]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_umtx.c
Add UPDATING entries and bump version.
[FreeBSD/FreeBSD.git] / sys / kern / kern_umtx.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice unmodified, this list of conditions, and the following
17  *    disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include "opt_umtx_profiling.h"
38
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/systm.h>
60 #include <sys/sysproto.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/taskqueue.h>
63 #include <sys/time.h>
64 #include <sys/eventhandler.h>
65 #include <sys/umtx.h>
66
67 #include <security/mac/mac_framework.h>
68
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74
75 #include <machine/atomic.h>
76 #include <machine/cpu.h>
77
78 #ifdef COMPAT_FREEBSD32
79 #include <compat/freebsd32/freebsd32_proto.h>
80 #endif
81
82 #define _UMUTEX_TRY             1
83 #define _UMUTEX_WAIT            2
84
85 #ifdef UMTX_PROFILING
86 #define UPROF_PERC_BIGGER(w, f, sw, sf)                                 \
87         (((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
88 #endif
89
90 /* Priority inheritance mutex info. */
91 struct umtx_pi {
92         /* Owner thread */
93         struct thread           *pi_owner;
94
95         /* Reference count */
96         int                     pi_refcount;
97
98         /* List entry to link umtx holding by thread */
99         TAILQ_ENTRY(umtx_pi)    pi_link;
100
101         /* List entry in hash */
102         TAILQ_ENTRY(umtx_pi)    pi_hashlink;
103
104         /* List for waiters */
105         TAILQ_HEAD(,umtx_q)     pi_blocked;
106
107         /* Identify a userland lock object */
108         struct umtx_key         pi_key;
109 };
110
111 /* A userland synchronous object user. */
112 struct umtx_q {
113         /* Linked list for the hash. */
114         TAILQ_ENTRY(umtx_q)     uq_link;
115
116         /* Umtx key. */
117         struct umtx_key         uq_key;
118
119         /* Umtx flags. */
120         int                     uq_flags;
121 #define UQF_UMTXQ       0x0001
122
123         /* The thread waits on. */
124         struct thread           *uq_thread;
125
126         /*
127          * Blocked on PI mutex. read can use chain lock
128          * or umtx_lock, write must have both chain lock and
129          * umtx_lock being hold.
130          */
131         struct umtx_pi          *uq_pi_blocked;
132
133         /* On blocked list */
134         TAILQ_ENTRY(umtx_q)     uq_lockq;
135
136         /* Thread contending with us */
137         TAILQ_HEAD(,umtx_pi)    uq_pi_contested;
138
139         /* Inherited priority from PP mutex */
140         u_char                  uq_inherited_pri;
141
142         /* Spare queue ready to be reused */
143         struct umtxq_queue      *uq_spare_queue;
144
145         /* The queue we on */
146         struct umtxq_queue      *uq_cur_queue;
147 };
148
149 TAILQ_HEAD(umtxq_head, umtx_q);
150
151 /* Per-key wait-queue */
152 struct umtxq_queue {
153         struct umtxq_head       head;
154         struct umtx_key         key;
155         LIST_ENTRY(umtxq_queue) link;
156         int                     length;
157 };
158
159 LIST_HEAD(umtxq_list, umtxq_queue);
160
161 /* Userland lock object's wait-queue chain */
162 struct umtxq_chain {
163         /* Lock for this chain. */
164         struct mtx              uc_lock;
165
166         /* List of sleep queues. */
167         struct umtxq_list       uc_queue[2];
168 #define UMTX_SHARED_QUEUE       0
169 #define UMTX_EXCLUSIVE_QUEUE    1
170
171         LIST_HEAD(, umtxq_queue) uc_spare_queue;
172
173         /* Busy flag */
174         char                    uc_busy;
175
176         /* Chain lock waiters */
177         int                     uc_waiters;
178
179         /* All PI in the list */
180         TAILQ_HEAD(,umtx_pi)    uc_pi_list;
181
182 #ifdef UMTX_PROFILING
183         u_int                   length;
184         u_int                   max_length;
185 #endif
186 };
187
188 #define UMTXQ_LOCKED_ASSERT(uc)         mtx_assert(&(uc)->uc_lock, MA_OWNED)
189
190 /*
191  * Don't propagate time-sharing priority, there is a security reason,
192  * a user can simply introduce PI-mutex, let thread A lock the mutex,
193  * and let another thread B block on the mutex, because B is
194  * sleeping, its priority will be boosted, this causes A's priority to
195  * be boosted via priority propagating too and will never be lowered even
196  * if it is using 100%CPU, this is unfair to other processes.
197  */
198
199 #define UPRI(td)        (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
200                           (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
201                          PRI_MAX_TIMESHARE : (td)->td_user_pri)
202
203 #define GOLDEN_RATIO_PRIME      2654404609U
204 #ifndef UMTX_CHAINS
205 #define UMTX_CHAINS             512
206 #endif
207 #define UMTX_SHIFTS             (__WORD_BIT - 9)
208
209 #define GET_SHARE(flags)        \
210     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
211
212 #define BUSY_SPINS              200
213
214 struct abs_timeout {
215         int clockid;
216         bool is_abs_real;       /* TIMER_ABSTIME && CLOCK_REALTIME* */
217         struct timespec cur;
218         struct timespec end;
219 };
220
221 #ifdef COMPAT_FREEBSD32
222 struct umutex32 {
223         volatile __lwpid_t      m_owner;        /* Owner of the mutex */
224         __uint32_t              m_flags;        /* Flags of the mutex */
225         __uint32_t              m_ceilings[2];  /* Priority protect ceiling */
226         __uint32_t              m_rb_lnk;       /* Robust linkage */
227         __uint32_t              m_pad;
228         __uint32_t              m_spare[2];
229 };
230
231 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
232 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
233     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
234 #endif
235
236 int umtx_shm_vnobj_persistent = 0;
237 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
238     &umtx_shm_vnobj_persistent, 0,
239     "False forces destruction of umtx attached to file, on last close");
240 static int umtx_max_rb = 1000;
241 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
242     &umtx_max_rb, 0,
243     "");
244
245 static uma_zone_t               umtx_pi_zone;
246 static struct umtxq_chain       umtxq_chains[2][UMTX_CHAINS];
247 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
248 static int                      umtx_pi_allocated;
249
250 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
251 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
252     &umtx_pi_allocated, 0, "Allocated umtx_pi");
253 static int umtx_verbose_rb = 1;
254 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
255     &umtx_verbose_rb, 0,
256     "");
257
258 #ifdef UMTX_PROFILING
259 static long max_length;
260 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
261 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD, 0, "umtx chain stats");
262 #endif
263
264 static void abs_timeout_update(struct abs_timeout *timo);
265
266 static void umtx_shm_init(void);
267 static void umtxq_sysinit(void *);
268 static void umtxq_hash(struct umtx_key *key);
269 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
270 static void umtxq_lock(struct umtx_key *key);
271 static void umtxq_unlock(struct umtx_key *key);
272 static void umtxq_busy(struct umtx_key *key);
273 static void umtxq_unbusy(struct umtx_key *key);
274 static void umtxq_insert_queue(struct umtx_q *uq, int q);
275 static void umtxq_remove_queue(struct umtx_q *uq, int q);
276 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
277 static int umtxq_count(struct umtx_key *key);
278 static struct umtx_pi *umtx_pi_alloc(int);
279 static void umtx_pi_free(struct umtx_pi *pi);
280 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
281     bool rb);
282 static void umtx_thread_cleanup(struct thread *td);
283 static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
284     struct image_params *imgp __unused);
285 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
286
287 #define umtxq_signal(key, nwake)        umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
288 #define umtxq_insert(uq)        umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
289 #define umtxq_remove(uq)        umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
290
291 static struct mtx umtx_lock;
292
293 #ifdef UMTX_PROFILING
294 static void
295 umtx_init_profiling(void)
296 {
297         struct sysctl_oid *chain_oid;
298         char chain_name[10];
299         int i;
300
301         for (i = 0; i < UMTX_CHAINS; ++i) {
302                 snprintf(chain_name, sizeof(chain_name), "%d", i);
303                 chain_oid = SYSCTL_ADD_NODE(NULL,
304                     SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
305                     chain_name, CTLFLAG_RD, NULL, "umtx hash stats");
306                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
307                     "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
308                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
309                     "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
