]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Update ELF Tool Chain to upstream r3520
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/sysent.h>
50 #include <sys/turnstile.h>
51 #include <sys/ktr.h>
52 #include <sys/rwlock.h>
53 #include <sys/umtx.h>
54 #include <sys/vmmeter.h>
55 #include <sys/cpuset.h>
56 #ifdef  HWPMC_HOOKS
57 #include <sys/pmckern.h>
58 #endif
59
60 #include <security/audit/audit.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/uma.h>
65 #include <vm/vm_domain.h>
66 #include <sys/eventhandler.h>
67
68 SDT_PROVIDER_DECLARE(proc);
69 SDT_PROBE_DEFINE(proc, , , lwp__exit);
70
71 /*
72  * thread related storage.
73  */
74 static uma_zone_t thread_zone;
75
76 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
77 static struct mtx zombie_lock;
78 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
79
80 static void thread_zombie(struct thread *);
81 static int thread_unsuspend_one(struct thread *td, struct proc *p,
82     bool boundary);
83
84 #define TID_BUFFER_SIZE 1024
85
86 struct mtx tid_lock;
87 static struct unrhdr *tid_unrhdr;
88 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
89 static int tid_head, tid_tail;
90 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
91
92 struct  tidhashhead *tidhashtbl;
93 u_long  tidhash;
94 struct  rwlock tidhash_lock;
95
96 static lwpid_t
97 tid_alloc(void)
98 {
99         lwpid_t tid;
100
101         tid = alloc_unr(tid_unrhdr);
102         if (tid != -1)
103                 return (tid);
104         mtx_lock(&tid_lock);
105         if (tid_head == tid_tail) {
106                 mtx_unlock(&tid_lock);
107                 return (-1);
108         }
109         tid = tid_buffer[tid_head];
110         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
111         mtx_unlock(&tid_lock);
112         return (tid);
113 }
114
115 static void
116 tid_free(lwpid_t tid)
117 {
118         lwpid_t tmp_tid = -1;
119
120         mtx_lock(&tid_lock);
121         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
122                 tmp_tid = tid_buffer[tid_head];
123                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
124         }
125         tid_buffer[tid_tail] = tid;
126         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
127         mtx_unlock(&tid_lock);
128         if (tmp_tid != -1)
129                 free_unr(tid_unrhdr, tmp_tid);
130 }
131
132 /*
133  * Prepare a thread for use.
134  */
135 static int
136 thread_ctor(void *mem, int size, void *arg, int flags)
137 {
138         struct thread   *td;
139
140         td = (struct thread *)mem;
141         td->td_state = TDS_INACTIVE;
142         td->td_oncpu = NOCPU;
143
144         td->td_tid = tid_alloc();
145
146         /*
147          * Note that td_critnest begins life as 1 because the thread is not
148          * running and is thereby implicitly waiting to be on the receiving
149          * end of a context switch.
150          */
151         td->td_critnest = 1;
152         td->td_lend_user_pri = PRI_MAX;
153         EVENTHANDLER_INVOKE(thread_ctor, td);
154 #ifdef AUDIT
155         audit_thread_alloc(td);
156 #endif
157         umtx_thread_alloc(td);
158         return (0);
159 }
160
161 /*
162  * Reclaim a thread after use.
163  */
164 static void
165 thread_dtor(void *mem, int size, void *arg)
166 {
167         struct thread *td;
168
169         td = (struct thread *)mem;
170
171 #ifdef INVARIANTS
172         /* Verify that this thread is in a safe state to free. */
173         switch (td->td_state) {
174         case TDS_INHIBITED:
175         case TDS_RUNNING:
176         case TDS_CAN_RUN:
177         case TDS_RUNQ:
178                 /*
179                  * We must never unlink a thread that is in one of
180                  * these states, because it is currently active.
181                  */
182                 panic("bad state for thread unlinking");
183                 /* NOTREACHED */
184         case TDS_INACTIVE:
185                 break;
186         default:
187                 panic("bad thread state");
188                 /* NOTREACHED */
189         }
190 #endif
191 #ifdef AUDIT
192         audit_thread_free(td);
193 #endif
194         /* Free all OSD associated to this thread. */
195         osd_thread_exit(td);
196         td_softdep_cleanup(td);
197         MPASS(td->td_su == NULL);
198
199         EVENTHANDLER_INVOKE(thread_dtor, td);
200         tid_free(td->td_tid);
201 }
202
203 /*
204  * Initialize type-stable parts of a thread (when newly created).
