]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
This commit was generated by cvs2svn to compensate for changes in r175882,
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/resourcevar.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41 #include <sys/sched.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/selinfo.h>
44 #include <sys/turnstile.h>
45 #include <sys/ktr.h>
46 #include <sys/umtx.h>
47
48 #include <security/audit/audit.h>
49
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52 #include <vm/uma.h>
53 #include <sys/eventhandler.h>
54
55 /*
56  * thread related storage.
57  */
58 static uma_zone_t thread_zone;
59
60 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
61
62 int max_threads_per_proc = 1500;
63 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
64         &max_threads_per_proc, 0, "Limit on threads per proc");
65
66 int max_threads_hits;
67 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
68         &max_threads_hits, 0, "");
69
70 #ifdef KSE
71 int virtual_cpu;
72
73 #endif
74 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75 static struct mtx zombie_lock;
76 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77
78 static void thread_zombie(struct thread *);
79
80 #ifdef KSE
81 static int
82 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
83 {
84         int error, new_val;
85         int def_val;
86
87         def_val = mp_ncpus;
88         if (virtual_cpu == 0)
89                 new_val = def_val;
90         else
91                 new_val = virtual_cpu;
92         error = sysctl_handle_int(oidp, &new_val, 0, req);
93         if (error != 0 || req->newptr == NULL)
94                 return (error);
95         if (new_val < 0)
96                 return (EINVAL);
97         virtual_cpu = new_val;
98         return (0);
99 }
100
101 /* DEBUG ONLY */
102 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
103         0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
104         "debug virtual cpus");
105 #endif
106
107 struct mtx tid_lock;
108 static struct unrhdr *tid_unrhdr;
109
110 /*
111  * Prepare a thread for use.
112  */
113 static int
114 thread_ctor(void *mem, int size, void *arg, int flags)
115 {
116         struct thread   *td;
117
118         td = (struct thread *)mem;
119         td->td_state = TDS_INACTIVE;
120         td->td_oncpu = NOCPU;
121
122         td->td_tid = alloc_unr(tid_unrhdr);
123         td->td_syscalls = 0;
124
125         /*
126          * Note that td_critnest begins life as 1 because the thread is not
127          * running and is thereby implicitly waiting to be on the receiving
128          * end of a context switch.
129          */
130         td->td_critnest = 1;
131         EVENTHANDLER_INVOKE(thread_ctor, td);
132 #ifdef AUDIT
133         audit_thread_alloc(td);
134 #endif
135         umtx_thread_alloc(td);
136         return (0);
137 }
138
139 /*
140  * Reclaim a thread after use.
141  */
142 static void
143 thread_dtor(void *mem, int size, void *arg)
144 {
145         struct thread *td;
146
147         td = (struct thread *)mem;
148
149 #ifdef INVARIANTS
150         /* Verify that this thread is in a safe state to free. */
151         switch (td->td_state) {
152         case TDS_INHIBITED:
153         case TDS_RUNNING:
154         case TDS_CAN_RUN:
155         case TDS_RUNQ:
156                 /*
157                  * We must never unlink a thread that is in one of
158                  * these states, because it is currently active.
159                  */
160                 panic("bad state for thread unlinking");
161                 /* NOTREACHED */
162         case TDS_INACTIVE:
163                 break;
164         default:
165                 panic("bad thread state");
166                 /* NOTREACHED */
167         }
168 #endif
169 #ifdef AUDIT
170         audit_thread_free(td);
171 #endif
172         EVENTHANDLER_INVOKE(thread_dtor, td);
173         free_unr(tid_unrhdr, td->td_tid);
174         sched_newthread(td);
175 }
176
177 /*
178  * Initialize type-stable parts of a thread (when newly created).
179  */
180 static int
181 thread_init(void *mem, int size, int flags)
182 {
183         struct thread *td;
184
185         td = (struct thread *)mem;
186
187         td->td_sleepqueue = sleepq_alloc();
188         td->td_turnstile = turnstile_alloc();
189         EVENTHANDLER_INVOKE(thread_init, td);
190         td->td_sched = (struct td_sched *)&td[1];
191         sched_newthread(td);
192         umtx_thread_init(td);
193         td->td_kstack = 0;
194         return (0);
195 }
196
197 /*
198  * Tear down type-stable parts of a thread (just before being discarded).
