]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Since EPOCH_TRACE had been moved to opt_global.h, we don't need to waste
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/rangelock.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sdt.h>
47 #include <sys/smp.h>
48 #include <sys/sched.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/selinfo.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysent.h>
53 #include <sys/turnstile.h>
54 #include <sys/ktr.h>
55 #include <sys/rwlock.h>
56 #include <sys/umtx.h>
57 #include <sys/vmmeter.h>
58 #include <sys/cpuset.h>
59 #ifdef  HWPMC_HOOKS
60 #include <sys/pmckern.h>
61 #endif
62
63 #include <security/audit/audit.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/uma.h>
68 #include <sys/eventhandler.h>
69
70 /*
71  * Asserts below verify the stability of struct thread and struct proc
72  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
73  * to drift, change to the structures must be accompanied by the
74  * assert update.
75  *
76  * On the stable branches after KBI freeze, conditions must not be
77  * violated.  Typically new fields are moved to the end of the
78  * structures.
79  */
80 #ifdef __amd64__
81 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
82     "struct thread KBI td_flags");
83 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
84     "struct thread KBI td_pflags");
85 _Static_assert(offsetof(struct thread, td_frame) == 0x478,
86     "struct thread KBI td_frame");
87 _Static_assert(offsetof(struct thread, td_emuldata) == 0x540,
88     "struct thread KBI td_emuldata");
89 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
90     "struct proc KBI p_flag");
91 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
92     "struct proc KBI p_pid");
93 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
94     "struct proc KBI p_filemon");
95 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
96     "struct proc KBI p_comm");
97 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4c0,
98     "struct proc KBI p_emuldata");
99 #endif
100 #ifdef __i386__
101 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
102     "struct thread KBI td_flags");
103 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
104     "struct thread KBI td_pflags");
105 _Static_assert(offsetof(struct thread, td_frame) == 0x2f0,
106     "struct thread KBI td_frame");
107 _Static_assert(offsetof(struct thread, td_emuldata) == 0x338,
108     "struct thread KBI td_emuldata");
109 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
110     "struct proc KBI p_flag");
111 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
112     "struct proc KBI p_pid");
113 _Static_assert(offsetof(struct proc, p_filemon) == 0x278,
114     "struct proc KBI p_filemon");
115 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
116     "struct proc KBI p_comm");
117 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
118     "struct proc KBI p_emuldata");
119 #endif
120
121 SDT_PROVIDER_DECLARE(proc);
122 SDT_PROBE_DEFINE(proc, , , lwp__exit);
123
124 /*
125  * thread related storage.
126  */
127 static uma_zone_t thread_zone;
128
129 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
130 static struct mtx zombie_lock;
131 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
132
133 static void thread_zombie(struct thread *);
134 static int thread_unsuspend_one(struct thread *td, struct proc *p,
135     bool boundary);
136
137 #define TID_BUFFER_SIZE 1024
138
139 struct mtx tid_lock;
140 static struct unrhdr *tid_unrhdr;
141 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
142 static int tid_head, tid_tail;
143 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
144
145 struct  tidhashhead *tidhashtbl;
146 u_long  tidhash;
147 struct  rwlock tidhash_lock;
148
149 EVENTHANDLER_LIST_DEFINE(thread_ctor);
150 EVENTHANDLER_LIST_DEFINE(thread_dtor);
151 EVENTHANDLER_LIST_DEFINE(thread_init);
152 EVENTHANDLER_LIST_DEFINE(thread_fini);
153
154 static lwpid_t
155 tid_alloc(void)
156 {
157         lwpid_t tid;
158
159         tid = alloc_unr(tid_unrhdr);
160         if (tid != -1)
161                 return (tid);
162         mtx_lock(&tid_lock);
163         if (tid_head == tid_tail) {
164                 mtx_unlock(&tid_lock);
165                 return (-1);
166         }
167         tid = tid_buffer[tid_head];
168         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
169         mtx_unlock(&tid_lock);
170         return (tid);
171 }
172
173 static void
174 tid_free(lwpid_t tid)
175 {
176         lwpid_t tmp_tid = -1;
177
178         mtx_lock(&tid_lock);
179         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
180                 tmp_tid = tid_buffer[tid_head];
181                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
182         }
183         tid_buffer[tid_tail] = tid;
184         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
185         mtx_unlock(&tid_lock);
186         if (tmp_tid != -1)
187                 free_unr(tid_unrhdr, tmp_tid);
188 }
189
190 /*
191  * Prepare a thread for use.
192  */
193 static int
194 thread_ctor(void *mem, int size, void *arg, int flags)
195 {
196         struct thread   *td;
197
198         td = (struct thread *)mem;
199         td->td_state = TDS_INACTIVE;
200         td->td_lastcpu = td->td_oncpu = NOCPU;
201
202         td->td_tid = tid_alloc();
203
204         /*
205          * Note that td_critnest begins life as 1 because the thread is not
206          * running and is thereby implicitly waiting to be on the receiving
207          * end of a context switch.