310         }
311 }
312
313 static int
314 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
315 {
316         char buf[512];
317         struct sbuf sb;
318         struct umtxq_chain *uc;
319         u_int fract, i, j, tot, whole;
320         u_int sf0, sf1, sf2, sf3, sf4;
321         u_int si0, si1, si2, si3, si4;
322         u_int sw0, sw1, sw2, sw3, sw4;
323
324         sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
325         for (i = 0; i < 2; i++) {
326                 tot = 0;
327                 for (j = 0; j < UMTX_CHAINS; ++j) {
328                         uc = &umtxq_chains[i][j];
329                         mtx_lock(&uc->uc_lock);
330                         tot += uc->max_length;
331                         mtx_unlock(&uc->uc_lock);
332                 }
333                 if (tot == 0)
334                         sbuf_printf(&sb, "%u) Empty ", i);
335                 else {
336                         sf0 = sf1 = sf2 = sf3 = sf4 = 0;
337                         si0 = si1 = si2 = si3 = si4 = 0;
338                         sw0 = sw1 = sw2 = sw3 = sw4 = 0;
339                         for (j = 0; j < UMTX_CHAINS; j++) {
340                                 uc = &umtxq_chains[i][j];
341                                 mtx_lock(&uc->uc_lock);
342                                 whole = uc->max_length * 100;
343                                 mtx_unlock(&uc->uc_lock);
344                                 fract = (whole % tot) * 100;
345                                 if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
346                                         sf0 = fract;
347                                         si0 = j;
348                                         sw0 = whole;
349                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw1,
350                                     sf1)) {
351                                         sf1 = fract;
352                                         si1 = j;
353                                         sw1 = whole;
354                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw2,
355                                     sf2)) {
356                                         sf2 = fract;
357                                         si2 = j;
358                                         sw2 = whole;
359                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw3,
360                                     sf3)) {
361                                         sf3 = fract;
362                                         si3 = j;
363                                         sw3 = whole;
364                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw4,
365                                     sf4)) {
366                                         sf4 = fract;
367                                         si4 = j;
368                                         sw4 = whole;
369                                 }
370                         }
371                         sbuf_printf(&sb, "queue %u:\n", i);
372                         sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
373                             sf0 / tot, si0);
374                         sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
375                             sf1 / tot, si1);
376                         sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
377                             sf2 / tot, si2);
378                         sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
379                             sf3 / tot, si3);
380                         sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
381                             sf4 / tot, si4);
382                 }
383         }
384         sbuf_trim(&sb);
385         sbuf_finish(&sb);
386         sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
387         sbuf_delete(&sb);
388         return (0);
389 }
390
391 static int
392 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
393 {
394         struct umtxq_chain *uc;
395         u_int i, j;
396         int clear, error;
397
398         clear = 0;
399         error = sysctl_handle_int(oidp, &clear, 0, req);
400         if (error != 0 || req->newptr == NULL)
401                 return (error);
402
403         if (clear != 0) {
404                 for (i = 0; i < 2; ++i) {
405                         for (j = 0; j < UMTX_CHAINS; ++j) {
406                                 uc = &umtxq_chains[i][j];
407                                 mtx_lock(&uc->uc_lock);
408                                 uc->length = 0;
409                                 uc->max_length = 0;
410                                 mtx_unlock(&uc->uc_lock);
411                         }
412                 }
413         }
414         return (0);
415 }
416
417 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
418     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
419     sysctl_debug_umtx_chains_clear, "I", "Clear umtx chains statistics");
420 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
421     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
422     sysctl_debug_umtx_chains_peaks, "A", "Highest peaks in chains max length");
423 #endif
424
425 static void
426 umtxq_sysinit(void *arg __unused)
427 {
428         int i, j;
429
430         umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
431                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
432         for (i = 0; i < 2; ++i) {
433                 for (j = 0; j < UMTX_CHAINS; ++j) {
434                         mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
435                                  MTX_DEF | MTX_DUPOK);
436                         LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
437                         LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
438                         LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
439                         TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
440                         umtxq_chains[i][j].uc_busy = 0;
441                         umtxq_chains[i][j].uc_waiters = 0;
442 #ifdef UMTX_PROFILING
443                         umtxq_chains[i][j].length = 0;
444                         umtxq_chains[i][j].max_length = 0;
445 #endif
446                 }
447         }
448 #ifdef UMTX_PROFILING
449         umtx_init_profiling();
450 #endif
451         mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
452         EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
453             EVENTHANDLER_PRI_ANY);
454         umtx_shm_init();
455 }
456
457 struct umtx_q *
458 umtxq_alloc(void)
459 {
460         struct umtx_q *uq;
461
462         uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
463         uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
464             M_WAITOK | M_ZERO);
465         TAILQ_INIT(&uq->uq_spare_queue->head);
466         TAILQ_INIT(&uq->uq_pi_contested);
467         uq->uq_inherited_pri = PRI_MAX;
468         return (uq);
469 }
470
471 void
472 umtxq_free(struct umtx_q *uq)
473 {
474
475         MPASS(uq->uq_spare_queue != NULL);
476         free(uq->uq_spare_queue, M_UMTX);
477         free(uq, M_UMTX);
478 }
479
480 static inline void
481 umtxq_hash(struct umtx_key *key)
482 {
483         unsigned n;
484
485         n = (uintptr_t)key->info.both.a + key->info.both.b;
486         key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
487 }
488
489 static inline struct umtxq_chain *
490 umtxq_getchain(struct umtx_key *key)
491 {
492
493         if (key->type <= TYPE_SEM)
494                 return (&umtxq_chains[1][key->hash]);
495         return (&umtxq_chains[0][key->hash]);
496 }
497
498 /*
499  * Lock a chain.
500  */
501 static inline void
502 umtxq_lock(struct umtx_key *key)
503 {
504         struct umtxq_chain *uc;
505
506         uc = umtxq_getchain(key);
507         mtx_lock(&uc->uc_lock);
508 }
509
510 /*
511  * Unlock a chain.
512  */
513 static inline void
514 umtxq_unlock(struct umtx_key *key)
515 {
516         struct umtxq_chain *uc;
517
518         uc = umtxq_getchain(key);
519         mtx_unlock(&uc->uc_lock);
520 }
521
522 /*
523  * Set chain to busy state when following operation
524  * may be blocked (kernel mutex can not be used).
525  */
526 static inline void
527 umtxq_busy(struct umtx_key *key)
528 {
529         struct umtxq_chain *uc;
530
531         uc = umtxq_getchain(key);
532         mtx_assert(&uc->uc_lock, MA_OWNED);
533         if (uc->uc_busy) {
534 #ifdef SMP
535                 if (smp_cpus > 1) {
536                         int count = BUSY_SPINS;
537                         if (count > 0) {
538                                 umtxq_unlock(key);
539                                 while (uc->uc_busy && --count > 0)
540                                         cpu_spinwait();
541                                 umtxq_lock(key);
542                         }
543                 }
544 #endif
545                 while (uc->uc_busy) {
546                         uc->uc_waiters++;
547                         msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
548                         uc->uc_waiters--;
549                 }
550         }
551         uc->uc_busy = 1;
552 }
553
554 /*
555  * Unbusy a chain.