199  */
200 static void
201 thread_fini(void *mem, int size)
202 {
203         struct thread *td;
204
205         td = (struct thread *)mem;
206         EVENTHANDLER_INVOKE(thread_fini, td);
207         turnstile_free(td->td_turnstile);
208         sleepq_free(td->td_sleepqueue);
209         umtx_thread_fini(td);
210         seltdfini(td);
211 }
212
213 /*
214  * For a newly created process,
215  * link up all the structures and its initial threads etc.
216  * called from:
217  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
218  * proc_dtor() (should go away)
219  * proc_init()
220  */
221 void
222 proc_linkup0(struct proc *p, struct thread *td)
223 {
224         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
225         proc_linkup(p, td);
226 }
227
228 void
229 proc_linkup(struct proc *p, struct thread *td)
230 {
231
232 #ifdef KSE
233         TAILQ_INIT(&p->p_upcalls);           /* upcall list */
234 #endif
235         sigqueue_init(&p->p_sigqueue, p);
236         p->p_ksi = ksiginfo_alloc(1);
237         if (p->p_ksi != NULL) {
238                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
239                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
240         }
241         LIST_INIT(&p->p_mqnotifier);
242         p->p_numthreads = 0;
243         thread_link(td, p);
244 }
245
246 /*
247  * Initialize global thread allocation resources.
248  */
249 void
250 threadinit(void)
251 {
252
253         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
254         /* leave one number for thread0 */
255         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
256
257         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
258             thread_ctor, thread_dtor, thread_init, thread_fini,
259             16 - 1, 0);
260 #ifdef KSE
261         kseinit();      /* set up kse specific stuff  e.g. upcall zone*/
262 #endif
263 }
264
265 /*
266  * Place an unused thread on the zombie list.
267  * Use the slpq as that must be unused by now.
268  */
269 void
270 thread_zombie(struct thread *td)
271 {
272         mtx_lock_spin(&zombie_lock);
273         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
274         mtx_unlock_spin(&zombie_lock);
275 }
276
277 /*
278  * Release a thread that has exited after cpu_throw().
279  */
280 void
281 thread_stash(struct thread *td)
282 {
283         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
284         thread_zombie(td);
285 }
286
287 /*
288  * Reap zombie kse resource.
289  */
290 void
291 thread_reap(void)
292 {
293         struct thread *td_first, *td_next;
294
295         /*
296          * Don't even bother to lock if none at this instant,
297          * we really don't care about the next instant..
298          */
299         if (!TAILQ_EMPTY(&zombie_threads)) {
300                 mtx_lock_spin(&zombie_lock);
301                 td_first = TAILQ_FIRST(&zombie_threads);
302                 if (td_first)
303                         TAILQ_INIT(&zombie_threads);
304                 mtx_unlock_spin(&zombie_lock);
305                 while (td_first) {
306                         td_next = TAILQ_NEXT(td_first, td_slpq);
307                         if (td_first->td_ucred)
308                                 crfree(td_first->td_ucred);
309                         thread_free(td_first);
310                         td_first = td_next;
311                 }
312         }
313 #ifdef KSE
314         upcall_reap();
315 #endif
316 }
317
318 /*
319  * Allocate a thread.
320  */
321 struct thread *
322 thread_alloc(void)
323 {
324         struct thread *td;
325
326         thread_reap(); /* check if any zombies to get */
327
328         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
329         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
330         if (!vm_thread_new(td, 0)) {
331                 uma_zfree(thread_zone, td);
332                 return (NULL);
333         }
334         cpu_thread_alloc(td);
335         return (td);
336 }
337
338
339 /*
340  * Deallocate a thread.
341  */
342 void
343 thread_free(struct thread *td)
344 {
345
346         cpu_thread_free(td);
347         if (td->td_altkstack != 0)
348                 vm_thread_dispose_altkstack(td);
349         if (td->td_kstack != 0)
350                 vm_thread_dispose(td);
351         uma_zfree(thread_zone, td);
352 }
353
354 /*
355  * Discard the current thread and exit from its context.
356  * Always called with scheduler locked.