208          */
209         td->td_critnest = 1;
210         td->td_lend_user_pri = PRI_MAX;
211         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
212 #ifdef AUDIT
213         audit_thread_alloc(td);
214 #endif
215         umtx_thread_alloc(td);
216         return (0);
217 }
218
219 /*
220  * Reclaim a thread after use.
221  */
222 static void
223 thread_dtor(void *mem, int size, void *arg)
224 {
225         struct thread *td;
226
227         td = (struct thread *)mem;
228
229 #ifdef INVARIANTS
230         /* Verify that this thread is in a safe state to free. */
231         switch (td->td_state) {
232         case TDS_INHIBITED:
233         case TDS_RUNNING:
234         case TDS_CAN_RUN:
235         case TDS_RUNQ:
236                 /*
237                  * We must never unlink a thread that is in one of
238                  * these states, because it is currently active.
239                  */
240                 panic("bad state for thread unlinking");
241                 /* NOTREACHED */
242         case TDS_INACTIVE:
243                 break;
244         default:
245                 panic("bad thread state");
246                 /* NOTREACHED */
247         }
248 #endif
249 #ifdef AUDIT
250         audit_thread_free(td);
251 #endif
252         /* Free all OSD associated to this thread. */
253         osd_thread_exit(td);
254         td_softdep_cleanup(td);
255         MPASS(td->td_su == NULL);
256
257         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
258         tid_free(td->td_tid);
259 }
260
261 /*
262  * Initialize type-stable parts of a thread (when newly created).
263  */
264 static int
265 thread_init(void *mem, int size, int flags)
266 {
267         struct thread *td;
268
269         td = (struct thread *)mem;
270
271         td->td_sleepqueue = sleepq_alloc();
272         td->td_turnstile = turnstile_alloc();
273         td->td_rlqe = NULL;
274         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
275         umtx_thread_init(td);
276         epoch_thread_init(td);
277         td->td_kstack = 0;
278         td->td_sel = NULL;
279         return (0);
280 }
281
282 /*
283  * Tear down type-stable parts of a thread (just before being discarded).
284  */
285 static void
286 thread_fini(void *mem, int size)
287 {
288         struct thread *td;
289
290         td = (struct thread *)mem;
291         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
292         rlqentry_free(td->td_rlqe);
293         turnstile_free(td->td_turnstile);
294         sleepq_free(td->td_sleepqueue);
295         umtx_thread_fini(td);
296         epoch_thread_fini(td);
297         seltdfini(td);
298 }
299
300 /*
301  * For a newly created process,
302  * link up all the structures and its initial threads etc.
303  * called from:
304  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
305  * proc_dtor() (should go away)
306  * proc_init()
307  */
308 void
309 proc_linkup0(struct proc *p, struct thread *td)
310 {
311         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
312         proc_linkup(p, td);
313 }
314
315 void
316 proc_linkup(struct proc *p, struct thread *td)
317 {
318
319         sigqueue_init(&p->p_sigqueue, p);
320         p->p_ksi = ksiginfo_alloc(1);
321         if (p->p_ksi != NULL) {
322                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
323                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
324         }
325         LIST_INIT(&p->p_mqnotifier);
326         p->p_numthreads = 0;
327         thread_link(td, p);
328 }
329
330 /*
331  * Initialize global thread allocation resources.
332  */
333 void
334 threadinit(void)
335 {
336
337         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
338
339         /*
340          * pid_max cannot be greater than PID_MAX.
341          * leave one number for thread0.
342          */
343         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
344
345         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
346             thread_ctor, thread_dtor, thread_init, thread_fini,
347             32 - 1, UMA_ZONE_NOFREE);
348         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
349         rw_init(&tidhash_lock, "tidhash");
350 }
351
352 /*
353  * Place an unused thread on the zombie list.
354  * Use the slpq as that must be unused by now.
355  */
356 void
357 thread_zombie(struct thread *td)
358 {
359         mtx_lock_spin(&zombie_lock);
360         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
361         mtx_unlock_spin(&zombie_lock);
362 }
363
364 /*
365  * Release a thread that has exited after cpu_throw().
366  */
367 void
368 thread_stash(struct thread *td)
369 {
370         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
371         thread_zombie(td);
372 }
373
374 /*
375  * Reap zombie resources.
376  */
377 void
378 thread_reap(void)
379 {
380         struct thread *td_first, *td_next;
381
382         /*
383          * Don't even bother to lock if none at this instant,
384          * we really don't care about the next instant.