205  */
206 static int
207 thread_init(void *mem, int size, int flags)
208 {
209         struct thread *td;
210
211         td = (struct thread *)mem;
212
213         td->td_sleepqueue = sleepq_alloc();
214         td->td_turnstile = turnstile_alloc();
215         td->td_rlqe = NULL;
216         EVENTHANDLER_INVOKE(thread_init, td);
217         umtx_thread_init(td);
218         td->td_kstack = 0;
219         td->td_sel = NULL;
220         return (0);
221 }
222
223 /*
224  * Tear down type-stable parts of a thread (just before being discarded).
225  */
226 static void
227 thread_fini(void *mem, int size)
228 {
229         struct thread *td;
230
231         td = (struct thread *)mem;
232         EVENTHANDLER_INVOKE(thread_fini, td);
233         rlqentry_free(td->td_rlqe);
234         turnstile_free(td->td_turnstile);
235         sleepq_free(td->td_sleepqueue);
236         umtx_thread_fini(td);
237         seltdfini(td);
238 }
239
240 /*
241  * For a newly created process,
242  * link up all the structures and its initial threads etc.
243  * called from:
244  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
245  * proc_dtor() (should go away)
246  * proc_init()
247  */
248 void
249 proc_linkup0(struct proc *p, struct thread *td)
250 {
251         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
252         proc_linkup(p, td);
253 }
254
255 void
256 proc_linkup(struct proc *p, struct thread *td)
257 {
258
259         sigqueue_init(&p->p_sigqueue, p);
260         p->p_ksi = ksiginfo_alloc(1);
261         if (p->p_ksi != NULL) {
262                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
263                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
264         }
265         LIST_INIT(&p->p_mqnotifier);
266         p->p_numthreads = 0;
267         thread_link(td, p);
268 }
269
270 /*
271  * Initialize global thread allocation resources.
272  */
273 void
274 threadinit(void)
275 {
276
277         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
278
279         /*
280          * pid_max cannot be greater than PID_MAX.
281          * leave one number for thread0.
282          */
283         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
284
285         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
286             thread_ctor, thread_dtor, thread_init, thread_fini,
287             32 - 1, UMA_ZONE_NOFREE);
288         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
289         rw_init(&tidhash_lock, "tidhash");
290 }
291
292 /*
293  * Place an unused thread on the zombie list.
294  * Use the slpq as that must be unused by now.
295  */
296 void
297 thread_zombie(struct thread *td)
298 {
299         mtx_lock_spin(&zombie_lock);
300         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
301         mtx_unlock_spin(&zombie_lock);
302 }
303
304 /*
305  * Release a thread that has exited after cpu_throw().
306  */
307 void
308 thread_stash(struct thread *td)
309 {
310         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
311         thread_zombie(td);
312 }
313
314 /*
315  * Reap zombie resources.
316  */
317 void
318 thread_reap(void)
319 {
320         struct thread *td_first, *td_next;
321
322         /*
323          * Don't even bother to lock if none at this instant,
324          * we really don't care about the next instant.
325          */
326         if (!TAILQ_EMPTY(&zombie_threads)) {
327                 mtx_lock_spin(&zombie_lock);
328                 td_first = TAILQ_FIRST(&zombie_threads);
329                 if (td_first)
330                         TAILQ_INIT(&zombie_threads);
331                 mtx_unlock_spin(&zombie_lock);
332                 while (td_first) {
333                         td_next = TAILQ_NEXT(td_first, td_slpq);
334                         thread_cow_free(td_first);
335                         thread_free(td_first);
336                         td_first = td_next;
337                 }
338         }
339 }
340
341 /*
342  * Allocate a thread.
343  */
344 struct thread *
345 thread_alloc(int pages)
346 {
347         struct thread *td;
348
349         thread_reap(); /* check if any zombies to get */
350
351         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
352         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
353         if (!vm_thread_new(td, pages)) {
354                 uma_zfree(thread_zone, td);
355                 return (NULL);
356         }
357         cpu_thread_alloc(td);
358         vm_domain_policy_init(&td->td_vm_dom_policy);
359         return (td);
360 }
361
362 int
363 thread_alloc_stack(struct thread *td, int pages)
364 {
365
366         KASSERT(td->td_kstack == 0,
367             ("thread_alloc_stack called on a thread with kstack"));
368         if (!vm_thread_new(td, pages))
369                 return (0);
370         cpu_thread_alloc(td);
371         return (1);
372 }
373
374 /*
375  * Deallocate a thread.