357  *
358  * Because we can't free a thread while we're operating under its context,
359  * push the current thread into our CPU's deadthread holder. This means
360  * we needn't worry about someone else grabbing our context before we
361  * do a cpu_throw().  This may not be needed now as we are under schedlock.
362  * Maybe we can just do a thread_stash() as thr_exit1 does.
363  */
364 /*  XXX
365  * libthr expects its thread exit to return for the last
366  * thread, meaning that the program is back to non-threaded
367  * mode I guess. Because we do this (cpu_throw) unconditionally
368  * here, they have their own version of it. (thr_exit1()) 
369  * that doesn't do it all if this was the last thread.
370  * It is also called from thread_suspend_check().
371  * Of course in the end, they end up coming here through exit1
372  * anyhow..  After fixing 'thr' to play by the rules we should be able 
373  * to merge these two functions together.
374  *
375  * called from:
376  * exit1()
377  * kse_exit()
378  * thr_exit()
379  * ifdef KSE
380  * thread_user_enter()
381  * thread_userret()
382  * endif
383  * thread_suspend_check()
384  */
385 void
386 thread_exit(void)
387 {
388         uint64_t new_switchtime;
389         struct thread *td;
390         struct thread *td2;
391         struct proc *p;
392
393         td = curthread;
394         p = td->td_proc;
395
396         PROC_SLOCK_ASSERT(p, MA_OWNED);
397         mtx_assert(&Giant, MA_NOTOWNED);
398
399         PROC_LOCK_ASSERT(p, MA_OWNED);
400         KASSERT(p != NULL, ("thread exiting without a process"));
401         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
402             (long)p->p_pid, td->td_name);
403         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
404
405 #ifdef AUDIT
406         AUDIT_SYSCALL_EXIT(0, td);
407 #endif
408
409 #ifdef KSE
410         if (td->td_standin != NULL) {
411                 /*
412                  * Note that we don't need to free the cred here as it
413                  * is done in thread_reap().
414                  */
415                 thread_zombie(td->td_standin);
416                 td->td_standin = NULL;
417         }
418 #endif
419
420         umtx_thread_exit(td);
421
422         /*
423          * drop FPU & debug register state storage, or any other
424          * architecture specific resources that
425          * would not be on a new untouched process.
426          */
427         cpu_thread_exit(td);    /* XXXSMP */
428
429         /* Do the same timestamp bookkeeping that mi_switch() would do. */
430         new_switchtime = cpu_ticks();
431         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
432         PCPU_SET(switchtime, new_switchtime);
433         PCPU_SET(switchticks, ticks);
434         PCPU_INC(cnt.v_swtch);
435         /* Save our resource usage in our process. */
436         td->td_ru.ru_nvcsw++;
437         rucollect(&p->p_ru, &td->td_ru);
438         /*
439          * The last thread is left attached to the process
440          * So that the whole bundle gets recycled. Skip
441          * all this stuff if we never had threads.
442          * EXIT clears all sign of other threads when
443          * it goes to single threading, so the last thread always
444          * takes the short path.
445          */
446         if (p->p_flag & P_HADTHREADS) {
447                 if (p->p_numthreads > 1) {
448                         thread_lock(td);
449 #ifdef KSE
450                         kse_unlink(td);
451 #else
452                         thread_unlink(td);
453 #endif
454                         thread_unlock(td);
455                         td2 = FIRST_THREAD_IN_PROC(p);
456                         sched_exit_thread(td2, td);
457
458                         /*
459                          * The test below is NOT true if we are the
460                          * sole exiting thread. P_STOPPED_SNGL is unset
461                          * in exit1() after it is the only survivor.
462                          */
463                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
464                                 if (p->p_numthreads == p->p_suspcount) {
465                                         thread_lock(p->p_singlethread);
466                                         thread_unsuspend_one(p->p_singlethread);
467                                         thread_unlock(p->p_singlethread);
468                                 }
469                         }
470
471                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
472                         PCPU_SET(deadthread, td);
473                 } else {
474                         /*
475                          * The last thread is exiting.. but not through exit()
476                          * what should we do?