385          */
386         if (!TAILQ_EMPTY(&zombie_threads)) {
387                 mtx_lock_spin(&zombie_lock);
388                 td_first = TAILQ_FIRST(&zombie_threads);
389                 if (td_first)
390                         TAILQ_INIT(&zombie_threads);
391                 mtx_unlock_spin(&zombie_lock);
392                 while (td_first) {
393                         td_next = TAILQ_NEXT(td_first, td_slpq);
394                         thread_cow_free(td_first);
395                         thread_free(td_first);
396                         td_first = td_next;
397                 }
398         }
399 }
400
401 /*
402  * Allocate a thread.
403  */
404 struct thread *
405 thread_alloc(int pages)
406 {
407         struct thread *td;
408
409         thread_reap(); /* check if any zombies to get */
410
411         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
412         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
413         if (!vm_thread_new(td, pages)) {
414                 uma_zfree(thread_zone, td);
415                 return (NULL);
416         }
417         cpu_thread_alloc(td);
418         return (td);
419 }
420
421 int
422 thread_alloc_stack(struct thread *td, int pages)
423 {
424
425         KASSERT(td->td_kstack == 0,
426             ("thread_alloc_stack called on a thread with kstack"));
427         if (!vm_thread_new(td, pages))
428                 return (0);
429         cpu_thread_alloc(td);
430         return (1);
431 }
432
433 /*
434  * Deallocate a thread.
435  */
436 void
437 thread_free(struct thread *td)
438 {
439
440         lock_profile_thread_exit(td);
441         if (td->td_cpuset)
442                 cpuset_rel(td->td_cpuset);
443         td->td_cpuset = NULL;
444         cpu_thread_free(td);
445         if (td->td_kstack != 0)
446                 vm_thread_dispose(td);
447         callout_drain(&td->td_slpcallout);
448         uma_zfree(thread_zone, td);
449 }
450
451 void
452 thread_cow_get_proc(struct thread *newtd, struct proc *p)
453 {
454
455         PROC_LOCK_ASSERT(p, MA_OWNED);
456         newtd->td_ucred = crhold(p->p_ucred);
457         newtd->td_limit = lim_hold(p->p_limit);
458         newtd->td_cowgen = p->p_cowgen;
459 }
460
461 void
462 thread_cow_get(struct thread *newtd, struct thread *td)
463 {
464
465         newtd->td_ucred = crhold(td->td_ucred);
466         newtd->td_limit = lim_hold(td->td_limit);
467         newtd->td_cowgen = td->td_cowgen;
468 }
469
470 void
471 thread_cow_free(struct thread *td)
472 {
473
474         if (td->td_ucred != NULL)
475                 crfree(td->td_ucred);
476         if (td->td_limit != NULL)
477                 lim_free(td->td_limit);
478 }
479
480 void
481 thread_cow_update(struct thread *td)
482 {
483         struct proc *p;
484         struct ucred *oldcred;
485         struct plimit *oldlimit;
486
487         p = td->td_proc;
488         oldcred = NULL;
489         oldlimit = NULL;
490         PROC_LOCK(p);
491         if (td->td_ucred != p->p_ucred) {
492                 oldcred = td->td_ucred;
493                 td->td_ucred = crhold(p->p_ucred);
494         }
495         if (td->td_limit != p->p_limit) {
496                 oldlimit = td->td_limit;
497                 td->td_limit = lim_hold(p->p_limit);
498         }
499         td->td_cowgen = p->p_cowgen;
500         PROC_UNLOCK(p);
501         if (oldcred != NULL)
502                 crfree(oldcred);
503         if (oldlimit != NULL)
504                 lim_free(oldlimit);
505 }
506
507 /*
508  * Discard the current thread and exit from its context.
509  * Always called with scheduler locked.
510  *
511  * Because we can't free a thread while we're operating under its context,
512  * push the current thread into our CPU's deadthread holder. This means
513  * we needn't worry about someone else grabbing our context before we
514  * do a cpu_throw().
515  */
516 void
517 thread_exit(void)
518 {
519         uint64_t runtime, new_switchtime;
520         struct thread *td;
521         struct thread *td2;
522         struct proc *p;
523         int wakeup_swapper;
524
525         td = curthread;
526         p = td->td_proc;
527
528         PROC_SLOCK_ASSERT(p, MA_OWNED);
529         mtx_assert(&Giant, MA_NOTOWNED);
530
531         PROC_LOCK_ASSERT(p, MA_OWNED);
532         KASSERT(p != NULL, ("thread exiting without a process"));
533         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
534             (long)p->p_pid, td->td_name);
535         SDT_PROBE0(proc, , , lwp__exit);
536         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
537
538         /*
539          * drop FPU & debug register state storage, or any other
540          * architecture specific resources that
541          * would not be on a new untouched process.
542          */
543         cpu_thread_exit(td);
544
545         /*
546          * The last thread is left attached to the process
547          * So that the whole bundle gets recycled. Skip
548          * all this stuff if we never had threads.
