]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Merge lldb trunk r300422 and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/sysent.h>
50 #include <sys/turnstile.h>
51 #include <sys/ktr.h>
52 #include <sys/rwlock.h>
53 #include <sys/umtx.h>
54 #include <sys/cpuset.h>
55 #ifdef  HWPMC_HOOKS
56 #include <sys/pmckern.h>
57 #endif
58
59 #include <security/audit/audit.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_extern.h>
63 #include <vm/uma.h>
64 #include <vm/vm_domain.h>
65 #include <sys/eventhandler.h>
66
67 SDT_PROVIDER_DECLARE(proc);
68 SDT_PROBE_DEFINE(proc, , , lwp__exit);
69
70 /*
71  * thread related storage.
72  */
73 static uma_zone_t thread_zone;
74
75 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
76 static struct mtx zombie_lock;
77 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
78
79 static void thread_zombie(struct thread *);
80 static int thread_unsuspend_one(struct thread *td, struct proc *p,
81     bool boundary);
82
83 #define TID_BUFFER_SIZE 1024
84
85 struct mtx tid_lock;
86 static struct unrhdr *tid_unrhdr;
87 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
88 static int tid_head, tid_tail;
89 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
90
91 struct  tidhashhead *tidhashtbl;
92 u_long  tidhash;
93 struct  rwlock tidhash_lock;
94
95 static lwpid_t
96 tid_alloc(void)
97 {
98         lwpid_t tid;
99
100         tid = alloc_unr(tid_unrhdr);
101         if (tid != -1)
102                 return (tid);
103         mtx_lock(&tid_lock);
104         if (tid_head == tid_tail) {
105                 mtx_unlock(&tid_lock);
106                 return (-1);
107         }
108         tid = tid_buffer[tid_head];
109         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
110         mtx_unlock(&tid_lock);
111         return (tid);
112 }
113
114 static void
115 tid_free(lwpid_t tid)
116 {
117         lwpid_t tmp_tid = -1;
118
119         mtx_lock(&tid_lock);
120         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
121                 tmp_tid = tid_buffer[tid_head];
122                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
123         }
124         tid_buffer[tid_tail] = tid;
125         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
126         mtx_unlock(&tid_lock);
127         if (tmp_tid != -1)
128                 free_unr(tid_unrhdr, tmp_tid);
129 }
130
131 /*
132  * Prepare a thread for use.
133  */
134 static int
135 thread_ctor(void *mem, int size, void *arg, int flags)
136 {
137         struct thread   *td;
138
139         td = (struct thread *)mem;
140         td->td_state = TDS_INACTIVE;
141         td->td_oncpu = NOCPU;
142
143         td->td_tid = tid_alloc();
144
145         /*
146          * Note that td_critnest begins life as 1 because the thread is not
147          * running and is thereby implicitly waiting to be on the receiving
148          * end of a context switch.
149          */
150         td->td_critnest = 1;
151         td->td_lend_user_pri = PRI_MAX;
152         EVENTHANDLER_INVOKE(thread_ctor, td);
153 #ifdef AUDIT
154         audit_thread_alloc(td);
155 #endif
156         umtx_thread_alloc(td);
157         return (0);
158 }
159
160 /*
161  * Reclaim a thread after use.
162  */
163 static void
164 thread_dtor(void *mem, int size, void *arg)
165 {
166         struct thread *td;
167
168         td = (struct thread *)mem;
169
170 #ifdef INVARIANTS
171         /* Verify that this thread is in a safe state to free. */
172         switch (td->td_state) {
173         case TDS_INHIBITED:
174         case TDS_RUNNING:
175         case TDS_CAN_RUN:
176         case TDS_RUNQ:
177                 /*
178                  * We must never unlink a thread that is in one of
179                  * these states, because it is currently active.
180                  */
181                 panic("bad state for thread unlinking");
182                 /* NOTREACHED */
183         case TDS_INACTIVE:
184                 break;
185         default:
186                 panic("bad thread state");
187                 /* NOTREACHED */
188         }
189 #endif
190 #ifdef AUDIT
191         audit_thread_free(td);
192 #endif
193         /* Free all OSD associated to this thread. */
194         osd_thread_exit(td);
195         td_softdep_cleanup(td);
196         MPASS(td->td_su == NULL);
197
198         EVENTHANDLER_INVOKE(thread_dtor, td);
199         tid_free(td->td_tid);
200 }
201
202 /*
203  * Initialize type-stable parts of a thread (when newly created).