556  */
557 static inline void
558 umtxq_unbusy(struct umtx_key *key)
559 {
560         struct umtxq_chain *uc;
561
562         uc = umtxq_getchain(key);
563         mtx_assert(&uc->uc_lock, MA_OWNED);
564         KASSERT(uc->uc_busy != 0, ("not busy"));
565         uc->uc_busy = 0;
566         if (uc->uc_waiters)
567                 wakeup_one(uc);
568 }
569
570 static inline void
571 umtxq_unbusy_unlocked(struct umtx_key *key)
572 {
573
574         umtxq_lock(key);
575         umtxq_unbusy(key);
576         umtxq_unlock(key);
577 }
578
579 static struct umtxq_queue *
580 umtxq_queue_lookup(struct umtx_key *key, int q)
581 {
582         struct umtxq_queue *uh;
583         struct umtxq_chain *uc;
584
585         uc = umtxq_getchain(key);
586         UMTXQ_LOCKED_ASSERT(uc);
587         LIST_FOREACH(uh, &uc->uc_queue[q], link) {
588                 if (umtx_key_match(&uh->key, key))
589                         return (uh);
590         }
591
592         return (NULL);
593 }
594
595 static inline void
596 umtxq_insert_queue(struct umtx_q *uq, int q)
597 {
598         struct umtxq_queue *uh;
599         struct umtxq_chain *uc;
600
601         uc = umtxq_getchain(&uq->uq_key);
602         UMTXQ_LOCKED_ASSERT(uc);
603         KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
604         uh = umtxq_queue_lookup(&uq->uq_key, q);
605         if (uh != NULL) {
606                 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
607         } else {
608                 uh = uq->uq_spare_queue;
609                 uh->key = uq->uq_key;
610                 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
611 #ifdef UMTX_PROFILING
612                 uc->length++;
613                 if (uc->length > uc->max_length) {
614                         uc->max_length = uc->length;
615                         if (uc->max_length > max_length)
616                                 max_length = uc->max_length;
617                 }
618 #endif
619         }
620         uq->uq_spare_queue = NULL;
621
622         TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
623         uh->length++;
624         uq->uq_flags |= UQF_UMTXQ;
625         uq->uq_cur_queue = uh;
626         return;
627 }
628
629 static inline void
630 umtxq_remove_queue(struct umtx_q *uq, int q)
631 {
632         struct umtxq_chain *uc;
633         struct umtxq_queue *uh;
634
635         uc = umtxq_getchain(&uq->uq_key);
636         UMTXQ_LOCKED_ASSERT(uc);
637         if (uq->uq_flags & UQF_UMTXQ) {
638                 uh = uq->uq_cur_queue;
639                 TAILQ_REMOVE(&uh->head, uq, uq_link);
640                 uh->length--;
641                 uq->uq_flags &= ~UQF_UMTXQ;
642                 if (TAILQ_EMPTY(&uh->head)) {
643                         KASSERT(uh->length == 0,
644                             ("inconsistent umtxq_queue length"));
645 #ifdef UMTX_PROFILING
646                         uc->length--;
647 #endif
648                         LIST_REMOVE(uh, link);
649                 } else {
650                         uh = LIST_FIRST(&uc->uc_spare_queue);
651                         KASSERT(uh != NULL, ("uc_spare_queue is empty"));
652                         LIST_REMOVE(uh, link);
653                 }
654                 uq->uq_spare_queue = uh;
655                 uq->uq_cur_queue = NULL;
656         }
657 }
658
659 /*
660  * Check if there are multiple waiters
661  */
662 static int
663 umtxq_count(struct umtx_key *key)
664 {
665         struct umtxq_queue *uh;
666
667         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
668         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
669         if (uh != NULL)
670                 return (uh->length);
671         return (0);
672 }
673
674 /*
675  * Check if there are multiple PI waiters and returns first
676  * waiter.
677  */
678 static int
679 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
680 {
681         struct umtxq_queue *uh;
682
683         *first = NULL;
684         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
685         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
686         if (uh != NULL) {
687                 *first = TAILQ_FIRST(&uh->head);
688                 return (uh->length);
689         }
690         return (0);
691 }
692
693 /*
694  * Wake up threads waiting on an userland object.
695  */
696
697 static int
698 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
699 {
700         struct umtxq_queue *uh;
701         struct umtx_q *uq;
702         int ret;
703
704         ret = 0;
705         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
706         uh = umtxq_queue_lookup(key, q);
707         if (uh != NULL) {
708                 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
709                         umtxq_remove_queue(uq, q);
710                         wakeup(uq);
711                         if (++ret >= n_wake)
712                                 return (ret);
713                 }
714         }
715         return (ret);
716 }
717
718
719 /*
720  * Wake up specified thread.
721  */
722 static inline void
723 umtxq_signal_thread(struct umtx_q *uq)
724 {
725
726         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
727         umtxq_remove(uq);
728         wakeup(uq);
729 }
730
731 static inline int
732 tstohz(const struct timespec *tsp)
733 {
734         struct timeval tv;
735
736         TIMESPEC_TO_TIMEVAL(&tv, tsp);
737         return tvtohz(&tv);
738 }
739
740 static void
741 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
742         const struct timespec *timeout)
743 {
744
745         timo->clockid = clockid;
746         if (!absolute) {
747                 timo->is_abs_real = false;
748                 abs_timeout_update(timo);
749                 timespecadd(&timo->cur, timeout, &timo->end);
750         } else {
751                 timo->end = *timeout;
752                 timo->is_abs_real = clockid == CLOCK_REALTIME ||
753                     clockid == CLOCK_REALTIME_FAST ||
754                     clockid == CLOCK_REALTIME_PRECISE;
755                 /*
756                  * If is_abs_real, umtxq_sleep will read the clock
757                  * after setting td_rtcgen; otherwise, read it here.
758                  */
759                 if (!timo->is_abs_real) {
760                         abs_timeout_update(timo);
761                 }
762         }
763 }
764
765 static void
766 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
767 {
768
769         abs_timeout_init(timo, umtxtime->_clockid,
770             (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
771 }
772
773 static inline void
774 abs_timeout_update(struct abs_timeout *timo)
775 {
776
777         kern_clock_gettime(curthread, timo->clockid, &timo->cur);
778 }
779
780 static int
781 abs_timeout_gethz(struct abs_timeout *timo)
782 {
783         struct timespec tts;
784
785         if (timespeccmp(&timo->end, &timo->cur, <=))
786                 return (-1);
787         timespecsub(&timo->end, &timo->cur, &tts);
788         return (tstohz(&tts));
789 }
790
791 static uint32_t
792 umtx_unlock_val(uint32_t flags, bool rb)
793 {
794
795         if (rb)
796                 return (UMUTEX_RB_OWNERDEAD);
797         else if ((flags & UMUTEX_NONCONSISTENT) != 0)
798                 return (UMUTEX_RB_NOTRECOV);
799         else
800                 return (UMUTEX_UNOWNED);
801
802 }
803
804 /*
805  * Put thread into sleep state, before sleeping, check if
806  * thread was removed from umtx queue.
807  */
808 static inline int
809 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
810 {
811         struct umtxq_chain *uc;
812         int error, timo;
813
814         if (abstime != NULL && abstime->is_abs_real) {
815                 curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
816                 abs_timeout_update(abstime);
817         }
818
819         uc = umtxq_getchain(&uq->uq_key);
820         UMTXQ_LOCKED_ASSERT(uc);
821         for (;;) {
822                 if (!(uq->uq_flags & UQF_UMTXQ)) {
823                         error = 0;
824                         break;
825                 }
826                 if (abstime != NULL) {
827                         timo = abs_timeout_gethz(abstime);
828                         if (timo < 0) {
829                                 error = ETIMEDOUT;
830                                 break;
831                         }
832                 } else
833                         timo = 0;
834                 error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
835                 if (error == EINTR || error == ERESTART) {
836                         umtxq_lock(&uq->uq_key);
837                         break;
838                 }
839                 if (abstime != NULL) {
840                         if (abstime->is_abs_real)
841                                 curthread->td_rtcgen =
842                                     atomic_load_acq_int(&rtc_generation);
843                         abs_timeout_update(abstime);
844                 }
845                 umtxq_lock(&uq->uq_key);
846         }
847
848         curthread->td_rtcgen = 0;
849         return (error);
850 }
851
852 /*
853  * Convert userspace address into unique logical address.