549          * EXIT clears all sign of other threads when
550          * it goes to single threading, so the last thread always
551          * takes the short path.
552          */
553         if (p->p_flag & P_HADTHREADS) {
554                 if (p->p_numthreads > 1) {
555                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
556                         thread_unlink(td);
557                         td2 = FIRST_THREAD_IN_PROC(p);
558                         sched_exit_thread(td2, td);
559
560                         /*
561                          * The test below is NOT true if we are the
562                          * sole exiting thread. P_STOPPED_SINGLE is unset
563                          * in exit1() after it is the only survivor.
564                          */
565                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
566                                 if (p->p_numthreads == p->p_suspcount) {
567                                         thread_lock(p->p_singlethread);
568                                         wakeup_swapper = thread_unsuspend_one(
569                                                 p->p_singlethread, p, false);
570                                         thread_unlock(p->p_singlethread);
571                                         if (wakeup_swapper)
572                                                 kick_proc0();
573                                 }
574                         }
575
576                         PCPU_SET(deadthread, td);
577                 } else {
578                         /*
579                          * The last thread is exiting.. but not through exit()
580                          */
581                         panic ("thread_exit: Last thread exiting on its own");
582                 }
583         } 
584 #ifdef  HWPMC_HOOKS
585         /*
586          * If this thread is part of a process that is being tracked by hwpmc(4),
587          * inform the module of the thread's impending exit.
588          */
589         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
590                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
591                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
592         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
593                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
594 #endif
595         PROC_UNLOCK(p);
596         PROC_STATLOCK(p);
597         thread_lock(td);
598         PROC_SUNLOCK(p);
599
600         /* Do the same timestamp bookkeeping that mi_switch() would do. */
601         new_switchtime = cpu_ticks();
602         runtime = new_switchtime - PCPU_GET(switchtime);
603         td->td_runtime += runtime;
604         td->td_incruntime += runtime;
605         PCPU_SET(switchtime, new_switchtime);
606         PCPU_SET(switchticks, ticks);
607         VM_CNT_INC(v_swtch);
608
609         /* Save our resource usage in our process. */
610         td->td_ru.ru_nvcsw++;
611         ruxagg(p, td);
612         rucollect(&p->p_ru, &td->td_ru);
613         PROC_STATUNLOCK(p);
614
615         td->td_state = TDS_INACTIVE;
616 #ifdef WITNESS
617         witness_thread_exit(td);
618 #endif
619         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
620         sched_throw(td);
621         panic("I'm a teapot!");
622         /* NOTREACHED */
623 }
624
625 /*
626  * Do any thread specific cleanups that may be needed in wait()
627  * called with Giant, proc and schedlock not held.
628  */
629 void
630 thread_wait(struct proc *p)
631 {
632         struct thread *td;
633
634         mtx_assert(&Giant, MA_NOTOWNED);
635         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
636         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
637         td = FIRST_THREAD_IN_PROC(p);
638         /* Lock the last thread so we spin until it exits cpu_throw(). */
639         thread_lock(td);
640         thread_unlock(td);
641         lock_profile_thread_exit(td);
642         cpuset_rel(td->td_cpuset);
643         td->td_cpuset = NULL;
644         cpu_thread_clean(td);
645         thread_cow_free(td);
646         callout_drain(&td->td_slpcallout);
647         thread_reap();  /* check for zombie threads etc. */
648 }
649
650 /*
651  * Link a thread to a process.
652  * set up anything that needs to be initialized for it to
653  * be used by the process.
654  */
655 void
656 thread_link(struct thread *td, struct proc *p)
657 {
658
659         /*
660          * XXX This can't be enabled because it's called for proc0 before
661          * its lock has been created.