376  */
377 void
378 thread_free(struct thread *td)
379 {
380
381         lock_profile_thread_exit(td);
382         if (td->td_cpuset)
383                 cpuset_rel(td->td_cpuset);
384         td->td_cpuset = NULL;
385         cpu_thread_free(td);
386         if (td->td_kstack != 0)
387                 vm_thread_dispose(td);
388         vm_domain_policy_cleanup(&td->td_vm_dom_policy);
389         callout_drain(&td->td_slpcallout);
390         uma_zfree(thread_zone, td);
391 }
392
393 void
394 thread_cow_get_proc(struct thread *newtd, struct proc *p)
395 {
396
397         PROC_LOCK_ASSERT(p, MA_OWNED);
398         newtd->td_ucred = crhold(p->p_ucred);
399         newtd->td_limit = lim_hold(p->p_limit);
400         newtd->td_cowgen = p->p_cowgen;
401 }
402
403 void
404 thread_cow_get(struct thread *newtd, struct thread *td)
405 {
406
407         newtd->td_ucred = crhold(td->td_ucred);
408         newtd->td_limit = lim_hold(td->td_limit);
409         newtd->td_cowgen = td->td_cowgen;
410 }
411
412 void
413 thread_cow_free(struct thread *td)
414 {
415
416         if (td->td_ucred != NULL)
417                 crfree(td->td_ucred);
418         if (td->td_limit != NULL)
419                 lim_free(td->td_limit);
420 }
421
422 void
423 thread_cow_update(struct thread *td)
424 {
425         struct proc *p;
426         struct ucred *oldcred;
427         struct plimit *oldlimit;
428
429         p = td->td_proc;
430         oldcred = NULL;
431         oldlimit = NULL;
432         PROC_LOCK(p);
433         if (td->td_ucred != p->p_ucred) {
434                 oldcred = td->td_ucred;
435                 td->td_ucred = crhold(p->p_ucred);
436         }
437         if (td->td_limit != p->p_limit) {
438                 oldlimit = td->td_limit;
439                 td->td_limit = lim_hold(p->p_limit);
440         }
441         td->td_cowgen = p->p_cowgen;
442         PROC_UNLOCK(p);
443         if (oldcred != NULL)
444                 crfree(oldcred);
445         if (oldlimit != NULL)
446                 lim_free(oldlimit);
447 }
448
449 /*
450  * Discard the current thread and exit from its context.
451  * Always called with scheduler locked.
452  *
453  * Because we can't free a thread while we're operating under its context,
454  * push the current thread into our CPU's deadthread holder. This means
455  * we needn't worry about someone else grabbing our context before we
456  * do a cpu_throw().
457  */
458 void
459 thread_exit(void)
460 {
461         uint64_t runtime, new_switchtime;
462         struct thread *td;
463         struct thread *td2;
464         struct proc *p;
465         int wakeup_swapper;
466
467         td = curthread;
468         p = td->td_proc;
469
470         PROC_SLOCK_ASSERT(p, MA_OWNED);
471         mtx_assert(&Giant, MA_NOTOWNED);
472
473         PROC_LOCK_ASSERT(p, MA_OWNED);
474         KASSERT(p != NULL, ("thread exiting without a process"));
475         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
476             (long)p->p_pid, td->td_name);
477         SDT_PROBE0(proc, , , lwp__exit);
478         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
479
480 #ifdef AUDIT
481         AUDIT_SYSCALL_EXIT(0, td);
482 #endif
483         /*
484          * drop FPU & debug register state storage, or any other
485          * architecture specific resources that
486          * would not be on a new untouched process.
487          */
488         cpu_thread_exit(td);
489
490         /*
491          * The last thread is left attached to the process
492          * So that the whole bundle gets recycled. Skip
493          * all this stuff if we never had threads.
494          * EXIT clears all sign of other threads when
495          * it goes to single threading, so the last thread always
496          * takes the short path.
497          */
498         if (p->p_flag & P_HADTHREADS) {
499                 if (p->p_numthreads > 1) {
500                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
501                         thread_unlink(td);
502                         td2 = FIRST_THREAD_IN_PROC(p);
503                         sched_exit_thread(td2, td);
504
505                         /*
506                          * The test below is NOT true if we are the
507                          * sole exiting thread. P_STOPPED_SINGLE is unset
508                          * in exit1() after it is the only survivor.