477                          * Theoretically this can't happen
478                          * exit1() - clears threading flags before coming here
479                          * kse_exit() - treats last thread specially
480                          * thr_exit() - treats last thread specially
481                          * ifdef KSE
482                          * thread_user_enter() - only if more exist
483                          * thread_userret() - only if more exist
484                          * endif
485                          * thread_suspend_check() - only if more exist
486                          */
487                         panic ("thread_exit: Last thread exiting on its own");
488                 }
489         } 
490         PROC_UNLOCK(p);
491         thread_lock(td);
492         /* Save our tick information with both the thread and proc locked */
493         ruxagg(&p->p_rux, td);
494         PROC_SUNLOCK(p);
495         td->td_state = TDS_INACTIVE;
496         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
497         sched_throw(td);
498         panic("I'm a teapot!");
499         /* NOTREACHED */
500 }
501
502 /*
503  * Do any thread specific cleanups that may be needed in wait()
504  * called with Giant, proc and schedlock not held.
505  */
506 void
507 thread_wait(struct proc *p)
508 {
509         struct thread *td;
510
511         mtx_assert(&Giant, MA_NOTOWNED);
512         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
513         td = FIRST_THREAD_IN_PROC(p);
514 #ifdef KSE
515         if (td->td_standin != NULL) {
516                 if (td->td_standin->td_ucred != NULL) {
517                         crfree(td->td_standin->td_ucred);
518                         td->td_standin->td_ucred = NULL;
519                 }
520                 thread_free(td->td_standin);
521                 td->td_standin = NULL;
522         }
523 #endif
524         /* Lock the last thread so we spin until it exits cpu_throw(). */
525         thread_lock(td);
526         thread_unlock(td);
527         /* Wait for any remaining threads to exit cpu_throw(). */
528         while (p->p_exitthreads)
529                 sched_relinquish(curthread);
530         cpu_thread_clean(td);
531         crfree(td->td_ucred);
532         thread_reap();  /* check for zombie threads etc. */
533 }
534
535 /*
536  * Link a thread to a process.
537  * set up anything that needs to be initialized for it to
538  * be used by the process.
539  *
540  * Note that we do not link to the proc's ucred here.
541  * The thread is linked as if running but no KSE assigned.
542  * Called from:
543  *  proc_linkup()
544  *  thread_schedule_upcall()
545  *  thr_create()
546  */
547 void
548 thread_link(struct thread *td, struct proc *p)
549 {
550
551         /*
552          * XXX This can't be enabled because it's called for proc0 before
553          * it's spinlock has been created.
554          * PROC_SLOCK_ASSERT(p, MA_OWNED);
555          */
556         td->td_state    = TDS_INACTIVE;
557         td->td_proc     = p;
558         td->td_flags    = TDF_INMEM;
559
560         LIST_INIT(&td->td_contested);
561         LIST_INIT(&td->td_lprof[0]);
562         LIST_INIT(&td->td_lprof[1]);
563         sigqueue_init(&td->td_sigqueue, p);
564         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
565         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
566         p->p_numthreads++;
567 }
568
569 /*
570  * Convert a process with one thread to an unthreaded process.
571  * Called from:
572  *  thread_single(exit)  (called from execve and exit)
573  *  kse_exit()          XXX may need cleaning up wrt KSE stuff
574  */
575 void
576 thread_unthread(struct thread *td)
577 {
578         struct proc *p = td->td_proc;
579
580         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
581 #ifdef KSE
582         thread_lock(td);
583         upcall_remove(td);
584         thread_unlock(td);
585         p->p_flag &= ~(P_SA|P_HADTHREADS);
586         td->td_mailbox = NULL;
587         td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
588         if (td->td_standin != NULL) {
589                 thread_zombie(td->td_standin);
590                 td->td_standin = NULL;
591         }
592 #else
593         p->p_flag &= ~P_HADTHREADS;
594 #endif
595 }
596
597 /*
598  * Called from:
599  *  thread_exit()
600  */
601 void
602 thread_unlink(struct thread *td)
603 {
604         struct proc *p = td->td_proc;
605
606         PROC_SLOCK_ASSERT(p, MA_OWNED);
607         TAILQ_REMOVE(&p->p_threads, td, td_plist);
608         p->p_numthreads--;
609         /* could clear a few other things here */
610         /* Must  NOT clear links to proc! */
611 }
612
613 /*
614  * Enforce single-threading.
615  *
616  * Returns 1 if the caller must abort (another thread is waiting to
617  * exit the process or similar). Process is locked!
