread while we're operating under its context,
356  * push the current thread into our CPU's deadthread holder. This means
357  * we needn't worry about someone else grabbing our context before we
358  * do a cpu_throw().  This may not be needed now as we are under schedlock.
359  * Maybe we can just do a thread_stash() as thr_exit1 does.
360  */
361 /*  XXX
362  * libthr expects its thread exit to return for the last
363  * thread, meaning that the program is back to non-threaded
364  * mode I guess. Because we do this (cpu_throw) unconditionally
365  * here, they have their own version of it. (thr_exit1()) 
366  * that doesn't do it all if this was the last thread.
367  * It is also called from thread_suspend_check().
368  * Of course in the end, they end up coming here through exit1
369  * anyhow..  After fixing 'thr' to play by the rules we should be able 
370  * to merge these two functions together.
371  *
372  * called from:
373  * exit1()
374  * kse_exit()
375  * thr_exit()
376  * ifdef KSE
377  * thread_user_enter()
378  * thread_userret()
379  * endif
380  * thread_suspend_check()
381  */
382 void
383 thread_exit(void)
384 {
385         uint64_t new_switchtime;
386         struct thread *td;
387         struct thread *td2;
388         struct proc *p;
389
390         td = curthread;
391         p = td->td_proc;
392
393         PROC_SLOCK_ASSERT(p, MA_OWNED);
394         mtx_assert(&Giant, MA_NOTOWNED);
395
396         PROC_LOCK_ASSERT(p, MA_OWNED);
397         KASSERT(p != NULL, ("thread exiting without a process"));
398         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
399             (long)p->p_pid, td->td_name);
400         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
401
402 #ifdef AUDIT
403         AUDIT_SYSCALL_EXIT(0, td);
404 #endif
405
406 #ifdef KSE
407         if (td->td_standin != NULL) {
408                 /*
409                  * Note that we don't need to free the cred here as it
410                  * is done in thread_reap().
411                  */
412                 thread_zombie(td->td_standin);
413                 td->td_standin = NULL;
414         }
415 #endif
416
417         umtx_thread_exit(td);
418
419         /*
420          * drop FPU & debug register state storage, or any other
421          * architecture specific resources that
422          * would not be on a new untouched process.
423          */
424         cpu_thread_exit(td);    /* XXXSMP */
425
426         /* Do the same timestamp bookkeeping that mi_switch() would do. */
427         new_switchtime = cpu_ticks();
428         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
429         PCPU_SET(switchtime, new_switchtime);
430         PCPU_SET(switchticks, ticks);
431         PCPU_INC(cnt.v_swtch);
432         /* Save our resource usage in our process. */
433         td->td_ru.ru_nvcsw++;
434         rucollect(&p->p_ru, &td->td_ru);
435         /*
436          * The last thread is left attached to the process
437          * So that the whole bundle gets recycled. Skip
438          * all this stuff if we never had threads.
439          * EXIT clears all sign of other threads when
440          * it goes to single threading, so the last thread always
441          * takes the short path.
442          */
443         if (p->p_flag & P_HADTHREADS) {
444                 if (p->p_numthreads > 1) {
445                         thread_lock(td);
446 #ifdef KSE
447                         kse_unlink(td);
448 #else
449                         thread_unlink(td);
450 #endif
451                         thread_unlock(td);
452                         td2 = FIRST_THREAD_IN_PROC(p);
453                         sched_exit_thread(td2, td);
454
455                         /*
456                          * The test below is NOT true if we are the
457                          * sole exiting thread. P_STOPPED_SNGL is unset
458                          * in exit1() after it is the only survivor.
459                          */
460                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
461                                 if (p->p_numthreads == p->p_suspcount) {
462                                         thread_lock(p->p_singlethread);
463                                         thread_unsuspend_one(p->p_singlethread);
464                                         thread_unlock(p->p_singlethread);
465                                 }
466                         }
467
468                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
469                         PCPU_SET(deadthread, td);
470                 } else {
471                         /*
472                          * The last thread is exiting.. but not through exit()
473                          * what should we do?