509                          */
510                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
511                                 if (p->p_numthreads == p->p_suspcount) {
512                                         thread_lock(p->p_singlethread);
513                                         wakeup_swapper = thread_unsuspend_one(
514                                                 p->p_singlethread, p, false);
515                                         thread_unlock(p->p_singlethread);
516                                         if (wakeup_swapper)
517                                                 kick_proc0();
518                                 }
519                         }
520
521                         PCPU_SET(deadthread, td);
522                 } else {
523                         /*
524                          * The last thread is exiting.. but not through exit()
525                          */
526                         panic ("thread_exit: Last thread exiting on its own");
527                 }
528         } 
529 #ifdef  HWPMC_HOOKS
530         /*
531          * If this thread is part of a process that is being tracked by hwpmc(4),
532          * inform the module of the thread's impending exit.
533          */
534         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
535                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
536 #endif
537         PROC_UNLOCK(p);
538         PROC_STATLOCK(p);
539         thread_lock(td);
540         PROC_SUNLOCK(p);
541
542         /* Do the same timestamp bookkeeping that mi_switch() would do. */
543         new_switchtime = cpu_ticks();
544         runtime = new_switchtime - PCPU_GET(switchtime);
545         td->td_runtime += runtime;
546         td->td_incruntime += runtime;
547         PCPU_SET(switchtime, new_switchtime);
548         PCPU_SET(switchticks, ticks);
549         VM_CNT_INC(v_swtch);
550
551         /* Save our resource usage in our process. */
552         td->td_ru.ru_nvcsw++;
553         ruxagg(p, td);
554         rucollect(&p->p_ru, &td->td_ru);
555         PROC_STATUNLOCK(p);
556
557         td->td_state = TDS_INACTIVE;
558 #ifdef WITNESS
559         witness_thread_exit(td);
560 #endif
561         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
562         sched_throw(td);
563         panic("I'm a teapot!");
564         /* NOTREACHED */
565 }
566
567 /*
568  * Do any thread specific cleanups that may be needed in wait()
569  * called with Giant, proc and schedlock not held.
570  */
571 void
572 thread_wait(struct proc *p)
573 {
574         struct thread *td;
575
576         mtx_assert(&Giant, MA_NOTOWNED);
577         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
578         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
579         td = FIRST_THREAD_IN_PROC(p);
580         /* Lock the last thread so we spin until it exits cpu_throw(). */
581         thread_lock(td);
582         thread_unlock(td);
583         lock_profile_thread_exit(td);
584         cpuset_rel(td->td_cpuset);
585         td->td_cpuset = NULL;
586         cpu_thread_clean(td);
587         thread_cow_free(td);
588         callout_drain(&td->td_slpcallout);
589         thread_reap();  /* check for zombie threads etc. */
590 }
591
592 /*
593  * Link a thread to a process.
594  * set up anything that needs to be initialized for it to
595  * be used by the process.
596  */
597 void
598 thread_link(struct thread *td, struct proc *p)
599 {
600
601         /*
602          * XXX This can't be enabled because it's called for proc0 before
603          * its lock has been created.
604          * PROC_LOCK_ASSERT(p, MA_OWNED);
605          */
606         td->td_state    = TDS_INACTIVE;
607         td->td_proc     = p;
608         td->td_flags    = TDF_INMEM;
609
610         LIST_INIT(&td->td_contested);
611         LIST_INIT(&td->td_lprof[0]);
612         LIST_INIT(&td->td_lprof[1]);
613         sigqueue_init(&td->td_sigqueue, p);
614         callout_init(&td->td_slpcallout, 1);
615         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
616         p->p_numthreads++;
617 }
618
619 /*
620  * Called from:
621  *  thread_exit()
622  */
623 void
624 thread_unlink(struct thread *td)
625 {
626         struct proc *p = td->td_proc;
627
628         PROC_LOCK_ASSERT(p, MA_OWNED);
629         TAILQ_REMOVE(&p->p_threads, td, td_plist);
630         p->p_numthreads--;
631         /* could clear a few other things here */
632         /* Must  NOT clear links to proc! */
633 }
634
635 static int
636 calc_remaining(struct proc *p, int mode)
637 {
638         int remaining;
639
640         PROC_LOCK_ASSERT(p, MA_OWNED);
641         PROC_SLOCK_ASSERT(p, MA_OWNED);
642         if (mode == SINGLE_EXIT)
643                 remaining = p->p_numthreads;
644         else if (mode == SINGLE_BOUNDARY)
645                 remaining = p->p_numthreads - p->p_boundary_count;
646         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
647                 remaining = p->p_numthreads - p->p_suspcount;
648         else
649                 panic("calc_remaining: wrong mode %d", mode);
650         return (remaining);
651 }
652
653 static int
654 remain_for_mode(int mode)
655 {
656
657         return (mode == SINGLE_ALLPROC ? 0 : 1);
658 }
659
660 static int
661 weed_inhib(int mode, struct thread *td2, struct proc *p)
662 {
663         int wakeup_swapper;
664
665         PROC_LOCK_ASSERT(p, MA_OWNED);
666         PROC_SLOCK_ASSERT(p, MA_OWNED);
667         THREAD_LOCK_ASSERT(td2, MA_OWNED);
668
669         wakeup_swapper = 0;
670         switch (mode) {
671         case SINGLE_EXIT:
672                 if (TD_IS_SUSPENDED(td2))
673                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
674                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
675                         wakeup_swapper |= sleepq_abort(td2, EINTR);
676                 break;
677         case SINGLE_BOUNDARY:
678         case SINGLE_NO_EXIT:
679                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
680                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
681                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
682                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
683                 break;
684         case SINGLE_ALLPROC:
685                 /*
686                  * ALLPROC suspend tries to avoid spurious EINTR for
687                  * threads sleeping interruptable, by suspending the
688                  * thread directly, similarly to sig_suspend_threads().