854  */
855 int
856 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
857 {
858         struct thread *td = curthread;
859         vm_map_t map;
860         vm_map_entry_t entry;
861         vm_pindex_t pindex;
862         vm_prot_t prot;
863         boolean_t wired;
864
865         key->type = type;
866         if (share == THREAD_SHARE) {
867                 key->shared = 0;
868                 key->info.private.vs = td->td_proc->p_vmspace;
869                 key->info.private.addr = (uintptr_t)addr;
870         } else {
871                 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
872                 map = &td->td_proc->p_vmspace->vm_map;
873                 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
874                     &entry, &key->info.shared.object, &pindex, &prot,
875                     &wired) != KERN_SUCCESS) {
876                         return (EFAULT);
877                 }
878
879                 if ((share == PROCESS_SHARE) ||
880                     (share == AUTO_SHARE &&
881                      VM_INHERIT_SHARE == entry->inheritance)) {
882                         key->shared = 1;
883                         key->info.shared.offset = (vm_offset_t)addr -
884                             entry->start + entry->offset;
885                         vm_object_reference(key->info.shared.object);
886                 } else {
887                         key->shared = 0;
888                         key->info.private.vs = td->td_proc->p_vmspace;
889                         key->info.private.addr = (uintptr_t)addr;
890                 }
891                 vm_map_lookup_done(map, entry);
892         }
893
894         umtxq_hash(key);
895         return (0);
896 }
897
898 /*
899  * Release key.
900  */
901 void
902 umtx_key_release(struct umtx_key *key)
903 {
904         if (key->shared)
905                 vm_object_deallocate(key->info.shared.object);
906 }
907
908 /*
909  * Fetch and compare value, sleep on the address if value is not changed.
910  */
911 static int
912 do_wait(struct thread *td, void *addr, u_long id,
913     struct _umtx_time *timeout, int compat32, int is_private)
914 {
915         struct abs_timeout timo;
916         struct umtx_q *uq;
917         u_long tmp;
918         uint32_t tmp32;
919         int error = 0;
920
921         uq = td->td_umtxq;
922         if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
923                 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
924                 return (error);
925
926         if (timeout != NULL)
927                 abs_timeout_init2(&timo, timeout);
928
929         umtxq_lock(&uq->uq_key);
930         umtxq_insert(uq);
931         umtxq_unlock(&uq->uq_key);
932         if (compat32 == 0) {
933                 error = fueword(addr, &tmp);
934                 if (error != 0)
935                         error = EFAULT;
936         } else {
937                 error = fueword32(addr, &tmp32);
938                 if (error == 0)
939                         tmp = tmp32;
940                 else
941                         error = EFAULT;
942         }
943         umtxq_lock(&uq->uq_key);
944         if (error == 0) {
945                 if (tmp == id)
946                         error = umtxq_sleep(uq, "uwait", timeout == NULL ?
947                             NULL : &timo);
948                 if ((uq->uq_flags & UQF_UMTXQ) == 0)
949                         error = 0;
950                 else
951                         umtxq_remove(uq);
952         } else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
953                 umtxq_remove(uq);
954         }
955         umtxq_unlock(&uq->uq_key);
956         umtx_key_release(&uq->uq_key);
957         if (error == ERESTART)
958                 error = EINTR;
959         return (error);
960 }
961
962 /*
963  * Wake up threads sleeping on the specified address.
964  */
965 int
966 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
967 {
968         struct umtx_key key;
969         int ret;
970
971         if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
972             is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
973                 return (ret);
974         umtxq_lock(&key);
975         umtxq_signal(&key, n_wake);
976         umtxq_unlock(&key);
977         umtx_key_release(&key);
978         return (0);
979 }
980
981 /*
982  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
983  */
984 static int
985 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
986     struct _umtx_time *timeout, int mode)
987 {
988         struct abs_timeout timo;
989         struct umtx_q *uq;
990         uint32_t owner, old, id;
991         int error, rv;
992
993         id = td->td_tid;
994         uq = td->td_umtxq;
995         error = 0;
996         if (timeout != NULL)
997                 abs_timeout_init2(&timo, timeout);
998
999         /*
1000          * Care must be exercised when dealing with umtx structure. It
1001          * can fault on any access.
1002          */
1003         for (;;) {
1004                 rv = fueword32(&m->m_owner, &owner);
1005                 if (rv == -1)
1006                         return (EFAULT);
1007                 if (mode == _UMUTEX_WAIT) {
1008                         if (owner == UMUTEX_UNOWNED ||
1009                             owner == UMUTEX_CONTESTED ||
1010                             owner == UMUTEX_RB_OWNERDEAD ||
1011                             owner == UMUTEX_RB_NOTRECOV)
1012                                 return (0);
1013                 } else {
1014                         /*
1015                          * Robust mutex terminated.  Kernel duty is to
1016                          * return EOWNERDEAD to the userspace.  The
1017                          * umutex.m_flags UMUTEX_NONCONSISTENT is set
1018                          * by the common userspace code.
1019                          */
1020                         if (owner == UMUTEX_RB_OWNERDEAD) {
1021                                 rv = casueword32(&m->m_owner,
1022                                     UMUTEX_RB_OWNERDEAD, &owner,
1023                                     id | UMUTEX_CONTESTED);
1024                                 if (rv == -1)
1025                                         return (EFAULT);
1026                                 if (rv == 0) {
1027                                         MPASS(owner == UMUTEX_RB_OWNERDEAD);
1028                                         return (EOWNERDEAD); /* success */
1029                                 }
1030                                 MPASS(rv == 1);
1031                                 rv = thread_check_susp(td, false);
1032                                 if (rv != 0)
1033                                         return (rv);
1034                                 continue;
1035                         }
1036                         if (owner == UMUTEX_RB_NOTRECOV)
1037                                 return (ENOTRECOVERABLE);
1038
1039                         /*
1040                          * Try the uncontested case.  This should be
1041                          * done in userland.
1042                          */
1043                         rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1044                             &owner, id);
1045                         /* The address was invalid. */
1046                         if (rv == -1)
1047                                 return (EFAULT);
1048
1049                         /* The acquire succeeded. */
1050                         if (rv == 0) {
1051                                 MPASS(owner == UMUTEX_UNOWNED);
1052                                 return (0);
1053                         }
1054
1055                         /*
1056                          * If no one owns it but it is contested try
1057                          * to acquire it.
1058                          */
1059                         MPASS(rv == 1);
1060                         if (owner == UMUTEX_CONTESTED) {
1061                                 rv = casueword32(&m->m_owner,
1062                                     UMUTEX_CONTESTED, &owner,
1063                                     id | UMUTEX_CONTESTED);
1064                                 /* The address was invalid. */
1065                                 if (rv == -1)
1066                                         return (EFAULT);
1067                                 if (rv == 0) {
1068                                         MPASS(owner == UMUTEX_CONTESTED);
1069                                         return (0);
1070                                 }
1071                                 if (rv == 1) {
1072                                         rv = thread_check_susp(td, false);
1073                                         if (rv != 0)
1074                                                 return (rv);
1075                                 }
1076
1077                                 /*
1078                                  * If this failed the lock has
1079                                  * changed, restart.
1080                                  */
1081                                 continue;
1082                         }
1083
1084                         /* rv == 1 but not contested, likely store failure */
1085                         rv = thread_check_susp(td, false);
1086                         if (rv != 0)
1087                                 return (rv);
1088                 }
1089
1090                 if (mode == _UMUTEX_TRY)
1091                         return (EBUSY);
1092
1093                 /*
1094                  * If we caught a signal, we have retried and now
1095                  * exit immediately.
1096                  */
1097                 if (error != 0)
1098                         return (error);
1099
1100                 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1101                     GET_SHARE(flags), &uq->uq_key)) != 0)
1102                         return (error);
1103
1104                 umtxq_lock(&uq->uq_key);
1105                 umtxq_busy(&uq->uq_key);
1106                 umtxq_insert(uq);
1107                 umtxq_unlock(&uq->uq_key);
1108
1109                 /*
1110                  * Set the contested bit so that a release in user space
1111                  * knows to use the system call for unlock.  If this fails
1112                  * either some one else has acquired the lock or it has been
1113                  * released.