662          * PROC_LOCK_ASSERT(p, MA_OWNED);
663          */
664         td->td_state    = TDS_INACTIVE;
665         td->td_proc     = p;
666         td->td_flags    = TDF_INMEM;
667
668         LIST_INIT(&td->td_contested);
669         LIST_INIT(&td->td_lprof[0]);
670         LIST_INIT(&td->td_lprof[1]);
671 #ifdef EPOCH_TRACE
672         SLIST_INIT(&td->td_epochs);
673 #endif
674         sigqueue_init(&td->td_sigqueue, p);
675         callout_init(&td->td_slpcallout, 1);
676         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
677         p->p_numthreads++;
678 }
679
680 /*
681  * Called from:
682  *  thread_exit()
683  */
684 void
685 thread_unlink(struct thread *td)
686 {
687         struct proc *p = td->td_proc;
688
689         PROC_LOCK_ASSERT(p, MA_OWNED);
690 #ifdef EPOCH_TRACE
691         MPASS(SLIST_EMPTY(&td->td_epochs));
692 #endif
693
694         TAILQ_REMOVE(&p->p_threads, td, td_plist);
695         p->p_numthreads--;
696         /* could clear a few other things here */
697         /* Must  NOT clear links to proc! */
698 }
699
700 static int
701 calc_remaining(struct proc *p, int mode)
702 {
703         int remaining;
704
705         PROC_LOCK_ASSERT(p, MA_OWNED);
706         PROC_SLOCK_ASSERT(p, MA_OWNED);
707         if (mode == SINGLE_EXIT)
708                 remaining = p->p_numthreads;
709         else if (mode == SINGLE_BOUNDARY)
710                 remaining = p->p_numthreads - p->p_boundary_count;
711         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
712                 remaining = p->p_numthreads - p->p_suspcount;
713         else
714                 panic("calc_remaining: wrong mode %d", mode);
715         return (remaining);
716 }
717
718 static int
719 remain_for_mode(int mode)
720 {
721
722         return (mode == SINGLE_ALLPROC ? 0 : 1);
723 }
724
725 static int
726 weed_inhib(int mode, struct thread *td2, struct proc *p)
727 {
728         int wakeup_swapper;
729
730         PROC_LOCK_ASSERT(p, MA_OWNED);
731         PROC_SLOCK_ASSERT(p, MA_OWNED);
732         THREAD_LOCK_ASSERT(td2, MA_OWNED);
733
734         wakeup_swapper = 0;
735         switch (mode) {
736         case SINGLE_EXIT:
737                 if (TD_IS_SUSPENDED(td2))
738                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
739                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
740                         wakeup_swapper |= sleepq_abort(td2, EINTR);
741                 break;
742         case SINGLE_BOUNDARY:
743         case SINGLE_NO_EXIT:
744                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
745                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
746                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
747                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
748                 break;
749         case SINGLE_ALLPROC:
750                 /*
751                  * ALLPROC suspend tries to avoid spurious EINTR for
752                  * threads sleeping interruptable, by suspending the
753                  * thread directly, similarly to sig_suspend_threads().
754                  * Since such sleep is not performed at the user
755                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
756                  * is used to avoid immediate un-suspend.
757                  */
758                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
759                     TDF_ALLPROCSUSP)) == 0)
760                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
761                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
762                         if ((td2->td_flags & TDF_SBDRY) == 0) {
763                                 thread_suspend_one(td2);
764                                 td2->td_flags |= TDF_ALLPROCSUSP;
765                         } else {
766                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
767                         }
768                 }
769                 break;
770         }
771         return (wakeup_swapper);
772 }
773
774 /*
775  * Enforce single-threading.
776  *
777  * Returns 1 if the caller must abort (another thread is waiting to
778  * exit the process or similar). Process is locked!
779  * Returns 0 when you are successfully the only thread running.
780  * A process has successfully single threaded in the suspend mode when
781  * There are no threads in user mode. Threads in the kernel must be
782  * allowed to continue until they get to the user boundary. They may even
783  * copy out their return values and data before suspending. They may however be
784  * accelerated in reaching the user boundary as we will wake up
785  * any sleeping threads that are interruptable. (PCATCH).
786  */
787 int
788 thread_single(struct proc *p, int mode)
789 {
790         struct thread *td;
791         struct thread *td2;
792         int remaining, wakeup_swapper;
793
794         td = curthread;
795         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
796             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
797             ("invalid mode %d", mode));
798         /*
799          * If allowing non-ALLPROC singlethreading for non-curproc
800          * callers, calc_remaining() and remain_for_mode() should be
801          * adjusted to also account for td->td_proc != p.  For now
802          * this is not implemented because it is not used.
803          */
804         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
805             (mode != SINGLE_ALLPROC && td->td_proc == p),
806             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
807         mtx_assert(&Giant, MA_NOTOWNED);
808         PROC_LOCK_ASSERT(p, MA_OWNED);
809
810         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
811                 return (0);
812
813         /* Is someone already single threading? */
814         if (p->p_singlethread != NULL && p->p_singlethread != td)
815                 return (1);
816
817         if (mode == SINGLE_EXIT) {
818                 p->p_flag |= P_SINGLE_EXIT;
819                 p->p_flag &= ~P_SINGLE_BOUNDARY;
820         } else {
821                 p->p_flag &= ~P_SINGLE_EXIT;
822                 if (mode == SINGLE_BOUNDARY)
823                         p->p_flag |= P_SINGLE_BOUNDARY;
824                 else
825                         p->p_flag &= ~P_SINGLE_BOUNDARY;
826         }
827         if (mode == SINGLE_ALLPROC)
828                 p->p_flag |= P_TOTAL_STOP;
829         p->p_flag |= P_STOPPED_SINGLE;
830         PROC_SLOCK(p);
831         p->p_singlethread = td;
832         remaining = calc_remaining(p, mode);
833         while (remaining != remain_for_mode(mode)) {
834                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
835                         goto stopme;
836                 wakeup_swapper = 0;
837                 FOREACH_THREAD_IN_PROC(p, td2) {
838                         if (td2 == td)
839                                 continue;
840                         thread_lock(td2);
841                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
842                         if (TD_IS_INHIBITED(td2)) {
843                                 wakeup_swapper |= weed_inhib(mode, td2, p);
844 #ifdef SMP
845                         } else if (TD_IS_RUNNING(td2) && td != td2) {
846                                 forward_signal(td2);
847 #endif
848                         }
849                         thread_unlock(td2);
850                 }
851                 if (wakeup_swapper)
852                         kick_proc0();
853                 remaining = calc_remaining(p, mode);
854
855                 /*
856                  * Maybe we suspended some threads.. was it enough?