689                  * Since such sleep is not performed at the user
690                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
691                  * is used to avoid immediate un-suspend.
692                  */
693                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
694                     TDF_ALLPROCSUSP)) == 0)
695                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
696                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
697                         if ((td2->td_flags & TDF_SBDRY) == 0) {
698                                 thread_suspend_one(td2);
699                                 td2->td_flags |= TDF_ALLPROCSUSP;
700                         } else {
701                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
702                         }
703                 }
704                 break;
705         }
706         return (wakeup_swapper);
707 }
708
709 /*
710  * Enforce single-threading.
711  *
712  * Returns 1 if the caller must abort (another thread is waiting to
713  * exit the process or similar). Process is locked!
714  * Returns 0 when you are successfully the only thread running.
715  * A process has successfully single threaded in the suspend mode when
716  * There are no threads in user mode. Threads in the kernel must be
717  * allowed to continue until they get to the user boundary. They may even
718  * copy out their return values and data before suspending. They may however be
719  * accelerated in reaching the user boundary as we will wake up
720  * any sleeping threads that are interruptable. (PCATCH).
721  */
722 int
723 thread_single(struct proc *p, int mode)
724 {
725         struct thread *td;
726         struct thread *td2;
727         int remaining, wakeup_swapper;
728
729         td = curthread;
730         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
731             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
732             ("invalid mode %d", mode));
733         /*
734          * If allowing non-ALLPROC singlethreading for non-curproc
735          * callers, calc_remaining() and remain_for_mode() should be
736          * adjusted to also account for td->td_proc != p.  For now
737          * this is not implemented because it is not used.
738          */
739         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
740             (mode != SINGLE_ALLPROC && td->td_proc == p),
741             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
742         mtx_assert(&Giant, MA_NOTOWNED);
743         PROC_LOCK_ASSERT(p, MA_OWNED);
744
745         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
746                 return (0);
747
748         /* Is someone already single threading? */
749         if (p->p_singlethread != NULL && p->p_singlethread != td)
750                 return (1);
751
752         if (mode == SINGLE_EXIT) {
753                 p->p_flag |= P_SINGLE_EXIT;
754                 p->p_flag &= ~P_SINGLE_BOUNDARY;
755         } else {
756                 p->p_flag &= ~P_SINGLE_EXIT;
757                 if (mode == SINGLE_BOUNDARY)
758                         p->p_flag |= P_SINGLE_BOUNDARY;
759                 else
760                         p->p_flag &= ~P_SINGLE_BOUNDARY;
761         }
762         if (mode == SINGLE_ALLPROC)
763                 p->p_flag |= P_TOTAL_STOP;
764         p->p_flag |= P_STOPPED_SINGLE;
765         PROC_SLOCK(p);
766         p->p_singlethread = td;
767         remaining = calc_remaining(p, mode);
768         while (remaining != remain_for_mode(mode)) {
769                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
770                         goto stopme;
771                 wakeup_swapper = 0;
772                 FOREACH_THREAD_IN_PROC(p, td2) {
773                         if (td2 == td)
774                                 continue;
775                         thread_lock(td2);
776                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
777                         if (TD_IS_INHIBITED(td2)) {
778                                 wakeup_swapper |= weed_inhib(mode, td2, p);
779 #ifdef SMP
780                         } else if (TD_IS_RUNNING(td2) && td != td2) {
781                                 forward_signal(td2);
782 #endif
783                         }
784                         thread_unlock(td2);
785                 }
786                 if (wakeup_swapper)
787                         kick_proc0();
788                 remaining = calc_remaining(p, mode);
789
790                 /*
791                  * Maybe we suspended some threads.. was it enough?