204  */
205 static int
206 thread_init(void *mem, int size, int flags)
207 {
208         struct thread *td;
209
210         td = (struct thread *)mem;
211
212         td->td_sleepqueue = sleepq_alloc();
213         td->td_turnstile = turnstile_alloc();
214         td->td_rlqe = NULL;
215         EVENTHANDLER_INVOKE(thread_init, td);
216         umtx_thread_init(td);
217         td->td_kstack = 0;
218         td->td_sel = NULL;
219         return (0);
220 }
221
222 /*
223  * Tear down type-stable parts of a thread (just before being discarded).
224  */
225 static void
226 thread_fini(void *mem, int size)
227 {
228         struct thread *td;
229
230         td = (struct thread *)mem;
231         EVENTHANDLER_INVOKE(thread_fini, td);
232         rlqentry_free(td->td_rlqe);
233         turnstile_free(td->td_turnstile);
234         sleepq_free(td->td_sleepqueue);
235         umtx_thread_fini(td);
236         seltdfini(td);
237 }
238
239 /*
240  * For a newly created process,
241  * link up all the structures and its initial threads etc.
242  * called from:
243  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
244  * proc_dtor() (should go away)
245  * proc_init()
246  */
247 void
248 proc_linkup0(struct proc *p, struct thread *td)
249 {
250         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
251         proc_linkup(p, td);
252 }
253
254 void
255 proc_linkup(struct proc *p, struct thread *td)
256 {
257
258         sigqueue_init(&p->p_sigqueue, p);
259         p->p_ksi = ksiginfo_alloc(1);
260         if (p->p_ksi != NULL) {
261                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
262                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
263         }
264         LIST_INIT(&p->p_mqnotifier);
265         p->p_numthreads = 0;
266         thread_link(td, p);
267 }
268
269 /*
270  * Initialize global thread allocation resources.
271  */
272 void
273 threadinit(void)
274 {
275
276         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
277
278         /*
279          * pid_max cannot be greater than PID_MAX.
280          * leave one number for thread0.
281          */
282         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
283
284         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
285             thread_ctor, thread_dtor, thread_init, thread_fini,
286             32 - 1, UMA_ZONE_NOFREE);
287         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
288         rw_init(&tidhash_lock, "tidhash");
289 }
290
291 /*
292  * Place an unused thread on the zombie list.
293  * Use the slpq as that must be unused by now.
294  */
295 void
296 thread_zombie(struct thread *td)
297 {
298         mtx_lock_spin(&zombie_lock);
299         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
300         mtx_unlock_spin(&zombie_lock);
301 }
302
303 /*
304  * Release a thread that has exited after cpu_throw().
305  */
306 void
307 thread_stash(struct thread *td)
308 {
309         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
310         thread_zombie(td);
311 }
312
313 /*
314  * Reap zombie resources.
315  */
316 void
317 thread_reap(void)
318 {
319         struct thread *td_first, *td_next;
320
321         /*
322          * Don't even bother to lock if none at this instant,
323          * we really don't care about the next instant.
324          */
325         if (!TAILQ_EMPTY(&zombie_threads)) {
326                 mtx_lock_spin(&zombie_lock);
327                 td_first = TAILQ_FIRST(&zombie_threads);
328                 if (td_first)
329                         TAILQ_INIT(&zombie_threads);
330                 mtx_unlock_spin(&zombie_lock);
331                 while (td_first) {
332                         td_next = TAILQ_NEXT(td_first, td_slpq);
333                         thread_cow_free(td_first);
334                         thread_free(td_first);
335                         td_first = td_next;
336                 }
337         }
338 }
339
340 /*
341  * Allocate a thread.
342  */
343 struct thread *
344 thread_alloc(int pages)
345 {
346         struct thread *td;
347
348         thread_reap(); /* check if any zombies to get */
349
350         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
351         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
352         if (!vm_thread_new(td, pages)) {
353                 uma_zfree(thread_zone, td);
354                 return (NULL);
355         }
356         cpu_thread_alloc(td);
357         vm_domain_policy_init(&td->td_vm_dom_policy);
358         return (td);
359 }
360
361 int
362 thread_alloc_stack(struct thread *td, int pages)
363 {
364
365         KASSERT(td->td_kstack == 0,
366             ("thread_alloc_stack called on a thread with kstack"));
367         if (!vm_thread_new(td, pages))
368                 return (0);
369         cpu_thread_alloc(td);
370         return (1);
371 }
372
373 /*
374  * Deallocate a thread.