857                  */
858                 if (remaining == remain_for_mode(mode))
859                         break;
860
861 stopme:
862                 /*
863                  * Wake us up when everyone else has suspended.
864                  * In the mean time we suspend as well.
865                  */
866                 thread_suspend_switch(td, p);
867                 remaining = calc_remaining(p, mode);
868         }
869         if (mode == SINGLE_EXIT) {
870                 /*
871                  * Convert the process to an unthreaded process.  The
872                  * SINGLE_EXIT is called by exit1() or execve(), in
873                  * both cases other threads must be retired.
874                  */
875                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
876                 p->p_singlethread = NULL;
877                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
878
879                 /*
880                  * Wait for any remaining threads to exit cpu_throw().
881                  */
882                 while (p->p_exitthreads != 0) {
883                         PROC_SUNLOCK(p);
884                         PROC_UNLOCK(p);
885                         sched_relinquish(td);
886                         PROC_LOCK(p);
887                         PROC_SLOCK(p);
888                 }
889         } else if (mode == SINGLE_BOUNDARY) {
890                 /*
891                  * Wait until all suspended threads are removed from
892                  * the processors.  The thread_suspend_check()
893                  * increments p_boundary_count while it is still
894                  * running, which makes it possible for the execve()
895                  * to destroy vmspace while our other threads are
896                  * still using the address space.
897                  *
898                  * We lock the thread, which is only allowed to
899                  * succeed after context switch code finished using
900                  * the address space.
901                  */
902                 FOREACH_THREAD_IN_PROC(p, td2) {
903                         if (td2 == td)
904                                 continue;
905                         thread_lock(td2);
906                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
907                             ("td %p not on boundary", td2));
908                         KASSERT(TD_IS_SUSPENDED(td2),
909                             ("td %p is not suspended", td2));
910                         thread_unlock(td2);
911                 }
912         }
913         PROC_SUNLOCK(p);
914         return (0);
915 }
916
917 bool
918 thread_suspend_check_needed(void)
919 {
920         struct proc *p;
921         struct thread *td;
922
923         td = curthread;
924         p = td->td_proc;
925         PROC_LOCK_ASSERT(p, MA_OWNED);
926         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
927             (td->td_dbgflags & TDB_SUSPEND) != 0));
928 }
929
930 /*
931  * Called in from locations that can safely check to see
932  * whether we have to suspend or at least throttle for a
933  * single-thread event (e.g. fork).
934  *
935  * Such locations include userret().
936  * If the "return_instead" argument is non zero, the thread must be able to
937  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
938  *
939  * The 'return_instead' argument tells the function if it may do a
940  * thread_exit() or suspend, or whether the caller must abort and back
941  * out instead.
942  *
943  * If the thread that set the single_threading request has set the
944  * P_SINGLE_EXIT bit in the process flags then this call will never return
945  * if 'return_instead' is false, but will exit.
946  *
947  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
948  *---------------+--------------------+---------------------
949  *       0       | returns 0          |   returns 0 or 1
950  *               | when ST ends       |   immediately
951  *---------------+--------------------+---------------------
952  *       1       | thread exits       |   returns 1
953  *               |                    |  immediately
954  * 0 = thread_exit() or suspension ok,
955  * other = return error instead of stopping the thread.
956  *
957  * While a full suspension is under effect, even a single threading
958  * thread would be suspended if it made this call (but it shouldn't).
959  * This call should only be made from places where
960  * thread_exit() would be safe as that may be the outcome unless
961  * return_instead is set.
962  */
963 int
964 thread_suspend_check(int return_instead)
965 {
966         struct thread *td;
967         struct proc *p;
968         int wakeup_swapper;
969
970         td = curthread;
971         p = td->td_proc;
972         mtx_assert(&Giant, MA_NOTOWNED);
973         PROC_LOCK_ASSERT(p, MA_OWNED);
974         while (thread_suspend_check_needed()) {
975                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
976                         KASSERT(p->p_singlethread != NULL,
977                             ("singlethread not set"));
978                         /*
979                          * The only suspension in action is a
980                          * single-threading. Single threader need not stop.