1114                  */
1115                 rv = casueword32(&m->m_owner, owner, &old,
1116                     owner | UMUTEX_CONTESTED);
1117
1118                 /* The address was invalid or casueword failed to store. */
1119                 if (rv == -1 || rv == 1) {
1120                         umtxq_lock(&uq->uq_key);
1121                         umtxq_remove(uq);
1122                         umtxq_unbusy(&uq->uq_key);
1123                         umtxq_unlock(&uq->uq_key);
1124                         umtx_key_release(&uq->uq_key);
1125                         if (rv == -1)
1126                                 return (EFAULT);
1127                         if (rv == 1) {
1128                                 rv = thread_check_susp(td, false);
1129                                 if (rv != 0)
1130                                         return (rv);
1131                         }
1132                         continue;
1133                 }
1134
1135                 /*
1136                  * We set the contested bit, sleep. Otherwise the lock changed
1137                  * and we need to retry or we lost a race to the thread
1138                  * unlocking the umtx.
1139                  */
1140                 umtxq_lock(&uq->uq_key);
1141                 umtxq_unbusy(&uq->uq_key);
1142                 MPASS(old == owner);
1143                 error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1144                     NULL : &timo);
1145                 umtxq_remove(uq);
1146                 umtxq_unlock(&uq->uq_key);
1147                 umtx_key_release(&uq->uq_key);
1148
1149                 if (error == 0)
1150                         error = thread_check_susp(td, false);
1151         }
1152
1153         return (0);
1154 }
1155
1156 /*
1157  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1158  */
1159 static int
1160 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1161 {
1162         struct umtx_key key;
1163         uint32_t owner, old, id, newlock;
1164         int error, count;
1165
1166         id = td->td_tid;
1167
1168 again:
1169         /*
1170          * Make sure we own this mtx.
1171          */
1172         error = fueword32(&m->m_owner, &owner);
1173         if (error == -1)
1174                 return (EFAULT);
1175
1176         if ((owner & ~UMUTEX_CONTESTED) != id)
1177                 return (EPERM);
1178
1179         newlock = umtx_unlock_val(flags, rb);
1180         if ((owner & UMUTEX_CONTESTED) == 0) {
1181                 error = casueword32(&m->m_owner, owner, &old, newlock);
1182                 if (error == -1)
1183                         return (EFAULT);
1184                 if (error == 1) {
1185                         error = thread_check_susp(td, false);
1186                         if (error != 0)
1187                                 return (error);
1188                         goto again;
1189                 }
1190                 MPASS(old == owner);
1191                 return (0);
1192         }
1193
1194         /* We should only ever be in here for contested locks */
1195         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1196             &key)) != 0)
1197                 return (error);
1198
1199         umtxq_lock(&key);
1200         umtxq_busy(&key);
1201         count = umtxq_count(&key);
1202         umtxq_unlock(&key);
1203
1204         /*
1205          * When unlocking the umtx, it must be marked as unowned if
1206          * there is zero or one thread only waiting for it.
1207          * Otherwise, it must be marked as contested.
1208          */
1209         if (count > 1)
1210                 newlock |= UMUTEX_CONTESTED;
1211         error = casueword32(&m->m_owner, owner, &old, newlock);
1212         umtxq_lock(&key);
1213         umtxq_signal(&key, 1);
1214         umtxq_unbusy(&key);
1215         umtxq_unlock(&key);
1216         umtx_key_release(&key);
1217         if (error == -1)
1218                 return (EFAULT);
1219         if (error == 1) {
1220                 if (old != owner)
1221                         return (EINVAL);
1222                 error = thread_check_susp(td, false);
1223                 if (error != 0)
1224                         return (error);
1225                 goto again;
1226         }
1227         return (0);
1228 }
1229
1230 /*
1231  * Check if the mutex is available and wake up a waiter,
1232  * only for simple mutex.
1233  */
1234 static int
1235 do_wake_umutex(struct thread *td, struct umutex *m)
1236 {
1237         struct umtx_key key;
1238         uint32_t owner;
1239         uint32_t flags;
1240         int error;
1241         int count;
1242
1243 again:
1244         error = fueword32(&m->m_owner, &owner);
1245         if (error == -1)
1246                 return (EFAULT);
1247
1248         if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1249             owner != UMUTEX_RB_NOTRECOV)
1250                 return (0);
1251
1252         error = fueword32(&m->m_flags, &flags);
1253         if (error == -1)
1254                 return (EFAULT);
1255
1256         /* We should only ever be in here for contested locks */
1257         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1258             &key)) != 0)
1259                 return (error);
1260
1261         umtxq_lock(&key);
1262         umtxq_busy(&key);
1263         count = umtxq_count(&key);
1264         umtxq_unlock(&key);
1265
1266         if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1267             owner != UMUTEX_RB_NOTRECOV) {
1268                 error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1269                     UMUTEX_UNOWNED);
1270                 if (error == -1) {
1271                         error = EFAULT;
1272                 } else if (error == 1) {
1273                         umtxq_lock(&key);
1274                         umtxq_unbusy(&key);
1275                         umtxq_unlock(&key);
1276                         umtx_key_release(&key);
1277                         error = thread_check_susp(td, false);
1278                         if (error != 0)
1279                                 return (error);
1280                         goto again;
1281                 }
1282         }
1283
1284         umtxq_lock(&key);
1285         if (error == 0 && count != 0) {
1286                 MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1287                     owner == UMUTEX_RB_OWNERDEAD ||
1288                     owner == UMUTEX_RB_NOTRECOV);
1289                 umtxq_signal(&key, 1);
1290         }
1291         umtxq_unbusy(&key);
1292         umtxq_unlock(&key);
1293         umtx_key_release(&key);
1294         return (error);
1295 }
1296
1297 /*
1298  * Check if the mutex has waiters and tries to fix contention bit.
1299  */
1300 static int
1301 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1302 {
1303         struct umtx_key key;
1304         uint32_t owner, old;
1305         int type;
1306         int error;
1307         int count;
1308
1309         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1310             UMUTEX_ROBUST)) {
1311         case 0:
1312         case UMUTEX_ROBUST:
1313                 type = TYPE_NORMAL_UMUTEX;
1314                 break;
1315         case UMUTEX_PRIO_INHERIT:
1316                 type = TYPE_PI_UMUTEX;
1317                 break;
1318         case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1319                 type = TYPE_PI_ROBUST_UMUTEX;
1320                 break;
1321         case UMUTEX_PRIO_PROTECT:
1322                 type = TYPE_PP_UMUTEX;
1323                 break;
1324         case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1325                 type = TYPE_PP_ROBUST_UMUTEX;
1326                 break;
1327         default:
1328                 return (EINVAL);
1329         }
1330         if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1331                 return (error);
1332
1333         owner = 0;
1334         umtxq_lock(&key);
1335         umtxq_busy(&key);
1336         count = umtxq_count(&key);
1337         umtxq_unlock(&key);
1338
1339         error = fueword32(&m->m_owner, &owner);
1340         if (error == -1)
1341                 error = EFAULT;
1342
1343         /*
1344          * Only repair contention bit if there is a waiter, this means
1345          * the mutex is still being referenced by userland code,
1346          * otherwise don't update any memory.