375  */
376 void
377 thread_free(struct thread *td)
378 {
379
380         lock_profile_thread_exit(td);
381         if (td->td_cpuset)
382                 cpuset_rel(td->td_cpuset);
383         td->td_cpuset = NULL;
384         cpu_thread_free(td);
385         if (td->td_kstack != 0)
386                 vm_thread_dispose(td);
387         vm_domain_policy_cleanup(&td->td_vm_dom_policy);
388         callout_drain(&td->td_slpcallout);
389         uma_zfree(thread_zone, td);
390 }
391
392 void
393 thread_cow_get_proc(struct thread *newtd, struct proc *p)
394 {
395
396         PROC_LOCK_ASSERT(p, MA_OWNED);
397         newtd->td_ucred = crhold(p->p_ucred);
398         newtd->td_limit = lim_hold(p->p_limit);
399         newtd->td_cowgen = p->p_cowgen;
400 }
401
402 void
403 thread_cow_get(struct thread *newtd, struct thread *td)
404 {
405
406         newtd->td_ucred = crhold(td->td_ucred);
407         newtd->td_limit = lim_hold(td->td_limit);
408         newtd->td_cowgen = td->td_cowgen;
409 }
410
411 void
412 thread_cow_free(struct thread *td)
413 {
414
415         if (td->td_ucred != NULL)
416                 crfree(td->td_ucred);
417         if (td->td_limit != NULL)
418                 lim_free(td->td_limit);
419 }
420
421 void
422 thread_cow_update(struct thread *td)
423 {
424         struct proc *p;
425         struct ucred *oldcred;
426         struct plimit *oldlimit;
427
428         p = td->td_proc;
429         oldcred = NULL;
430         oldlimit = NULL;
431         PROC_LOCK(p);
432         if (td->td_ucred != p->p_ucred) {
433                 oldcred = td->td_ucred;
434                 td->td_ucred = crhold(p->p_ucred);
435         }
436         if (td->td_limit != p->p_limit) {
437                 oldlimit = td->td_limit;
438                 td->td_limit = lim_hold(p->p_limit);
439         }
440         td->td_cowgen = p->p_cowgen;
441         PROC_UNLOCK(p);
442         if (oldcred != NULL)
443                 crfree(oldcred);
444         if (oldlimit != NULL)
445                 lim_free(oldlimit);
446 }
447
448 /*
449  * Discard the current thread and exit from its context.
450  * Always called with scheduler locked.
451  *
452  * Because we can't free a thread while we're operating under its context,
453  * push the current thread into our CPU's deadthread holder. This means
454  * we needn't worry about someone else grabbing our context before we
455  * do a cpu_throw().
456  */
457 void
458 thread_exit(void)
459 {
460         uint64_t runtime, new_switchtime;
461         struct thread *td;
462         struct thread *td2;
463         struct proc *p;
464         int wakeup_swapper;
465
466         td = curthread;
467         p = td->td_proc;
468
469         PROC_SLOCK_ASSERT(p, MA_OWNED);
470         mtx_assert(&Giant, MA_NOTOWNED);
471
472         PROC_LOCK_ASSERT(p, MA_OWNED);
473         KASSERT(p != NULL, ("thread exiting without a process"));
474         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
475             (long)p->p_pid, td->td_name);
476         SDT_PROBE0(proc, , , lwp__exit);
477         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
478
479 #ifdef AUDIT
480         AUDIT_SYSCALL_EXIT(0, td);
481 #endif
482         /*
483          * drop FPU & debug register state storage, or any other
484          * architecture specific resources that
485          * would not be on a new untouched process.
486          */
487         cpu_thread_exit(td);
488
489         /*
490          * The last thread is left attached to the process
491          * So that the whole bundle gets recycled. Skip
492          * all this stuff if we never had threads.
493          * EXIT clears all sign of other threads when
494          * it goes to single threading, so the last thread always
495          * takes the short path.
496          */
497         if (p->p_flag & P_HADTHREADS) {
498                 if (p->p_numthreads > 1) {
499                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
500                         thread_unlink(td);
501                         td2 = FIRST_THREAD_IN_PROC(p);
502                         sched_exit_thread(td2, td);
503
504                         /*
505                          * The test below is NOT true if we are the
506                          * sole exiting thread. P_STOPPED_SINGLE is unset
507                          * in exit1() after it is the only survivor.