618  * Returns 0 when you are successfully the only thread running.
619  * A process has successfully single threaded in the suspend mode when
620  * There are no threads in user mode. Threads in the kernel must be
621  * allowed to continue until they get to the user boundary. They may even
622  * copy out their return values and data before suspending. They may however be
623  * accelerated in reaching the user boundary as we will wake up
624  * any sleeping threads that are interruptable. (PCATCH).
625  */
626 int
627 thread_single(int mode)
628 {
629         struct thread *td;
630         struct thread *td2;
631         struct proc *p;
632         int remaining;
633
634         td = curthread;
635         p = td->td_proc;
636         mtx_assert(&Giant, MA_NOTOWNED);
637         PROC_LOCK_ASSERT(p, MA_OWNED);
638         KASSERT((td != NULL), ("curthread is NULL"));
639
640         if ((p->p_flag & P_HADTHREADS) == 0)
641                 return (0);
642
643         /* Is someone already single threading? */
644         if (p->p_singlethread != NULL && p->p_singlethread != td)
645                 return (1);
646
647         if (mode == SINGLE_EXIT) {
648                 p->p_flag |= P_SINGLE_EXIT;
649                 p->p_flag &= ~P_SINGLE_BOUNDARY;
650         } else {
651                 p->p_flag &= ~P_SINGLE_EXIT;
652                 if (mode == SINGLE_BOUNDARY)
653                         p->p_flag |= P_SINGLE_BOUNDARY;
654                 else
655                         p->p_flag &= ~P_SINGLE_BOUNDARY;
656         }
657         p->p_flag |= P_STOPPED_SINGLE;
658         PROC_SLOCK(p);
659         p->p_singlethread = td;
660         if (mode == SINGLE_EXIT)
661                 remaining = p->p_numthreads;
662         else if (mode == SINGLE_BOUNDARY)
663                 remaining = p->p_numthreads - p->p_boundary_count;
664         else
665                 remaining = p->p_numthreads - p->p_suspcount;
666         while (remaining != 1) {
667                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
668                         goto stopme;
669                 FOREACH_THREAD_IN_PROC(p, td2) {
670                         if (td2 == td)
671                                 continue;
672                         thread_lock(td2);
673                         td2->td_flags |= TDF_ASTPENDING;
674                         if (TD_IS_INHIBITED(td2)) {
675                                 switch (mode) {
676                                 case SINGLE_EXIT:
677                                         if (td->td_flags & TDF_DBSUSPEND)
678                                                 td->td_flags &= ~TDF_DBSUSPEND;
679                                         if (TD_IS_SUSPENDED(td2))
680                                                 thread_unsuspend_one(td2);
681                                         if (TD_ON_SLEEPQ(td2) &&
682                                             (td2->td_flags & TDF_SINTR))
683                                                 sleepq_abort(td2, EINTR);
684                                         break;
685                                 case SINGLE_BOUNDARY:
686                                         break;
687                                 default:        
688                                         if (TD_IS_SUSPENDED(td2)) {
689                                                 thread_unlock(td2);
690                                                 continue;
691                                         }
692                                         /*
693                                          * maybe other inhibited states too?
694                                          */
695                                         if ((td2->td_flags & TDF_SINTR) &&
696                                             (td2->td_inhibitors &
697                                             (TDI_SLEEPING | TDI_SWAPPED)))
698                                                 thread_suspend_one(td2);
699                                         break;
700                                 }
701                         }
702 #ifdef SMP
703                         else if (TD_IS_RUNNING(td2) && td != td2) {
704                                 forward_signal(td2);
705                         }
706 #endif
707                         thread_unlock(td2);
708                 }
709                 if (mode == SINGLE_EXIT)
710                         remaining = p->p_numthreads;
711                 else if (mode == SINGLE_BOUNDARY)
712                         remaining = p->p_numthreads - p->p_boundary_count;
713                 else
714                         remaining = p->p_numthreads - p->p_suspcount;
715
716                 /*
717                  * Maybe we suspended some threads.. was it enough?
718                  */
719                 if (remaining == 1)
720                         break;
721
722 stopme:
723                 /*
724                  * Wake us up when everyone else has suspended.