1347          */
1348         while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1349             (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1350                 error = casueword32(&m->m_owner, owner, &old,
1351                     owner | UMUTEX_CONTESTED);
1352                 if (error == -1) {
1353                         error = EFAULT;
1354                         break;
1355                 }
1356                 if (error == 0) {
1357                         MPASS(old == owner);
1358                         break;
1359                 }
1360                 owner = old;
1361                 error = thread_check_susp(td, false);
1362         }
1363
1364         umtxq_lock(&key);
1365         if (error == EFAULT) {
1366                 umtxq_signal(&key, INT_MAX);
1367         } else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1368             owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1369                 umtxq_signal(&key, 1);
1370         umtxq_unbusy(&key);
1371         umtxq_unlock(&key);
1372         umtx_key_release(&key);
1373         return (error);
1374 }
1375
1376 static inline struct umtx_pi *
1377 umtx_pi_alloc(int flags)
1378 {
1379         struct umtx_pi *pi;
1380
1381         pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1382         TAILQ_INIT(&pi->pi_blocked);
1383         atomic_add_int(&umtx_pi_allocated, 1);
1384         return (pi);
1385 }
1386
1387 static inline void
1388 umtx_pi_free(struct umtx_pi *pi)
1389 {
1390         uma_zfree(umtx_pi_zone, pi);
1391         atomic_add_int(&umtx_pi_allocated, -1);
1392 }
1393
1394 /*
1395  * Adjust the thread's position on a pi_state after its priority has been
1396  * changed.
1397  */
1398 static int
1399 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1400 {
1401         struct umtx_q *uq, *uq1, *uq2;
1402         struct thread *td1;
1403
1404         mtx_assert(&umtx_lock, MA_OWNED);
1405         if (pi == NULL)
1406                 return (0);
1407
1408         uq = td->td_umtxq;
1409
1410         /*
1411          * Check if the thread needs to be moved on the blocked chain.
1412          * It needs to be moved if either its priority is lower than
1413          * the previous thread or higher than the next thread.
1414          */
1415         uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1416         uq2 = TAILQ_NEXT(uq, uq_lockq);
1417         if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1418             (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1419                 /*
1420                  * Remove thread from blocked chain and determine where
1421                  * it should be moved to.
1422                  */
1423                 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1424                 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1425                         td1 = uq1->uq_thread;
1426                         MPASS(td1->td_proc->p_magic == P_MAGIC);
1427                         if (UPRI(td1) > UPRI(td))
1428                                 break;
1429                 }
1430
1431                 if (uq1 == NULL)
1432                         TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1433                 else
1434                         TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1435         }
1436         return (1);
1437 }
1438
1439 static struct umtx_pi *
1440 umtx_pi_next(struct umtx_pi *pi)
1441 {
1442         struct umtx_q *uq_owner;
1443
1444         if (pi->pi_owner == NULL)
1445                 return (NULL);
1446         uq_owner = pi->pi_owner->td_umtxq;
1447         if (uq_owner == NULL)
1448                 return (NULL);
1449         return (uq_owner->uq_pi_blocked);
1450 }
1451
1452 /*
1453  * Floyd's Cycle-Finding Algorithm.
1454  */
1455 static bool
1456 umtx_pi_check_loop(struct umtx_pi *pi)
1457 {
1458         struct umtx_pi *pi1;    /* fast iterator */
1459
1460         mtx_assert(&umtx_lock, MA_OWNED);
1461         if (pi == NULL)
1462                 return (false);
1463         pi1 = pi;
1464         for (;;) {
1465                 pi = umtx_pi_next(pi);
1466                 if (pi == NULL)
1467                         break;
1468                 pi1 = umtx_pi_next(pi1);
1469                 if (pi1 == NULL)
1470                         break;
1471                 pi1 = umtx_pi_next(pi1);
1472                 if (pi1 == NULL)
1473                         break;
1474                 if (pi == pi1)
1475                         return (true);
1476         }
1477         return (false);
1478 }
1479
1480 /*
1481  * Propagate priority when a thread is blocked on POSIX
1482  * PI mutex.
1483  */
1484 static void
1485 umtx_propagate_priority(struct thread *td)
1486 {
1487         struct umtx_q *uq;
1488         struct umtx_pi *pi;
1489         int pri;
1490
1491         mtx_assert(&umtx_lock, MA_OWNED);
1492         pri = UPRI(td);
1493         uq = td->td_umtxq;
1494         pi = uq->uq_pi_blocked;
1495         if (pi == NULL)
1496                 return;
1497         if (umtx_pi_check_loop(pi))
1498                 return;
1499
1500         for (;;) {
1501                 td = pi->pi_owner;
1502                 if (td == NULL || td == curthread)
1503                         return;
1504
1505                 MPASS(td->td_proc != NULL);
1506                 MPASS(td->td_proc->p_magic == P_MAGIC);
1507
1508                 thread_lock(td);
1509                 if (td->td_lend_user_pri > pri)
1510                         sched_lend_user_prio(td, pri);
1511                 else {
1512                         thread_unlock(td);
1513                         break;
1514                 }
1515                 thread_unlock(td);
1516
1517                 /*
1518                  * Pick up the lock that td is blocked on.
1519                  */
1520                 uq = td->td_umtxq;
1521                 pi = uq->uq_pi_blocked;
1522                 if (pi == NULL)
1523                         break;
1524                 /* Resort td on the list if needed. */
1525                 umtx_pi_adjust_thread(pi, td);
1526         }
1527 }
1528
1529 /*
1530  * Unpropagate priority for a PI mutex when a thread blocked on
1531  * it is interrupted by signal or resumed by others.
1532  */
1533 static void
1534 umtx_repropagate_priority(struct umtx_pi *pi)
1535 {
1536         struct umtx_q *uq, *uq_owner;
1537         struct umtx_pi *pi2;
1538         int pri;
1539
1540         mtx_assert(&umtx_lock, MA_OWNED);
1541
1542         if (umtx_pi_check_loop(pi))
1543                 return;
1544         while (pi != NULL && pi->pi_owner != NULL) {
1545                 pri = PRI_MAX;
1546                 uq_owner = pi->pi_owner->td_umtxq;
1547
1548                 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1549                         uq = TAILQ_FIRST(&pi2->pi_blocked);
1550                         if (uq != NULL) {
1551                                 if (pri > UPRI(uq->uq_thread))
1552                                         pri = UPRI(uq->uq_thread);
1553                         }
1554                 }
1555
1556                 if (pri > uq_owner->uq_inherited_pri)
1557                         pri = uq_owner->uq_inherited_pri;
1558                 thread_lock(pi->pi_owner);
1559                 sched_lend_user_prio(pi->pi_owner, pri);
1560                 thread_unlock(pi->pi_owner);
1561                 if ((pi = uq_owner->uq_pi_blocked) != NULL)
1562                         umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1563         }
1564 }
1565
1566 /*
1567  * Insert a PI mutex into owned list.
1568  */
1569 static void
1570 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1571 {
1572         struct umtx_q *uq_owner;
1573
1574         uq_owner = owner->td_umtxq;
1575         mtx_assert(&umtx_lock, MA_OWNED);
1576         MPASS(pi->pi_owner == NULL);
1577         pi->pi_owner = owner;
1578         TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1579 }
1580
1581
1582 /*
1583  * Disown a PI mutex, and remove it from the owned list.
1584  */
1585 static void
1586 umtx_pi_disown(struct umtx_pi *pi)
1587 {
1588
1589         mtx_assert(&umtx_lock, MA_OWNED);
1590         TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1591         pi->pi_owner = NULL;
1592 }
1593
1594 /*
1595  * Claim ownership of a PI mutex.
1596  */
1597 static int
1598 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1599 {
1600         struct umtx_q *uq;
1601         int pri;
1602
1603         mtx_lock(&umtx_lock);
1604         if (pi->pi_owner == owner) {
1605                 mtx_unlock(&umtx_lock);
1606                 return (0);
1607         }
1608
1609         if (pi->pi_owner != NULL) {
1610                 /*
1611                  * userland may have already messed the mutex, sigh.
1612                  */
1613                 mtx_unlock(&umtx_lock);
1614                 return (EPERM);
1615         }
1616         umtx_pi_setowner(pi, owner);
1617         uq = TAILQ_FIRST(&pi->pi_blocked);
1618         if (uq != NULL) {
1619                 pri = UPRI(uq->uq_thread);
1620                 thread_lock(owner);
1621                 if (pri < UPRI(owner))
1622                         sched_lend_user_prio(owner, pri);
1623                 thread_unlock(owner);
1624         }
1625         mtx_unlock(&umtx_lock);
1626         return (0);
1627 }
1628
1629 /*
1630  * Adjust a thread's order position in its blocked PI mutex,
1631  * this may result new priority propagating process.