508                          */
509                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
510                                 if (p->p_numthreads == p->p_suspcount) {
511                                         thread_lock(p->p_singlethread);
512                                         wakeup_swapper = thread_unsuspend_one(
513                                                 p->p_singlethread, p, false);
514                                         thread_unlock(p->p_singlethread);
515                                         if (wakeup_swapper)
516                                                 kick_proc0();
517                                 }
518                         }
519
520                         PCPU_SET(deadthread, td);
521                 } else {
522                         /*
523                          * The last thread is exiting.. but not through exit()
524                          */
525                         panic ("thread_exit: Last thread exiting on its own");
526                 }
527         } 
528 #ifdef  HWPMC_HOOKS
529         /*
530          * If this thread is part of a process that is being tracked by hwpmc(4),
531          * inform the module of the thread's impending exit.
532          */
533         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
534                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
535 #endif
536         PROC_UNLOCK(p);
537         PROC_STATLOCK(p);
538         thread_lock(td);
539         PROC_SUNLOCK(p);
540
541         /* Do the same timestamp bookkeeping that mi_switch() would do. */
542         new_switchtime = cpu_ticks();
543         runtime = new_switchtime - PCPU_GET(switchtime);
544         td->td_runtime += runtime;
545         td->td_incruntime += runtime;
546         PCPU_SET(switchtime, new_switchtime);
547         PCPU_SET(switchticks, ticks);
548         PCPU_INC(cnt.v_swtch);
549
550         /* Save our resource usage in our process. */
551         td->td_ru.ru_nvcsw++;
552         ruxagg(p, td);
553         rucollect(&p->p_ru, &td->td_ru);
554         PROC_STATUNLOCK(p);
555
556         td->td_state = TDS_INACTIVE;
557 #ifdef WITNESS
558         witness_thread_exit(td);
559 #endif
560         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
561         sched_throw(td);
562         panic("I'm a teapot!");
563         /* NOTREACHED */
564 }
565
566 /*
567  * Do any thread specific cleanups that may be needed in wait()
568  * called with Giant, proc and schedlock not held.
569  */
570 void
571 thread_wait(struct proc *p)
572 {
573         struct thread *td;
574
575         mtx_assert(&Giant, MA_NOTOWNED);
576         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
577         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
578         td = FIRST_THREAD_IN_PROC(p);
579         /* Lock the last thread so we spin until it exits cpu_throw(). */
580         thread_lock(td);
581         thread_unlock(td);
582         lock_profile_thread_exit(td);
583         cpuset_rel(td->td_cpuset);
584         td->td_cpuset = NULL;
585         cpu_thread_clean(td);
586         thread_cow_free(td);
587         callout_drain(&td->td_slpcallout);
588         thread_reap();  /* check for zombie threads etc. */
589 }
590
591 /*
592  * Link a thread to a process.
593  * set up anything that needs to be initialized for it to
594  * be used by the process.
595  */
596 void
597 thread_link(struct thread *td, struct proc *p)
598 {
599
600         /*
601          * XXX This can't be enabled because it's called for proc0 before
602          * its lock has been created.
603          * PROC_LOCK_ASSERT(p, MA_OWNED);
604          */
605         td->td_state    = TDS_INACTIVE;
606         td->td_proc     = p;
607         td->td_flags    = TDF_INMEM;
608
609         LIST_INIT(&td->td_contested);
610         LIST_INIT(&td->td_lprof[0]);
611         LIST_INIT(&td->td_lprof[1]);
612         sigqueue_init(&td->td_sigqueue, p);
613         callout_init(&td->td_slpcallout, 1);
614         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
615         p->p_numthreads++;
616 }
617
618 /*
619  * Called from:
620  *  thread_exit()
621  */
622 void
623 thread_unlink(struct thread *td)
624 {
625         struct proc *p = td->td_proc;
626
627         PROC_LOCK_ASSERT(p, MA_OWNED);
628         TAILQ_REMOVE(&p->p_threads, td, td_plist);
629         p->p_numthreads--;
630         /* could clear a few other things here */
631         /* Must  NOT clear links to proc! */
632 }
633
634 static int
635 calc_remaining(struct proc *p, int mode)
636 {
637         int remaining;
638
639         PROC_LOCK_ASSERT(p, MA_OWNED);
640         PROC_SLOCK_ASSERT(p, MA_OWNED);
641         if (mode == SINGLE_EXIT)
642                 remaining = p->p_numthreads;
643         else if (mode == SINGLE_BOUNDARY)
644                 remaining = p->p_numthreads - p->p_boundary_count;
645         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
646                 remaining = p->p_numthreads - p->p_suspcount;
647         else
648                 panic("calc_remaining: wrong mode %d", mode);
649         return (remaining);
650 }
651
652 static int
653 remain_for_mode(int mode)
654 {
655
656         return (mode == SINGLE_ALLPROC ? 0 : 1);
657 }
658
659 static int
660 weed_inhib(int mode, struct thread *td2, struct proc *p)
661 {
662         int wakeup_swapper;
663
664         PROC_LOCK_ASSERT(p, MA_OWNED);
665         PROC_SLOCK_ASSERT(p, MA_OWNED);
666         THREAD_LOCK_ASSERT(td2, MA_OWNED);
667
668         wakeup_swapper = 0;
669         switch (mode) {
670         case SINGLE_EXIT:
671                 if (TD_IS_SUSPENDED(td2))
672                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
673                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
674                         wakeup_swapper |= sleepq_abort(td2, EINTR);
675                 break;
676         case SINGLE_BOUNDARY:
677         case SINGLE_NO_EXIT:
678                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
679                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
680                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
681                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
682                 break;
683         case SINGLE_ALLPROC:
684                 /*
685                  * ALLPROC suspend tries to avoid spurious EINTR for
686                  * threads sleeping interruptable, by suspending the
687                  * thread directly, similarly to sig_suspend_threads().