725                  * In the mean time we suspend as well.
726                  */
727                 thread_suspend_switch(td);
728                 if (mode == SINGLE_EXIT)
729                         remaining = p->p_numthreads;
730                 else if (mode == SINGLE_BOUNDARY)
731                         remaining = p->p_numthreads - p->p_boundary_count;
732                 else
733                         remaining = p->p_numthreads - p->p_suspcount;
734         }
735         if (mode == SINGLE_EXIT) {
736                 /*
737                  * We have gotten rid of all the other threads and we
738                  * are about to either exit or exec. In either case,
739                  * we try our utmost  to revert to being a non-threaded
740                  * process.
741                  */
742                 p->p_singlethread = NULL;
743                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
744                 thread_unthread(td);
745         }
746         PROC_SUNLOCK(p);
747         return (0);
748 }
749
750 /*
751  * Called in from locations that can safely check to see
752  * whether we have to suspend or at least throttle for a
753  * single-thread event (e.g. fork).
754  *
755  * Such locations include userret().
756  * If the "return_instead" argument is non zero, the thread must be able to
757  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
758  *
759  * The 'return_instead' argument tells the function if it may do a
760  * thread_exit() or suspend, or whether the caller must abort and back
761  * out instead.
762  *
763  * If the thread that set the single_threading request has set the
764  * P_SINGLE_EXIT bit in the process flags then this call will never return
765  * if 'return_instead' is false, but will exit.
766  *
767  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
768  *---------------+--------------------+---------------------
769  *       0       | returns 0          |   returns 0 or 1
770  *               | when ST ends       |   immediatly
771  *---------------+--------------------+---------------------
772  *       1       | thread exits       |   returns 1
773  *               |                    |  immediatly
774  * 0 = thread_exit() or suspension ok,
775  * other = return error instead of stopping the thread.
776  *
777  * While a full suspension is under effect, even a single threading
778  * thread would be suspended if it made this call (but it shouldn't).
779  * This call should only be made from places where
780  * thread_exit() would be safe as that may be the outcome unless
781  * return_instead is set.
782  */
783 int
784 thread_suspend_check(int return_instead)
785 {
786         struct thread *td;
787         struct proc *p;
788
789         td = curthread;
790         p = td->td_proc;
791         mtx_assert(&Giant, MA_NOTOWNED);
792         PROC_LOCK_ASSERT(p, MA_OWNED);
793         while (P_SHOULDSTOP(p) ||
794               ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
795                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
796                         KASSERT(p->p_singlethread != NULL,
797                             ("singlethread not set"));
798                         /*
799                          * The only suspension in action is a
800                          * single-threading. Single threader need not stop.
801                          * XXX Should be safe to access unlocked
802                          * as it can only be set to be true by us.
803                          */
804                         if (p->p_singlethread == td)
805                                 return (0);     /* Exempt from stopping. */
806                 }
807                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
808                         return (EINTR);
809
810                 /* Should we goto user boundary if we didn't come from there? */
811                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
812                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
813                         return (ERESTART);
814
815                 /* If thread will exit, flush its pending signals */
816                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
817                         sigqueue_flush(&td->td_sigqueue);
818
819                 PROC_SLOCK(p);
820                 thread_stopped(p);
821                 /*
822                  * If the process is waiting for us to exit,
823                  * this thread should just suicide.
824                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
825                  */
826                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
827                         thread_exit();
828                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
829                         if (p->p_numthreads == p->p_suspcount + 1) {
830                                 thread_lock(p->p_singlethread);
831                                 thread_unsuspend_one(p->p_singlethread);
832                                 thread_unlock(p->p_singlethread);
833                         }
834                 }
835                 PROC_UNLOCK(p);
836                 thread_lock(td);
837                 /*
838                  * When a thread suspends, it just
839                  * gets taken off all queues.