1632  */
1633 void
1634 umtx_pi_adjust(struct thread *td, u_char oldpri)
1635 {
1636         struct umtx_q *uq;
1637         struct umtx_pi *pi;
1638
1639         uq = td->td_umtxq;
1640         mtx_lock(&umtx_lock);
1641         /*
1642          * Pick up the lock that td is blocked on.
1643          */
1644         pi = uq->uq_pi_blocked;
1645         if (pi != NULL) {
1646                 umtx_pi_adjust_thread(pi, td);
1647                 umtx_repropagate_priority(pi);
1648         }
1649         mtx_unlock(&umtx_lock);
1650 }
1651
1652 /*
1653  * Sleep on a PI mutex.
1654  */
1655 static int
1656 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
1657     const char *wmesg, struct abs_timeout *timo, bool shared)
1658 {
1659         struct thread *td, *td1;
1660         struct umtx_q *uq1;
1661         int error, pri;
1662 #ifdef INVARIANTS
1663         struct umtxq_chain *uc;
1664
1665         uc = umtxq_getchain(&pi->pi_key);
1666 #endif
1667         error = 0;
1668         td = uq->uq_thread;
1669         KASSERT(td == curthread, ("inconsistent uq_thread"));
1670         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
1671         KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
1672         umtxq_insert(uq);
1673         mtx_lock(&umtx_lock);
1674         if (pi->pi_owner == NULL) {
1675                 mtx_unlock(&umtx_lock);
1676                 td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
1677                 mtx_lock(&umtx_lock);
1678                 if (td1 != NULL) {
1679                         if (pi->pi_owner == NULL)
1680                                 umtx_pi_setowner(pi, td1);
1681                         PROC_UNLOCK(td1->td_proc);
1682                 }
1683         }
1684
1685         TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1686                 pri = UPRI(uq1->uq_thread);
1687                 if (pri > UPRI(td))
1688                         break;
1689         }
1690
1691         if (uq1 != NULL)
1692                 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1693         else
1694                 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1695
1696         uq->uq_pi_blocked = pi;
1697         thread_lock(td);
1698         td->td_flags |= TDF_UPIBLOCKED;
1699         thread_unlock(td);
1700         umtx_propagate_priority(td);
1701         mtx_unlock(&umtx_lock);
1702         umtxq_unbusy(&uq->uq_key);
1703
1704         error = umtxq_sleep(uq, wmesg, timo);
1705         umtxq_remove(uq);
1706
1707         mtx_lock(&umtx_lock);
1708         uq->uq_pi_blocked = NULL;
1709         thread_lock(td);
1710         td->td_flags &= ~TDF_UPIBLOCKED;
1711         thread_unlock(td);
1712         TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1713         umtx_repropagate_priority(pi);
1714         mtx_unlock(&umtx_lock);
1715         umtxq_unlock(&uq->uq_key);
1716
1717         return (error);
1718 }
1719
1720 /*
1721  * Add reference count for a PI mutex.
1722  */
1723 static void
1724 umtx_pi_ref(struct umtx_pi *pi)
1725 {
1726
1727         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
1728         pi->pi_refcount++;
1729 }
1730
1731 /*
1732  * Decrease reference count for a PI mutex, if the counter
1733  * is decreased to zero, its memory space is freed.
1734  */
1735 static void
1736 umtx_pi_unref(struct umtx_pi *pi)
1737 {
1738         struct umtxq_chain *uc;
1739
1740         uc = umtxq_getchain(&pi->pi_key);
1741         UMTXQ_LOCKED_ASSERT(uc);
1742         KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
1743         if (--pi->pi_refcount == 0) {
1744                 mtx_lock(&umtx_lock);
1745                 if (pi->pi_owner != NULL)
1746                         umtx_pi_disown(pi);
1747                 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
1748                         ("blocked queue not empty"));
1749                 mtx_unlock(&umtx_lock);
1750                 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
1751                 umtx_pi_free(pi);
1752         }
1753 }
1754
1755 /*
1756  * Find a PI mutex in hash table.
1757  */
1758 static struct umtx_pi *
1759 umtx_pi_lookup(struct umtx_key *key)
1760 {
1761         struct umtxq_chain *uc;
1762         struct umtx_pi *pi;
1763
1764         uc = umtxq_getchain(key);
1765         UMTXQ_LOCKED_ASSERT(uc);
1766
1767         TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
1768                 if (umtx_key_match(&pi->pi_key, key)) {
1769                         return (pi);
1770                 }
1771         }
1772         return (NULL);
1773 }
1774
1775 /*
1776  * Insert a PI mutex into hash table.
1777  */
1778 static inline void
1779 umtx_pi_insert(struct umtx_pi *pi)
1780 {
1781         struct umtxq_chain *uc;
1782
1783         uc = umtxq_getchain(&pi->pi_key);
1784         UMTXQ_LOCKED_ASSERT(uc);
1785         TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
1786 }
1787
1788 /*
1789  * Lock a PI mutex.
1790  */
1791 static int
1792 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
1793     struct _umtx_time *timeout, int try)
1794 {
1795         struct abs_timeout timo;
1796         struct umtx_q *uq;
1797         struct umtx_pi *pi, *new_pi;
1798         uint32_t id, old_owner, owner, old;
1799         int error, rv;
1800
1801         id = td->td_tid;
1802         uq = td->td_umtxq;
1803
1804         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
1805             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
1806             &uq->uq_key)) != 0)
1807                 return (error);
1808
1809         if (timeout != NULL)
1810                 abs_timeout_init2(&timo, timeout);
1811
1812         umtxq_lock(&uq->uq_key);
1813         pi = umtx_pi_lookup(&uq->uq_key);
1814         if (pi == NULL) {
1815                 new_pi = umtx_pi_alloc(M_NOWAIT);
1816                 if (new_pi == NULL) {
1817                         umtxq_unlock(&uq->uq_key);
1818                         new_pi = umtx_pi_alloc(M_WAITOK);
1819                         umtxq_lock(&uq->uq_key);
1820                         pi = umtx_pi_lookup(&uq->uq_key);
1821                         if (pi != NULL) {
1822                                 umtx_pi_free(new_pi);
1823                                 new_pi = NULL;
1824                         }
1825                 }
1826                 if (new_pi != NULL) {
1827                         new_pi->pi_key = uq->uq_key;
1828                         umtx_pi_insert(new_pi);
1829                         pi = new_pi;
1830                 }
1831         }
1832         umtx_pi_ref(pi);
1833         umtxq_unlock(&uq->uq_key);
1834
1835         /*
1836          * Care must be exercised when dealing with umtx structure.  It
1837          * can fault on any access.
1838          */
1839         for (;;) {
1840                 /*
1841                  * Try the uncontested case.  This should be done in userland.
1842                  */
1843                 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
1844                 /* The address was invalid. */
1845                 if (rv == -1) {
1846                         error = EFAULT;
1847                         break;
1848                 }
1849                 /* The acquire succeeded. */
1850                 if (rv == 0) {
1851                         MPASS(owner == UMUTEX_UNOWNED);
1852                         error = 0;
1853                         break;
1854                 }
1855
1856                 if (owner == UMUTEX_RB_NOTRECOV) {
1857                         error = ENOTRECOVERABLE;
1858                         break;
1859                 }
1860
1861                 /*
1862                  * Avoid overwriting a possible error from sleep due
1863                  * to the pending signal with suspension check result.