688                  * Since such sleep is not performed at the user
689                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
690                  * is used to avoid immediate un-suspend.
691                  */
692                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
693                     TDF_ALLPROCSUSP)) == 0)
694                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
695                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
696                         if ((td2->td_flags & TDF_SBDRY) == 0) {
697                                 thread_suspend_one(td2);
698                                 td2->td_flags |= TDF_ALLPROCSUSP;
699                         } else {
700                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
701                         }
702                 }
703                 break;
704         }
705         return (wakeup_swapper);
706 }
707
708 /*
709  * Enforce single-threading.
710  *
711  * Returns 1 if the caller must abort (another thread is waiting to
712  * exit the process or similar). Process is locked!
713  * Returns 0 when you are successfully the only thread running.
714  * A process has successfully single threaded in the suspend mode when
715  * There are no threads in user mode. Threads in the kernel must be
716  * allowed to continue until they get to the user boundary. They may even
717  * copy out their return values and data before suspending. They may however be
718  * accelerated in reaching the user boundary as we will wake up
719  * any sleeping threads that are interruptable. (PCATCH).
720  */
721 int
722 thread_single(struct proc *p, int mode)
723 {
724         struct thread *td;
725         struct thread *td2;
726         int remaining, wakeup_swapper;
727
728         td = curthread;
729         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
730             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
731             ("invalid mode %d", mode));
732         /*
733          * If allowing non-ALLPROC singlethreading for non-curproc
734          * callers, calc_remaining() and remain_for_mode() should be
735          * adjusted to also account for td->td_proc != p.  For now
736          * this is not implemented because it is not used.
737          */
738         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
739             (mode != SINGLE_ALLPROC && td->td_proc == p),
740             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
741         mtx_assert(&Giant, MA_NOTOWNED);
742         PROC_LOCK_ASSERT(p, MA_OWNED);
743
744         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
745                 return (0);
746
747         /* Is someone already single threading? */
748         if (p->p_singlethread != NULL && p->p_singlethread != td)
749                 return (1);
750
751         if (mode == SINGLE_EXIT) {
752                 p->p_flag |= P_SINGLE_EXIT;
753                 p->p_flag &= ~P_SINGLE_BOUNDARY;
754         } else {
755                 p->p_flag &= ~P_SINGLE_EXIT;
756                 if (mode == SINGLE_BOUNDARY)
757                         p->p_flag |= P_SINGLE_BOUNDARY;
758                 else
759                         p->p_flag &= ~P_SINGLE_BOUNDARY;
760         }
761         if (mode == SINGLE_ALLPROC)
762                 p->p_flag |= P_TOTAL_STOP;
763         p->p_flag |= P_STOPPED_SINGLE;
764         PROC_SLOCK(p);
765         p->p_singlethread = td;
766         remaining = calc_remaining(p, mode);
767         while (remaining != remain_for_mode(mode)) {
768                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
769                         goto stopme;
770                 wakeup_swapper = 0;
771                 FOREACH_THREAD_IN_PROC(p, td2) {
772                         if (td2 == td)
773                                 continue;
774                         thread_lock(td2);
775                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
776                         if (TD_IS_INHIBITED(td2)) {
777                                 wakeup_swapper |= weed_inhib(mode, td2, p);
778 #ifdef SMP
779                         } else if (TD_IS_RUNNING(td2) && td != td2) {
780                                 forward_signal(td2);
781 #endif
782                         }
783                         thread_unlock(td2);
784                 }
785                 if (wakeup_swapper)
786                         kick_proc0();
787                 remaining = calc_remaining(p, mode);
788
789                 /*
790                  * Maybe we suspended some threads.. was it enough?