792                  */
793                 if (remaining == remain_for_mode(mode))
794                         break;
795
796 stopme:
797                 /*
798                  * Wake us up when everyone else has suspended.
799                  * In the mean time we suspend as well.
800                  */
801                 thread_suspend_switch(td, p);
802                 remaining = calc_remaining(p, mode);
803         }
804         if (mode == SINGLE_EXIT) {
805                 /*
806                  * Convert the process to an unthreaded process.  The
807                  * SINGLE_EXIT is called by exit1() or execve(), in
808                  * both cases other threads must be retired.
809                  */
810                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
811                 p->p_singlethread = NULL;
812                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
813
814                 /*
815                  * Wait for any remaining threads to exit cpu_throw().
816                  */
817                 while (p->p_exitthreads != 0) {
818                         PROC_SUNLOCK(p);
819                         PROC_UNLOCK(p);
820                         sched_relinquish(td);
821                         PROC_LOCK(p);
822                         PROC_SLOCK(p);
823                 }
824         } else if (mode == SINGLE_BOUNDARY) {
825                 /*
826                  * Wait until all suspended threads are removed from
827                  * the processors.  The thread_suspend_check()
828                  * increments p_boundary_count while it is still
829                  * running, which makes it possible for the execve()
830                  * to destroy vmspace while our other threads are
831                  * still using the address space.
832                  *
833                  * We lock the thread, which is only allowed to
834                  * succeed after context switch code finished using
835                  * the address space.
836                  */
837                 FOREACH_THREAD_IN_PROC(p, td2) {
838                         if (td2 == td)
839                                 continue;
840                         thread_lock(td2);
841                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
842                             ("td %p not on boundary", td2));
843                         KASSERT(TD_IS_SUSPENDED(td2),
844                             ("td %p is not suspended", td2));
845                         thread_unlock(td2);
846                 }
847         }
848         PROC_SUNLOCK(p);
849         return (0);
850 }
851
852 bool
853 thread_suspend_check_needed(void)
854 {
855         struct proc *p;
856         struct thread *td;
857
858         td = curthread;
859         p = td->td_proc;
860         PROC_LOCK_ASSERT(p, MA_OWNED);
861         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
862             (td->td_dbgflags & TDB_SUSPEND) != 0));
863 }
864
865 /*
866  * Called in from locations that can safely check to see
867  * whether we have to suspend or at least throttle for a
868  * single-thread event (e.g. fork).
869  *
870  * Such locations include userret().
871  * If the "return_instead" argument is non zero, the thread must be able to
872  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
873  *
874  * The 'return_instead' argument tells the function if it may do a
875  * thread_exit() or suspend, or whether the caller must abort and back
876  * out instead.
877  *
878  * If the thread that set the single_threading request has set the
879  * P_SINGLE_EXIT bit in the process flags then this call will never return
880  * if 'return_instead' is false, but will exit.
881  *
882  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
883  *---------------+--------------------+---------------------
884  *       0       | returns 0          |   returns 0 or 1
885  *               | when ST ends       |   immediately
886  *---------------+--------------------+---------------------
887  *       1       | thread exits       |   returns 1
888  *               |                    |  immediately
889  * 0 = thread_exit() or suspension ok,
890  * other = return error instead of stopping the thread.
891  *
892  * While a full suspension is under effect, even a single threading
893  * thread would be suspended if it made this call (but it shouldn't).
894  * This call should only be made from places where
895  * thread_exit() would be safe as that may be the outcome unless
896  * return_instead is set.
897  */
898 int
899 thread_suspend_check(int return_instead)
900 {
901         struct thread *td;
902         struct proc *p;
903         int wakeup_swapper;
904
905         td = curthread;
906         p = td->td_proc;
907         mtx_assert(&Giant, MA_NOTOWNED);
908         PROC_LOCK_ASSERT(p, MA_OWNED);
909         while (thread_suspend_check_needed()) {
910                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
911                         KASSERT(p->p_singlethread != NULL,
912                             ("singlethread not set"));
913                         /*
914                          * The only suspension in action is a
915                          * single-threading. Single threader need not stop.
916                          * It is safe to access p->p_singlethread unlocked
917                          * because it can only be set to our address by us.