981                          * It is safe to access p->p_singlethread unlocked
982                          * because it can only be set to our address by us.
983                          */
984                         if (p->p_singlethread == td)
985                                 return (0);     /* Exempt from stopping. */
986                 }
987                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
988                         return (EINTR);
989
990                 /* Should we goto user boundary if we didn't come from there? */
991                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
992                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
993                         return (ERESTART);
994
995                 /*
996                  * Ignore suspend requests if they are deferred.
997                  */
998                 if ((td->td_flags & TDF_SBDRY) != 0) {
999                         KASSERT(return_instead,
1000                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
1001                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1002                             (TDF_SEINTR | TDF_SERESTART),
1003                             ("both TDF_SEINTR and TDF_SERESTART"));
1004                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1005                 }
1006
1007                 /*
1008                  * If the process is waiting for us to exit,
1009                  * this thread should just suicide.
1010                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1011                  */
1012                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1013                         PROC_UNLOCK(p);
1014
1015                         /*
1016                          * Allow Linux emulation layer to do some work
1017                          * before thread suicide.
1018                          */
1019                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1020                                 (p->p_sysent->sv_thread_detach)(td);
1021                         umtx_thread_exit(td);
1022                         kern_thr_exit(td);
1023                         panic("stopped thread did not exit");
1024                 }
1025
1026                 PROC_SLOCK(p);
1027                 thread_stopped(p);
1028                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1029                         if (p->p_numthreads == p->p_suspcount + 1) {
1030                                 thread_lock(p->p_singlethread);
1031                                 wakeup_swapper = thread_unsuspend_one(
1032                                     p->p_singlethread, p, false);
1033                                 thread_unlock(p->p_singlethread);
1034                                 if (wakeup_swapper)
1035                                         kick_proc0();
1036                         }
1037                 }
1038                 PROC_UNLOCK(p);
1039                 thread_lock(td);
1040                 /*
1041                  * When a thread suspends, it just
1042                  * gets taken off all queues.
1043                  */
1044                 thread_suspend_one(td);
1045                 if (return_instead == 0) {
1046                         p->p_boundary_count++;
1047                         td->td_flags |= TDF_BOUNDARY;
1048                 }
1049                 PROC_SUNLOCK(p);
1050                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1051                 thread_unlock(td);
1052                 PROC_LOCK(p);
1053         }
1054         return (0);
1055 }
1056
1057 void
1058 thread_suspend_switch(struct thread *td, struct proc *p)
1059 {
1060
1061         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1062         PROC_LOCK_ASSERT(p, MA_OWNED);
1063         PROC_SLOCK_ASSERT(p, MA_OWNED);
1064         /*
1065          * We implement thread_suspend_one in stages here to avoid
1066          * dropping the proc lock while the thread lock is owned.
1067          */
1068         if (p == td->td_proc) {
1069                 thread_stopped(p);
1070                 p->p_suspcount++;
1071         }
1072         PROC_UNLOCK(p);
1073         thread_lock(td);
1074         td->td_flags &= ~TDF_NEEDSUSPCHK;
1075         TD_SET_SUSPENDED(td);
1076         sched_sleep(td, 0);
1077         PROC_SUNLOCK(p);
1078         DROP_GIANT();
1079         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1080         thread_unlock(td);
1081         PICKUP_GIANT();
1082         PROC_LOCK(p);
1083         PROC_SLOCK(p);
1084 }
1085
1086 void
1087 thread_suspend_one(struct thread *td)
1088 {
1089         struct proc *p;
1090
1091         p = td->td_proc;
1092         PROC_SLOCK_ASSERT(p, MA_OWNED);
1093         THREAD_LOCK_ASSERT(td, MA_OWNED);
1094         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1095         p->p_suspcount++;
1096         td->td_flags &= ~TDF_NEEDSUSPCHK;
1097         TD_SET_SUSPENDED(td);
1098         sched_sleep(td, 0);
1099 }
1100
1101 static int
1102 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1103 {
1104
1105         THREAD_LOCK_ASSERT(td, MA_OWNED);
1106         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1107         TD_CLR_SUSPENDED(td);
1108         td->td_flags &= ~TDF_ALLPROCSUSP;
1109         if (td->td_proc == p) {
1110                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1111                 p->p_suspcount--;
1112                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1113                         td->td_flags &= ~TDF_BOUNDARY;
1114                         p->p_boundary_count--;
1115                 }
1116         }
1117         return (setrunnable(td));
1118 }
1119
1120 /*
1121  * Allow all threads blocked by single threading to continue running.