791                  */
792                 if (remaining == remain_for_mode(mode))
793                         break;
794
795 stopme:
796                 /*
797                  * Wake us up when everyone else has suspended.
798                  * In the mean time we suspend as well.
799                  */
800                 thread_suspend_switch(td, p);
801                 remaining = calc_remaining(p, mode);
802         }
803         if (mode == SINGLE_EXIT) {
804                 /*
805                  * Convert the process to an unthreaded process.  The
806                  * SINGLE_EXIT is called by exit1() or execve(), in
807                  * both cases other threads must be retired.
808                  */
809                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
810                 p->p_singlethread = NULL;
811                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
812
813                 /*
814                  * Wait for any remaining threads to exit cpu_throw().
815                  */
816                 while (p->p_exitthreads != 0) {
817                         PROC_SUNLOCK(p);
818                         PROC_UNLOCK(p);
819                         sched_relinquish(td);
820                         PROC_LOCK(p);
821                         PROC_SLOCK(p);
822                 }
823         } else if (mode == SINGLE_BOUNDARY) {
824                 /*
825                  * Wait until all suspended threads are removed from
826                  * the processors.  The thread_suspend_check()
827                  * increments p_boundary_count while it is still
828                  * running, which makes it possible for the execve()
829                  * to destroy vmspace while our other threads are
830                  * still using the address space.
831                  *
832                  * We lock the thread, which is only allowed to
833                  * succeed after context switch code finished using
834                  * the address space.
835                  */
836                 FOREACH_THREAD_IN_PROC(p, td2) {
837                         if (td2 == td)
838                                 continue;
839                         thread_lock(td2);
840                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
841                             ("td %p not on boundary", td2));
842                         KASSERT(TD_IS_SUSPENDED(td2),
843                             ("td %p is not suspended", td2));
844                         thread_unlock(td2);
845                 }
846         }
847         PROC_SUNLOCK(p);
848         return (0);
849 }
850
851 bool
852 thread_suspend_check_needed(void)
853 {
854         struct proc *p;
855         struct thread *td;
856
857         td = curthread;
858         p = td->td_proc;
859         PROC_LOCK_ASSERT(p, MA_OWNED);
860         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
861             (td->td_dbgflags & TDB_SUSPEND) != 0));
862 }
863
864 /*
865  * Called in from locations that can safely check to see
866  * whether we have to suspend or at least throttle for a
867  * single-thread event (e.g. fork).
868  *
869  * Such locations include userret().
870  * If the "return_instead" argument is non zero, the thread must be able to
871  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
872  *
873  * The 'return_instead' argument tells the function if it may do a
874  * thread_exit() or suspend, or whether the caller must abort and back
875  * out instead.
876  *
877  * If the thread that set the single_threading request has set the
878  * P_SINGLE_EXIT bit in the process flags then this call will never return
879  * if 'return_instead' is false, but will exit.
880  *
881  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
882  *---------------+--------------------+---------------------
883  *       0       | returns 0          |   returns 0 or 1
884  *               | when ST ends       |   immediately
885  *---------------+--------------------+---------------------
886  *       1       | thread exits       |   returns 1
887  *               |                    |  immediately
888  * 0 = thread_exit() or suspension ok,
889  * other = return error instead of stopping the thread.
890  *
891  * While a full suspension is under effect, even a single threading
892  * thread would be suspended if it made this call (but it shouldn't).
893  * This call should only be made from places where
894  * thread_exit() would be safe as that may be the outcome unless
895  * return_instead is set.
896  */
897 int
898 thread_suspend_check(int return_instead)
899 {
900         struct thread *td;
901         struct proc *p;
902         int wakeup_swapper;
903
904         td = curthread;
905         p = td->td_proc;
906         mtx_assert(&Giant, MA_NOTOWNED);
907         PROC_LOCK_ASSERT(p, MA_OWNED);
908         while (thread_suspend_check_needed()) {
909                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
910                         KASSERT(p->p_singlethread != NULL,
911                             ("singlethread not set"));
912                         /*
913                          * The only suspension in action is a
914                          * single-threading. Single threader need not stop.
915                          * It is safe to access p->p_singlethread unlocked
916                          * because it can only be set to our address by us.