474                          * Theoretically this can't happen
475                          * exit1() - clears threading flags before coming here
476                          * kse_exit() - treats last thread specially
477                          * thr_exit() - treats last thread specially
478                          * ifdef KSE
479                          * thread_user_enter() - only if more exist
480                          * thread_userret() - only if more exist
481                          * endif
482                          * thread_suspend_check() - only if more exist
483                          */
484                         panic ("thread_exit: Last thread exiting on its own");
485                 }
486         } 
487         PROC_UNLOCK(p);
488         thread_lock(td);
489         /* Save our tick information with both the thread and proc locked */
490         ruxagg(&p->p_rux, td);
491         PROC_SUNLOCK(p);
492         td->td_state = TDS_INACTIVE;
493         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
494         sched_throw(td);
495         panic("I'm a teapot!");
496         /* NOTREACHED */
497 }
498
499 /*
500  * Do any thread specific cleanups that may be needed in wait()
501  * called with Giant, proc and schedlock not held.
502  */
503 void
504 thread_wait(struct proc *p)
505 {
506         struct thread *td;
507
508         mtx_assert(&Giant, MA_NOTOWNED);
509         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
510         td = FIRST_THREAD_IN_PROC(p);
511 #ifdef KSE
512         if (td->td_standin != NULL) {
513                 if (td->td_standin->td_ucred != NULL) {
514                         crfree(td->td_standin->td_ucred);
515                         td->td_standin->td_ucred = NULL;
516                 }
517                 thread_free(td->td_standin);
518                 td->td_standin = NULL;
519         }
520 #endif
521         /* Lock the last thread so we spin until it exits cpu_throw(). */
522         thread_lock(td);
523         thread_unlock(td);
524         /* Wait for any remaining threads to exit cpu_throw(). */
525         while (p->p_exitthreads)
526                 sched_relinquish(curthread);
527         cpu_thread_clean(td);
528         crfree(td->td_ucred);
529         thread_reap();  /* check for zombie threads etc. */
530 }
531
532 /*
533  * Link a thread to a process.
534  * set up anything that needs to be initialized for it to
535  * be used by the process.
536  *
537  * Note that we do not link to the proc's ucred here.
538  * The thread is linked as if running but no KSE assigned.
539  * Called from:
540  *  proc_linkup()
541  *  thread_schedule_upcall()
542  *  thr_create()
543  */
544 void
545 thread_link(struct thread *td, struct proc *p)
546 {
547
548         /*
549          * XXX This can't be enabled because it's called for proc0 before
550          * it's spinlock has been created.
551          * PROC_SLOCK_ASSERT(p, MA_OWNED);
552          */
553         td->td_state    = TDS_INACTIVE;
554         td->td_proc     = p;
555         td->td_flags    = TDF_INMEM;
556
557         LIST_INIT(&td->td_contested);
558         sigqueue_init(&td->td_sigqueue, p);
559         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
560         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
561         p->p_numthreads++;
562 }
563
564 /*
565  * Convert a process with one thread to an unthreaded process.
566  * Called from:
567  *  thread_single(exit)  (called from execve and exit)
568  *  kse_exit()          XXX may need cleaning up wrt KSE stuff
569  */
570 void
571 thread_unthread(struct thread *td)
572 {
573         struct proc *p = td->td_proc;
574
575         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
576 #ifdef KSE
577         thread_lock(td);
578         upcall_remove(td);
579         thread_unlock(td);
580         p->p_flag &= ~(P_SA|P_HADTHREADS);
581         td->td_mailbox = NULL;
582         td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
583         if (td->td_standin != NULL) {
584                 thread_zombie(td->td_standin);
585                 td->td_standin = NULL;
586         }
587 #else
588         p->p_flag &= ~P_HADTHREADS;
589 #endif
590 }
591
592 /*
593  * Called from:
594  *  thread_exit()
595  */
596 void
597 thread_unlink(struct thread *td)
598 {
599         struct proc *p = td->td_proc;
600
601         PROC_SLOCK_ASSERT(p, MA_OWNED);
602         TAILQ_REMOVE(&p->p_threads, td, td_plist);
603         p->p_numthreads--;
604         /* could clear a few other things here */
605         /* Must  NOT clear links to proc! */
606 }
607
608 /*
609  * Enforce single-threading.
610  *
611  * Returns 1 if the caller must abort (another thread is waiting to
612  * exit the process or similar). Process is locked!