918                          */
919                         if (p->p_singlethread == td)
920                                 return (0);     /* Exempt from stopping. */
921                 }
922                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
923                         return (EINTR);
924
925                 /* Should we goto user boundary if we didn't come from there? */
926                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
927                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
928                         return (ERESTART);
929
930                 /*
931                  * Ignore suspend requests if they are deferred.
932                  */
933                 if ((td->td_flags & TDF_SBDRY) != 0) {
934                         KASSERT(return_instead,
935                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
936                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
937                             (TDF_SEINTR | TDF_SERESTART),
938                             ("both TDF_SEINTR and TDF_SERESTART"));
939                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
940                 }
941
942                 /*
943                  * If the process is waiting for us to exit,
944                  * this thread should just suicide.
945                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
946                  */
947                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
948                         PROC_UNLOCK(p);
949
950                         /*
951                          * Allow Linux emulation layer to do some work
952                          * before thread suicide.
953                          */
954                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
955                                 (p->p_sysent->sv_thread_detach)(td);
956                         umtx_thread_exit(td);
957                         kern_thr_exit(td);
958                         panic("stopped thread did not exit");
959                 }
960
961                 PROC_SLOCK(p);
962                 thread_stopped(p);
963                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
964                         if (p->p_numthreads == p->p_suspcount + 1) {
965                                 thread_lock(p->p_singlethread);
966                                 wakeup_swapper = thread_unsuspend_one(
967                                     p->p_singlethread, p, false);
968                                 thread_unlock(p->p_singlethread);
969                                 if (wakeup_swapper)
970                                         kick_proc0();
971                         }
972                 }
973                 PROC_UNLOCK(p);
974                 thread_lock(td);
975                 /*
976                  * When a thread suspends, it just
977                  * gets taken off all queues.
978                  */
979                 thread_suspend_one(td);
980                 if (return_instead == 0) {
981                         p->p_boundary_count++;
982                         td->td_flags |= TDF_BOUNDARY;
983                 }
984                 PROC_SUNLOCK(p);
985                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
986                 thread_unlock(td);
987                 PROC_LOCK(p);
988         }
989         return (0);
990 }
991
992 void
993 thread_suspend_switch(struct thread *td, struct proc *p)
994 {
995
996         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
997         PROC_LOCK_ASSERT(p, MA_OWNED);
998         PROC_SLOCK_ASSERT(p, MA_OWNED);
999         /*
1000          * We implement thread_suspend_one in stages here to avoid
1001          * dropping the proc lock while the thread lock is owned.
1002          */
1003         if (p == td->td_proc) {
1004                 thread_stopped(p);
1005                 p->p_suspcount++;
1006         }
1007         PROC_UNLOCK(p);
1008         thread_lock(td);
1009         td->td_flags &= ~TDF_NEEDSUSPCHK;
1010         TD_SET_SUSPENDED(td);
1011         sched_sleep(td, 0);
1012         PROC_SUNLOCK(p);
1013         DROP_GIANT();
1014         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1015         thread_unlock(td);
1016         PICKUP_GIANT();
1017         PROC_LOCK(p);
1018         PROC_SLOCK(p);
1019 }
1020
1021 void
1022 thread_suspend_one(struct thread *td)
1023 {
1024         struct proc *p;
1025
1026         p = td->td_proc;
1027         PROC_SLOCK_ASSERT(p, MA_OWNED);
1028         THREAD_LOCK_ASSERT(td, MA_OWNED);
1029         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1030         p->p_suspcount++;
1031         td->td_flags &= ~TDF_NEEDSUSPCHK;
1032         TD_SET_SUSPENDED(td);
1033         sched_sleep(td, 0);
1034 }
1035
1036 static int
1037 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1038 {
1039
1040         THREAD_LOCK_ASSERT(td, MA_OWNED);
1041         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1042         TD_CLR_SUSPENDED(td);
1043         td->td_flags &= ~TDF_ALLPROCSUSP;
1044         if (td->td_proc == p) {
1045                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1046                 p->p_suspcount--;
1047                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1048                         td->td_flags &= ~TDF_BOUNDARY;
1049                         p->p_boundary_count--;
1050                 }
1051         }
1052         return (setrunnable(td));
1053 }
1054
1055 /*
1056  * Allow all threads blocked by single threading to continue running.