840                  */
841                 thread_suspend_one(td);
842                 if (return_instead == 0) {
843                         p->p_boundary_count++;
844                         td->td_flags |= TDF_BOUNDARY;
845                 }
846                 PROC_SUNLOCK(p);
847                 mi_switch(SW_INVOL, NULL);
848                 if (return_instead == 0)
849                         td->td_flags &= ~TDF_BOUNDARY;
850                 thread_unlock(td);
851                 PROC_LOCK(p);
852                 if (return_instead == 0)
853                         p->p_boundary_count--;
854         }
855         return (0);
856 }
857
858 void
859 thread_suspend_switch(struct thread *td)
860 {
861         struct proc *p;
862
863         p = td->td_proc;
864         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
865         PROC_LOCK_ASSERT(p, MA_OWNED);
866         PROC_SLOCK_ASSERT(p, MA_OWNED);
867         /*
868          * We implement thread_suspend_one in stages here to avoid
869          * dropping the proc lock while the thread lock is owned.
870          */
871         thread_stopped(p);
872         p->p_suspcount++;
873         PROC_UNLOCK(p);
874         thread_lock(td);
875         sched_sleep(td);
876         TD_SET_SUSPENDED(td);
877         PROC_SUNLOCK(p);
878         DROP_GIANT();
879         mi_switch(SW_VOL, NULL);
880         thread_unlock(td);
881         PICKUP_GIANT();
882         PROC_LOCK(p);
883         PROC_SLOCK(p);
884 }
885
886 void
887 thread_suspend_one(struct thread *td)
888 {
889         struct proc *p = td->td_proc;
890
891         PROC_SLOCK_ASSERT(p, MA_OWNED);
892         THREAD_LOCK_ASSERT(td, MA_OWNED);
893         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
894         p->p_suspcount++;
895         sched_sleep(td);
896         TD_SET_SUSPENDED(td);
897 }
898
899 void
900 thread_unsuspend_one(struct thread *td)
901 {
902         struct proc *p = td->td_proc;
903
904         PROC_SLOCK_ASSERT(p, MA_OWNED);
905         THREAD_LOCK_ASSERT(td, MA_OWNED);
906         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
907         TD_CLR_SUSPENDED(td);
908         p->p_suspcount--;
909         setrunnable(td);
910 }
911
912 /*
913  * Allow all threads blocked by single threading to continue running.
914  */
915 void
916 thread_unsuspend(struct proc *p)
917 {
918         struct thread *td;
919
920         PROC_LOCK_ASSERT(p, MA_OWNED);
921         PROC_SLOCK_ASSERT(p, MA_OWNED);
922         if (!P_SHOULDSTOP(p)) {
923                 FOREACH_THREAD_IN_PROC(p, td) {
924                         thread_lock(td);
925                         if (TD_IS_SUSPENDED(td)) {
926                                 thread_unsuspend_one(td);
927                         }
928                         thread_unlock(td);
929                 }
930         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
931             (p->p_numthreads == p->p_suspcount)) {
932                 /*
933                  * Stopping everything also did the job for the single
934                  * threading request. Now we've downgraded to single-threaded,
935                  * let it continue.
936                  */
937                 thread_lock(p->p_singlethread);
938                 thread_unsuspend_one(p->p_singlethread);
939                 thread_unlock(p->p_singlethread);
940         }
941 }
942
943 /*
944  * End the single threading mode..
945  */
946 void
947 thread_single_end(void)
948 {
949         struct thread *td;
950         struct proc *p;
951
952         td = curthread;
953         p = td->td_proc;
954         PROC_LOCK_ASSERT(p, MA_OWNED);
955         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
956         PROC_SLOCK(p);
957         p->p_singlethread = NULL;
958         /*
959          * If there are other threads they mey now run,
960          * unless of course there is a blanket 'stop order'
961          * on the process. The single threader must be allowed
962          * to continue however as this is a bad place to stop.
963          */
964         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
965                 FOREACH_THREAD_IN_PROC(p, td) {
966                         thread_lock(td);
967                         if (TD_IS_SUSPENDED(td)) {
968                                 thread_unsuspend_one(td);
969                         }
970                         thread_unlock(td);
971                 }
972         }
973         PROC_SUNLOCK(p);
974 }
975
976 struct thread *
977 thread_find(struct proc *p, lwpid_t tid)
978 {
979         struct thread *td;
980
981         PROC_LOCK_ASSERT(p, MA_OWNED);
982         PROC_SLOCK(p);
983         FOREACH_THREAD_IN_PROC(p, td) {
984                 if (td->td_tid == tid)
985                         break;
986         }
987         PROC_SUNLOCK(p);
988         return (td);
989 }