1122  */
1123 void
1124 thread_unsuspend(struct proc *p)
1125 {
1126         struct thread *td;
1127         int wakeup_swapper;
1128
1129         PROC_LOCK_ASSERT(p, MA_OWNED);
1130         PROC_SLOCK_ASSERT(p, MA_OWNED);
1131         wakeup_swapper = 0;
1132         if (!P_SHOULDSTOP(p)) {
1133                 FOREACH_THREAD_IN_PROC(p, td) {
1134                         thread_lock(td);
1135                         if (TD_IS_SUSPENDED(td)) {
1136                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1137                                     true);
1138                         }
1139                         thread_unlock(td);
1140                 }
1141         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1142             p->p_numthreads == p->p_suspcount) {
1143                 /*
1144                  * Stopping everything also did the job for the single
1145                  * threading request. Now we've downgraded to single-threaded,
1146                  * let it continue.
1147                  */
1148                 if (p->p_singlethread->td_proc == p) {
1149                         thread_lock(p->p_singlethread);
1150                         wakeup_swapper = thread_unsuspend_one(
1151                             p->p_singlethread, p, false);
1152                         thread_unlock(p->p_singlethread);
1153                 }
1154         }
1155         if (wakeup_swapper)
1156                 kick_proc0();
1157 }
1158
1159 /*
1160  * End the single threading mode..
1161  */
1162 void
1163 thread_single_end(struct proc *p, int mode)
1164 {
1165         struct thread *td;
1166         int wakeup_swapper;
1167
1168         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1169             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1170             ("invalid mode %d", mode));
1171         PROC_LOCK_ASSERT(p, MA_OWNED);
1172         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1173             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1174             ("mode %d does not match P_TOTAL_STOP", mode));
1175         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1176             ("thread_single_end from other thread %p %p",
1177             curthread, p->p_singlethread));
1178         KASSERT(mode != SINGLE_BOUNDARY ||
1179             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1180             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1181         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1182             P_TOTAL_STOP);
1183         PROC_SLOCK(p);
1184         p->p_singlethread = NULL;
1185         wakeup_swapper = 0;
1186         /*
1187          * If there are other threads they may now run,
1188          * unless of course there is a blanket 'stop order'
1189          * on the process. The single threader must be allowed
1190          * to continue however as this is a bad place to stop.
1191          */
1192         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1193                 FOREACH_THREAD_IN_PROC(p, td) {
1194                         thread_lock(td);
1195                         if (TD_IS_SUSPENDED(td)) {
1196                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1197                                     mode == SINGLE_BOUNDARY);
1198                         }
1199                         thread_unlock(td);
1200                 }
1201         }
1202         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1203             ("inconsistent boundary count %d", p->p_boundary_count));
1204         PROC_SUNLOCK(p);
1205         if (wakeup_swapper)
1206                 kick_proc0();
1207 }
1208
1209 struct thread *
1210 thread_find(struct proc *p, lwpid_t tid)
1211 {
1212         struct thread *td;
1213
1214         PROC_LOCK_ASSERT(p, MA_OWNED);
1215         FOREACH_THREAD_IN_PROC(p, td) {
1216                 if (td->td_tid == tid)
1217                         break;
1218         }
1219         return (td);
1220 }
1221
1222 /* Locate a thread by number; return with proc lock held. */
1223 struct thread *
1224 tdfind(lwpid_t tid, pid_t pid)
1225 {
1226 #define RUN_THRESH      16
1227         struct thread *td;
1228         int run = 0;
1229
1230         rw_rlock(&tidhash_lock);
1231         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1232                 if (td->td_tid == tid) {
1233                         if (pid != -1 && td->td_proc->p_pid != pid) {
1234                                 td = NULL;
1235                                 break;
1236                         }
1237                         PROC_LOCK(td->td_proc);
1238                         if (td->td_proc->p_state == PRS_NEW) {
1239                                 PROC_UNLOCK(td->td_proc);
1240                                 td = NULL;
1241                                 break;
1242                         }
1243                         if (run > RUN_THRESH) {
1244                                 if (rw_try_upgrade(&tidhash_lock)) {
1245                                         LIST_REMOVE(td, td_hash);
1246                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1247                                                 td, td_hash);
1248                                         rw_wunlock(&tidhash_lock);
1249                                         return (td);
1250                                 }
1251                         }
1252                         break;
1253                 }
1254                 run++;
1255         }
1256         rw_runlock(&tidhash_lock);
1257         return (td);
1258 }
1259
1260 void
1261 tidhash_add(struct thread *td)
1262 {
1263         rw_wlock(&tidhash_lock);
1264         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1265         rw_wunlock(&tidhash_lock);
1266 }
1267
1268 void
1269 tidhash_remove(struct thread *td)
1270 {
1271         rw_wlock(&tidhash_lock);
1272         LIST_REMOVE(td, td_hash);
1273         rw_wunlock(&tidhash_lock);
1274 }