917                          */
918                         if (p->p_singlethread == td)
919                                 return (0);     /* Exempt from stopping. */
920                 }
921                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
922                         return (EINTR);
923
924                 /* Should we goto user boundary if we didn't come from there? */
925                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
926                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
927                         return (ERESTART);
928
929                 /*
930                  * Ignore suspend requests if they are deferred.
931                  */
932                 if ((td->td_flags & TDF_SBDRY) != 0) {
933                         KASSERT(return_instead,
934                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
935                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
936                             (TDF_SEINTR | TDF_SERESTART),
937                             ("both TDF_SEINTR and TDF_SERESTART"));
938                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
939                 }
940
941                 /*
942                  * If the process is waiting for us to exit,
943                  * this thread should just suicide.
944                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
945                  */
946                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
947                         PROC_UNLOCK(p);
948
949                         /*
950                          * Allow Linux emulation layer to do some work
951                          * before thread suicide.
952                          */
953                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
954                                 (p->p_sysent->sv_thread_detach)(td);
955                         umtx_thread_exit(td);
956                         kern_thr_exit(td);
957                         panic("stopped thread did not exit");
958                 }
959
960                 PROC_SLOCK(p);
961                 thread_stopped(p);
962                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
963                         if (p->p_numthreads == p->p_suspcount + 1) {
964                                 thread_lock(p->p_singlethread);
965                                 wakeup_swapper = thread_unsuspend_one(
966                                     p->p_singlethread, p, false);
967                                 thread_unlock(p->p_singlethread);
968                                 if (wakeup_swapper)
969                                         kick_proc0();
970                         }
971                 }
972                 PROC_UNLOCK(p);
973                 thread_lock(td);
974                 /*
975                  * When a thread suspends, it just
976                  * gets taken off all queues.
977                  */
978                 thread_suspend_one(td);
979                 if (return_instead == 0) {
980                         p->p_boundary_count++;
981                         td->td_flags |= TDF_BOUNDARY;
982                 }
983                 PROC_SUNLOCK(p);
984                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
985                 thread_unlock(td);
986                 PROC_LOCK(p);
987         }
988         return (0);
989 }
990
991 void
992 thread_suspend_switch(struct thread *td, struct proc *p)
993 {
994
995         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
996         PROC_LOCK_ASSERT(p, MA_OWNED);
997         PROC_SLOCK_ASSERT(p, MA_OWNED);
998         /*
999          * We implement thread_suspend_one in stages here to avoid
1000          * dropping the proc lock while the thread lock is owned.
1001          */
1002         if (p == td->td_proc) {
1003                 thread_stopped(p);
1004                 p->p_suspcount++;
1005         }
1006         PROC_UNLOCK(p);
1007         thread_lock(td);
1008         td->td_flags &= ~TDF_NEEDSUSPCHK;
1009         TD_SET_SUSPENDED(td);
1010         sched_sleep(td, 0);
1011         PROC_SUNLOCK(p);
1012         DROP_GIANT();
1013         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1014         thread_unlock(td);
1015         PICKUP_GIANT();
1016         PROC_LOCK(p);
1017         PROC_SLOCK(p);
1018 }
1019
1020 void
1021 thread_suspend_one(struct thread *td)
1022 {
1023         struct proc *p;
1024
1025         p = td->td_proc;
1026         PROC_SLOCK_ASSERT(p, MA_OWNED);
1027         THREAD_LOCK_ASSERT(td, MA_OWNED);
1028         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1029         p->p_suspcount++;
1030         td->td_flags &= ~TDF_NEEDSUSPCHK;
1031         TD_SET_SUSPENDED(td);
1032         sched_sleep(td, 0);
1033 }
1034
1035 static int
1036 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1037 {
1038
1039         THREAD_LOCK_ASSERT(td, MA_OWNED);
1040         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1041         TD_CLR_SUSPENDED(td);
1042         td->td_flags &= ~TDF_ALLPROCSUSP;
1043         if (td->td_proc == p) {
1044                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1045                 p->p_suspcount--;
1046                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1047                         td->td_flags &= ~TDF_BOUNDARY;
1048                         p->p_boundary_count--;
1049                 }
1050         }
1051         return (setrunnable(td));
1052 }
1053
1054 /*
1055  * Allow all threads blocked by single threading to continue running.