613  * Returns 0 when you are successfully the only thread running.
614  * A process has successfully single threaded in the suspend mode when
615  * There are no threads in user mode. Threads in the kernel must be
616  * allowed to continue until they get to the user boundary. They may even
617  * copy out their return values and data before suspending. They may however be
618  * accelerated in reaching the user boundary as we will wake up
619  * any sleeping threads that are interruptable. (PCATCH).
620  */
621 int
622 thread_single(int mode)
623 {
624         struct thread *td;
625         struct thread *td2;
626         struct proc *p;
627         int remaining;
628
629         td = curthread;
630         p = td->td_proc;
631         mtx_assert(&Giant, MA_NOTOWNED);
632         PROC_LOCK_ASSERT(p, MA_OWNED);
633         KASSERT((td != NULL), ("curthread is NULL"));
634
635         if ((p->p_flag & P_HADTHREADS) == 0)
636                 return (0);
637
638         /* Is someone already single threading? */
639         if (p->p_singlethread != NULL && p->p_singlethread != td)
640                 return (1);
641
642         if (mode == SINGLE_EXIT) {
643                 p->p_flag |= P_SINGLE_EXIT;
644                 p->p_flag &= ~P_SINGLE_BOUNDARY;
645         } else {
646                 p->p_flag &= ~P_SINGLE_EXIT;
647                 if (mode == SINGLE_BOUNDARY)
648                         p->p_flag |= P_SINGLE_BOUNDARY;
649                 else
650                         p->p_flag &= ~P_SINGLE_BOUNDARY;
651         }
652         p->p_flag |= P_STOPPED_SINGLE;
653         PROC_SLOCK(p);
654         p->p_singlethread = td;
655         if (mode == SINGLE_EXIT)
656                 remaining = p->p_numthreads;
657         else if (mode == SINGLE_BOUNDARY)
658                 remaining = p->p_numthreads - p->p_boundary_count;
659         else
660                 remaining = p->p_numthreads - p->p_suspcount;
661         while (remaining != 1) {
662                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
663                         goto stopme;
664                 FOREACH_THREAD_IN_PROC(p, td2) {
665                         if (td2 == td)
666                                 continue;
667                         thread_lock(td2);
668                         td2->td_flags |= TDF_ASTPENDING;
669                         if (TD_IS_INHIBITED(td2)) {
670                                 switch (mode) {
671                                 case SINGLE_EXIT:
672                                         if (td->td_flags & TDF_DBSUSPEND)
673                                                 td->td_flags &= ~TDF_DBSUSPEND;
674                                         if (TD_IS_SUSPENDED(td2))
675                                                 thread_unsuspend_one(td2);
676                                         if (TD_ON_SLEEPQ(td2) &&
677                                             (td2->td_flags & TDF_SINTR))
678                                                 sleepq_abort(td2, EINTR);
679                                         break;
680                                 case SINGLE_BOUNDARY:
681                                         break;
682                                 default:        
683                                         if (TD_IS_SUSPENDED(td2)) {
684                                                 thread_unlock(td2);
685                                                 continue;
686                                         }
687                                         /*
688                                          * maybe other inhibited states too?
689                                          */
690                                         if ((td2->td_flags & TDF_SINTR) &&
691                                             (td2->td_inhibitors &
692                                             (TDI_SLEEPING | TDI_SWAPPED)))
693                                                 thread_suspend_one(td2);
694                                         break;
695                                 }
696                         }
697 #ifdef SMP
698                         else if (TD_IS_RUNNING(td2) && td != td2) {
699                                 forward_signal(td2);
700                         }
701 #endif
702                         thread_unlock(td2);
703                 }
704                 if (mode == SINGLE_EXIT)
705                         remaining = p->p_numthreads;
706                 else if (mode == SINGLE_BOUNDARY)
707                         remaining = p->p_numthreads - p->p_boundary_count;
708                 else
709                         remaining = p->p_numthreads - p->p_suspcount;
710
711                 /*
712                  * Maybe we suspended some threads.. was it enough?
713                  */
714                 if (remaining == 1)
715                         break;
716
717 stopme:
718                 /*
719                  * Wake us up when everyone else has suspended.
720                  * In the mean time we suspend as well.