1057  */
1058 void
1059 thread_unsuspend(struct proc *p)
1060 {
1061         struct thread *td;
1062         int wakeup_swapper;
1063
1064         PROC_LOCK_ASSERT(p, MA_OWNED);
1065         PROC_SLOCK_ASSERT(p, MA_OWNED);
1066         wakeup_swapper = 0;
1067         if (!P_SHOULDSTOP(p)) {
1068                 FOREACH_THREAD_IN_PROC(p, td) {
1069                         thread_lock(td);
1070                         if (TD_IS_SUSPENDED(td)) {
1071                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1072                                     true);
1073                         }
1074                         thread_unlock(td);
1075                 }
1076         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1077             p->p_numthreads == p->p_suspcount) {
1078                 /*
1079                  * Stopping everything also did the job for the single
1080                  * threading request. Now we've downgraded to single-threaded,
1081                  * let it continue.
1082                  */
1083                 if (p->p_singlethread->td_proc == p) {
1084                         thread_lock(p->p_singlethread);
1085                         wakeup_swapper = thread_unsuspend_one(
1086                             p->p_singlethread, p, false);
1087                         thread_unlock(p->p_singlethread);
1088                 }
1089         }
1090         if (wakeup_swapper)
1091                 kick_proc0();
1092 }
1093
1094 /*
1095  * End the single threading mode..
1096  */
1097 void
1098 thread_single_end(struct proc *p, int mode)
1099 {
1100         struct thread *td;
1101         int wakeup_swapper;
1102
1103         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1104             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1105             ("invalid mode %d", mode));
1106         PROC_LOCK_ASSERT(p, MA_OWNED);
1107         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1108             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1109             ("mode %d does not match P_TOTAL_STOP", mode));
1110         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1111             ("thread_single_end from other thread %p %p",
1112             curthread, p->p_singlethread));
1113         KASSERT(mode != SINGLE_BOUNDARY ||
1114             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1115             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1116         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1117             P_TOTAL_STOP);
1118         PROC_SLOCK(p);
1119         p->p_singlethread = NULL;
1120         wakeup_swapper = 0;
1121         /*
1122          * If there are other threads they may now run,
1123          * unless of course there is a blanket 'stop order'
1124          * on the process. The single threader must be allowed
1125          * to continue however as this is a bad place to stop.
1126          */
1127         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1128                 FOREACH_THREAD_IN_PROC(p, td) {
1129                         thread_lock(td);
1130                         if (TD_IS_SUSPENDED(td)) {
1131                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1132                                     mode == SINGLE_BOUNDARY);
1133                         }
1134                         thread_unlock(td);
1135                 }
1136         }
1137         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1138             ("inconsistent boundary count %d", p->p_boundary_count));
1139         PROC_SUNLOCK(p);
1140         if (wakeup_swapper)
1141                 kick_proc0();
1142 }
1143
1144 struct thread *
1145 thread_find(struct proc *p, lwpid_t tid)
1146 {
1147         struct thread *td;
1148
1149         PROC_LOCK_ASSERT(p, MA_OWNED);
1150         FOREACH_THREAD_IN_PROC(p, td) {
1151                 if (td->td_tid == tid)
1152                         break;
1153         }
1154         return (td);
1155 }
1156
1157 /* Locate a thread by number; return with proc lock held. */
1158 struct thread *
1159 tdfind(lwpid_t tid, pid_t pid)
1160 {
1161 #define RUN_THRESH      16
1162         struct thread *td;
1163         int run = 0;
1164
1165         rw_rlock(&tidhash_lock);
1166         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1167                 if (td->td_tid == tid) {
1168                         if (pid != -1 && td->td_proc->p_pid != pid) {
1169                                 td = NULL;
1170                                 break;
1171                         }
1172                         PROC_LOCK(td->td_proc);
1173                         if (td->td_proc->p_state == PRS_NEW) {
1174                                 PROC_UNLOCK(td->td_proc);
1175                                 td = NULL;
1176                                 break;
1177                         }
1178                         if (run > RUN_THRESH) {
1179                                 if (rw_try_upgrade(&tidhash_lock)) {
1180                                         LIST_REMOVE(td, td_hash);
1181                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1182                                                 td, td_hash);
1183                                         rw_wunlock(&tidhash_lock);
1184                                         return (td);
1185                                 }
1186                         }
1187                         break;
1188                 }
1189                 run++;
1190         }
1191         rw_runlock(&tidhash_lock);
1192         return (td);
1193 }
1194
1195 void
1196 tidhash_add(struct thread *td)
1197 {
1198         rw_wlock(&tidhash_lock);
1199         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1200         rw_wunlock(&tidhash_lock);
1201 }
1202
1203 void
1204 tidhash_remove(struct thread *td)
1205 {
1206         rw_wlock(&tidhash_lock);
1207         LIST_REMOVE(td, td_hash);
1208         rw_wunlock(&tidhash_lock);
1209 }