1056  */
1057 void
1058 thread_unsuspend(struct proc *p)
1059 {
1060         struct thread *td;
1061         int wakeup_swapper;
1062
1063         PROC_LOCK_ASSERT(p, MA_OWNED);
1064         PROC_SLOCK_ASSERT(p, MA_OWNED);
1065         wakeup_swapper = 0;
1066         if (!P_SHOULDSTOP(p)) {
1067                 FOREACH_THREAD_IN_PROC(p, td) {
1068                         thread_lock(td);
1069                         if (TD_IS_SUSPENDED(td)) {
1070                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1071                                     true);
1072                         }
1073                         thread_unlock(td);
1074                 }
1075         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1076             p->p_numthreads == p->p_suspcount) {
1077                 /*
1078                  * Stopping everything also did the job for the single
1079                  * threading request. Now we've downgraded to single-threaded,
1080                  * let it continue.
1081                  */
1082                 if (p->p_singlethread->td_proc == p) {
1083                         thread_lock(p->p_singlethread);
1084                         wakeup_swapper = thread_unsuspend_one(
1085                             p->p_singlethread, p, false);
1086                         thread_unlock(p->p_singlethread);
1087                 }
1088         }
1089         if (wakeup_swapper)
1090                 kick_proc0();
1091 }
1092
1093 /*
1094  * End the single threading mode..
1095  */
1096 void
1097 thread_single_end(struct proc *p, int mode)
1098 {
1099         struct thread *td;
1100         int wakeup_swapper;
1101
1102         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1103             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1104             ("invalid mode %d", mode));
1105         PROC_LOCK_ASSERT(p, MA_OWNED);
1106         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1107             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1108             ("mode %d does not match P_TOTAL_STOP", mode));
1109         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1110             ("thread_single_end from other thread %p %p",
1111             curthread, p->p_singlethread));
1112         KASSERT(mode != SINGLE_BOUNDARY ||
1113             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1114             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1115         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1116             P_TOTAL_STOP);
1117         PROC_SLOCK(p);
1118         p->p_singlethread = NULL;
1119         wakeup_swapper = 0;
1120         /*
1121          * If there are other threads they may now run,
1122          * unless of course there is a blanket 'stop order'
1123          * on the process. The single threader must be allowed
1124          * to continue however as this is a bad place to stop.
1125          */
1126         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1127                 FOREACH_THREAD_IN_PROC(p, td) {
1128                         thread_lock(td);
1129                         if (TD_IS_SUSPENDED(td)) {
1130                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1131                                     mode == SINGLE_BOUNDARY);
1132                         }
1133                         thread_unlock(td);
1134                 }
1135         }
1136         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1137             ("inconsistent boundary count %d", p->p_boundary_count));
1138         PROC_SUNLOCK(p);
1139         if (wakeup_swapper)
1140                 kick_proc0();
1141 }
1142
1143 struct thread *
1144 thread_find(struct proc *p, lwpid_t tid)
1145 {
1146         struct thread *td;
1147
1148         PROC_LOCK_ASSERT(p, MA_OWNED);
1149         FOREACH_THREAD_IN_PROC(p, td) {
1150                 if (td->td_tid == tid)
1151                         break;
1152         }
1153         return (td);
1154 }
1155
1156 /* Locate a thread by number; return with proc lock held. */
1157 struct thread *
1158 tdfind(lwpid_t tid, pid_t pid)
1159 {
1160 #define RUN_THRESH      16
1161         struct thread *td;
1162         int run = 0;
1163
1164         rw_rlock(&tidhash_lock);
1165         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1166                 if (td->td_tid == tid) {
1167                         if (pid != -1 && td->td_proc->p_pid != pid) {
1168                                 td = NULL;
1169                                 break;
1170                         }
1171                         PROC_LOCK(td->td_proc);
1172                         if (td->td_proc->p_state == PRS_NEW) {
1173                                 PROC_UNLOCK(td->td_proc);
1174                                 td = NULL;
1175                                 break;
1176                         }
1177                         if (run > RUN_THRESH) {
1178                                 if (rw_try_upgrade(&tidhash_lock)) {
1179                                         LIST_REMOVE(td, td_hash);
1180                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1181                                                 td, td_hash);
1182                                         rw_wunlock(&tidhash_lock);
1183                                         return (td);
1184                                 }
1185                         }
1186                         break;
1187                 }
1188                 run++;
1189         }
1190         rw_runlock(&tidhash_lock);
1191         return (td);
1192 }
1193
1194 void
1195 tidhash_add(struct thread *td)
1196 {
1197         rw_wlock(&tidhash_lock);
1198         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1199         rw_wunlock(&tidhash_lock);
1200 }
1201
1202 void
1203 tidhash_remove(struct thread *td)
1204 {
1205         rw_wlock(&tidhash_lock);
1206         LIST_REMOVE(td, td_hash);
1207         rw_wunlock(&tidhash_lock);
1208 }