721                  */
722                 thread_suspend_switch(td);
723                 if (mode == SINGLE_EXIT)
724                         remaining = p->p_numthreads;
725                 else if (mode == SINGLE_BOUNDARY)
726                         remaining = p->p_numthreads - p->p_boundary_count;
727                 else
728                         remaining = p->p_numthreads - p->p_suspcount;
729         }
730         if (mode == SINGLE_EXIT) {
731                 /*
732                  * We have gotten rid of all the other threads and we
733                  * are about to either exit or exec. In either case,
734                  * we try our utmost  to revert to being a non-threaded
735                  * process.
736                  */
737                 p->p_singlethread = NULL;
738                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
739                 thread_unthread(td);
740         }
741         PROC_SUNLOCK(p);
742         return (0);
743 }
744
745 /*
746  * Called in from locations that can safely check to see
747  * whether we have to suspend or at least throttle for a
748  * single-thread event (e.g. fork).
749  *
750  * Such locations include userret().
751  * If the "return_instead" argument is non zero, the thread must be able to
752  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
753  *
754  * The 'return_instead' argument tells the function if it may do a
755  * thread_exit() or suspend, or whether the caller must abort and back
756  * out instead.
757  *
758  * If the thread that set the single_threading request has set the
759  * P_SINGLE_EXIT bit in the process flags then this call will never return
760  * if 'return_instead' is false, but will exit.
761  *
762  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
763  *---------------+--------------------+---------------------
764  *       0       | returns 0          |   returns 0 or 1
765  *               | when ST ends       |   immediatly
766  *---------------+--------------------+---------------------
767  *       1       | thread exits       |   returns 1
768  *               |                    |  immediatly
769  * 0 = thread_exit() or suspension ok,
770  * other = return error instead of stopping the thread.
771  *
772  * While a full suspension is under effect, even a single threading
773  * thread would be suspended if it made this call (but it shouldn't).
774  * This call should only be made from places where
775  * thread_exit() would be safe as that may be the outcome unless
776  * return_instead is set.
777  */
778 int
779 thread_suspend_check(int return_instead)
780 {
781         struct thread *td;
782         struct proc *p;
783
784         td = curthread;
785         p = td->td_proc;
786         mtx_assert(&Giant, MA_NOTOWNED);
787         PROC_LOCK_ASSERT(p, MA_OWNED);
788         while (P_SHOULDSTOP(p) ||
789               ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
790                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
791                         KASSERT(p->p_singlethread != NULL,
792                             ("singlethread not set"));
793                         /*
794                          * The only suspension in action is a
795                          * single-threading. Single threader need not stop.
796                          * XXX Should be safe to access unlocked
797                          * as it can only be set to be true by us.
798                          */
799                         if (p->p_singlethread == td)
800                                 return (0);     /* Exempt from stopping. */
801                 }
802                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
803                         return (EINTR);
804
805                 /* Should we goto user boundary if we didn't come from there? */
806                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
807                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
808                         return (ERESTART);
809
810                 /* If thread will exit, flush its pending signals */
811                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
812                         sigqueue_flush(&td->td_sigqueue);
813
814                 PROC_SLOCK(p);
815                 thread_stopped(p);
816                 /*
817                  * If the process is waiting for us to exit,
818                  * this thread should just suicide.
819                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
820                  */
821                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
822                         thread_exit();
823                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
824                         if (p->p_numthreads == p->p_suspcount + 1) {
825                                 thread_lock(p->p_singlethread);
826                                 thread_unsuspend_one(p->p_singlethread);
827                                 thread_unlock(p->p_singlethread);
828                         }
829                 }
830                 PROC_UNLOCK(p);
831                 thread_lock(td);
832                 /*
833                  * When a thread suspends, it just
834                  * gets taken off all queues.
835                  */
836                 thread_suspend_one(td);
837                 if (return_instead == 0) {
838                         p->p_boundary_count++;
839                         td->td_flags |= TDF_BOUNDARY;
840                 }
841                 PROC_SUNLOCK(p);
842                 mi_switch(SW_INVOL, NULL);
843                 if (return_instead == 0)
844                         td->td_flags &= ~TDF_BOUNDARY;
845                 thread_unlock(td);
846                 PROC_LOCK(p);
847                 if (return_instead == 0)
848                         p->p_boundary_count--;
849         }
850         return (0);
851 }
852
853 void
854 thread_suspend_switch(struct thread *td)
855 {
856         struct proc *p;
857
858         p = td->td_proc;
859         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
860         PROC_LOCK_ASSERT(p, MA_OWNED);
861         PROC_SLOCK_ASSERT(p, MA_OWNED);
862         /*
863          * We implement thread_suspend_one in stages here to avoid
864          * dropping the proc lock while the thread lock is owned.
865          */
866         thread_stopped(p);
867         p->p_suspcount++;
868         PROC_UNLOCK(p);
869         thread_lock(td);
870         sched_sleep(td);
871         TD_SET_SUSPENDED(td);
872         PROC_SUNLOCK(p);
873         DROP_GIANT();
874         mi_switch(SW_VOL, NULL);
875         thread_unlock(td);
876         PICKUP_GIANT();
877         PROC_LOCK(p);
878         PROC_SLOCK(p);
879 }
880
881 void
882 thread_suspend_one(struct thread *td)
883 {
884         struct proc *p = td->td_proc;
885
886         PROC_SLOCK_ASSERT(p, MA_OWNED);
887         THREAD_LOCK_ASSERT(td, MA_OWNED);
888         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
889         p->p_suspcount++;
890         sched_sleep(td);
891         TD_SET_SUSPENDED(td);
892 }
893
894 void
895 thread_unsuspend_one(struct thread *td)
896 {
897         struct proc *p = td->td_proc;
898
899         PROC_SLOCK_ASSERT(p, MA_OWNED);
900         THREAD_LOCK_ASSERT(td, MA_OWNED);
901         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
902         TD_CLR_SUSPENDED(td);
903         p->p_suspcount--;
904         setrunnable(td);
905 }
906
907 /*
908  * Allow all threads blocked by single threading to continue running.
909  */
910 void
911 thread_unsuspend(struct proc *p)
912 {
913         struct thread *td;
914
915         PROC_LOCK_ASSERT(p, MA_OWNED);
916         PROC_SLOCK_ASSERT(p, MA_OWNED);
917         if (!P_SHOULDSTOP(p)) {
918                 FOREACH_THREAD_IN_PROC(p, td) {
919                         thread_lock(td);
920                         if (TD_IS_SUSPENDED(td)) {
921                                 thread_unsuspend_one(td);
922                         }
923                         thread_unlock(td);
924                 }
925         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
926             (p->p_numthreads == p->p_suspcount)) {
927                 /*
928                  * Stopping everything also did the job for the single
929                  * threading request. Now we've downgraded to single-threaded,
930                  * let it continue.
931                  */
932                 thread_lock(p->p_singlethread);
933                 thread_unsuspend_one(p->p_singlethread);
934                 thread_unlock(p->p_singlethread);
935         }
936 }
937
938 /*
939  * End the single threading mode..
940  */
941 void
942 thread_single_end(void)
943 {
944         struct thread *td;
945         struct proc *p;
946
947         td = curthread;
948         p = td->td_proc;
949         PROC_LOCK_ASSERT(p, MA_OWNED);
950         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
951         PROC_SLOCK(p);
952         p->p_singlethread = NULL;
953         /*
954          * If there are other threads they mey now run,
955          * unless of course there is a blanket 'stop order'
956          * on the process. The single threader must be allowed
957          * to continue however as this is a bad place to stop.
958          */
959         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
960                 FOREACH_THREAD_IN_PROC(p, td) {
961                         thread_lock(td);
962                         if (TD_IS_SUSPENDED(td)) {
963                                 thread_unsuspend_one(td);
964                         }
965                         thread_unlock(td);
966                 }
967         }
968         PROC_SUNLOCK(p);
969 }
970
971 struct thread *
972 thread_find(struct proc *p, lwpid_t tid)
973 {
974         struct thread *td;
975
976         PROC_LOCK_ASSERT(p, MA_OWNED);
977         PROC_SLOCK(p);
978         FOREACH_THREAD_IN_PROC(p, td) {
979                 if (td->td_tid == tid)
980                         break;
981         }
982         PROC_SUNLOCK(p);
983         return (td);
984 }