1864                  */
1865                 if (error == 0) {
1866                         error = thread_check_susp(td, true);
1867                         if (error != 0)
1868                                 break;
1869                 }
1870
1871                 /* If no one owns it but it is contested try to acquire it. */
1872                 if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
1873                         old_owner = owner;
1874                         rv = casueword32(&m->m_owner, owner, &owner,
1875                             id | UMUTEX_CONTESTED);
1876                         /* The address was invalid. */
1877                         if (rv == -1) {
1878                                 error = EFAULT;
1879                                 break;
1880                         }
1881                         if (rv == 1) {
1882                                 if (error == 0) {
1883                                         error = thread_check_susp(td, true);
1884                                         if (error != 0)
1885                                                 break;
1886                                 }
1887
1888                                 /*
1889                                  * If this failed the lock could
1890                                  * changed, restart.
1891                                  */
1892                                 continue;
1893                         }
1894
1895                         MPASS(rv == 0);
1896                         MPASS(owner == old_owner);
1897                         umtxq_lock(&uq->uq_key);
1898                         umtxq_busy(&uq->uq_key);
1899                         error = umtx_pi_claim(pi, td);
1900                         umtxq_unbusy(&uq->uq_key);
1901                         umtxq_unlock(&uq->uq_key);
1902                         if (error != 0) {
1903                                 /*
1904                                  * Since we're going to return an
1905                                  * error, restore the m_owner to its
1906                                  * previous, unowned state to avoid
1907                                  * compounding the problem.
1908                                  */
1909                                 (void)casuword32(&m->m_owner,
1910                                     id | UMUTEX_CONTESTED, old_owner);
1911                         }
1912                         if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
1913                                 error = EOWNERDEAD;
1914                         break;
1915                 }
1916
1917                 if ((owner & ~UMUTEX_CONTESTED) == id) {
1918                         error = EDEADLK;
1919                         break;
1920                 }
1921
1922                 if (try != 0) {
1923                         error = EBUSY;
1924                         break;
1925                 }
1926
1927                 /*
1928                  * If we caught a signal, we have retried and now
1929                  * exit immediately.
1930                  */
1931                 if (error != 0)
1932                         break;
1933
1934                 umtxq_lock(&uq->uq_key);
1935                 umtxq_busy(&uq->uq_key);
1936                 umtxq_unlock(&uq->uq_key);
1937
1938                 /*
1939                  * Set the contested bit so that a release in user space
1940                  * knows to use the system call for unlock.  If this fails
1941                  * either some one else has acquired the lock or it has been
1942                  * released.
1943                  */
1944                 rv = casueword32(&m->m_owner, owner, &old, owner |
1945                     UMUTEX_CONTESTED);
1946
1947                 /* The address was invalid. */
1948                 if (rv == -1) {
1949                         umtxq_unbusy_unlocked(&uq->uq_key);
1950                         error = EFAULT;
1951                         break;
1952                 }
1953                 if (rv == 1) {
1954                         umtxq_unbusy_unlocked(&uq->uq_key);
1955                         error = thread_check_susp(td, true);
1956                         if (error != 0)
1957                                 break;
1958
1959                         /*
1960                          * The lock changed and we need to retry or we
1961                          * lost a race to the thread unlocking the
1962                          * umtx.  Note that the UMUTEX_RB_OWNERDEAD
1963                          * value for owner is impossible there.
1964                          */
1965                         continue;
1966                 }
1967
1968                 umtxq_lock(&uq->uq_key);
1969
1970                 /* We set the contested bit, sleep. */
1971                 MPASS(old == owner);
1972                 error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
1973                     "umtxpi", timeout == NULL ? NULL : &timo,
1974                     (flags & USYNC_PROCESS_SHARED) != 0);
1975                 if (error != 0)
1976                         continue;
1977
1978                 error = thread_check_susp(td, false);
1979                 if (error != 0)
1980                         break;
1981         }
1982
1983         umtxq_lock(&uq->uq_key);
1984         umtx_pi_unref(pi);
1985         umtxq_unlock(&uq->uq_key);
1986
1987         umtx_key_release(&uq->uq_key);
1988         return (error);
1989 }
1990
1991 /*
1992  * Unlock a PI mutex.
1993  */
1994 static int
1995 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1996 {
1997         struct umtx_key key;
1998         struct umtx_q *uq_first, *uq_first2, *uq_me;
1999         struct umtx_pi *pi, *pi2;
2000         uint32_t id, new_owner, old, owner;
2001         int count, error, pri;
2002
2003         id = td->td_tid;
2004
2005 usrloop:
2006         /*
2007          * Make sure we own this mtx.
2008          */
2009         error = fueword32(&m->m_owner, &owner);
2010         if (error == -1)
2011                 return (EFAULT);
2012
2013         if ((owner & ~UMUTEX_CONTESTED) != id)
2014                 return (EPERM);
2015
2016         new_owner = umtx_unlock_val(flags, rb);
2017
2018         /* This should be done in userland */
2019         if ((owner & UMUTEX_CONTESTED) == 0) {
2020                 error = casueword32(&m->m_owner, owner, &old, new_owner);
2021                 if (error == -1)
2022                         return (EFAULT);
2023                 if (error == 1) {
2024                         error = thread_check_susp(td, true);
2025                         if (error != 0)
2026                                 return (error);
2027                         goto usrloop;
2028                 }
2029                 if (old == owner)
2030                         return (0);
2031                 owner = old;
2032         }
2033
2034         /* We should only ever be in here for contested locks */
2035         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2036             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2037             &key)) != 0)
2038                 return (error);
2039
2040         umtxq_lock(&key);
2041         umtxq_busy(&key);
2042         count = umtxq_count_pi(&key, &uq_first);
2043         if (uq_first != NULL) {
2044                 mtx_lock(&umtx_lock);
2045                 pi = uq_first->uq_pi_blocked;
2046                 KASSERT(pi != NULL, ("pi == NULL?"));
2047                 if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2048                         mtx_unlock(&umtx_lock);
2049                         umtxq_unbusy(&key);
2050                         umtxq_unlock(&key);
2051                         umtx_key_release(&key);
2052                         /* userland messed the mutex */
2053                         return (EPERM);
2054                 }
2055                 uq_me = td->td_umtxq;
2056                 if (pi->pi_owner == td)
2057                         umtx_pi_disown(pi);
2058                 /* get highest priority thread which is still sleeping. */
2059                 uq_first = TAILQ_FIRST(&pi->pi_blocked);
2060                 while (uq_first != NULL &&
2061                     (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2062                         uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2063                 }
2064                 pri = PRI_MAX;
2065                 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2066                         uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2067                         if (uq_first2 != NULL) {
2068                                 if (pri > UPRI(uq_first2->uq_thread))
2069                                         pri = UPRI(uq_first2->uq_thread);
2070                         }
2071                 }
2072                 thread_lock(td);
2073                 sched_lend_user_prio(td, pri);
2074                 thread_unlock(td);
2075                 mtx_unlock(&umtx_lock);
2076                 if (uq_first)
2077                         umtxq_signal_thread(uq_first);
2078         } else {
2079                 pi = umtx_pi_lookup(&key);
2080                 /*
2081                  * A umtx_pi can exist if a signal or timeout removed the
2082                  * last waiter from the umtxq, but there is still
2083                  * a thread in do_lock_pi() holding the umtx_pi.
2084                  */
2085                 if (pi != NULL) {
2086                         /*
2087                          * The umtx_pi can be unowned, such as when a thread
2088                          * has just entered do_lock_pi(), allocated the
2089                          * umtx_pi, and unlocked the umtxq.
2090                          * If the current thread owns it, it must disown it.
2091                          */
2092                         mtx_lock(&umtx_lock);
2093                         if (pi->pi_owner == td)
2094                                 umtx_pi_disown(pi);
2095                         mtx_unlock(&umtx_lock);
2096                 }
2097         }
2098         umtxq_unlock(&key);
2099
2100         /*
2101          * When unlocking the umtx, it must be marked as unowned if
2102          * there is zero or one thread only waiting for it.
2103          * Otherwise, it must be marked as contested.
2104          */
2105
2106         if (count > 1)
2107                 new_owner |= UMUTEX_CONTESTED;
2108 again:
2109         error = casueword32(&m->m_owner, owner, &old, new_owner);
2110         if (error == 1) {
2111                 error = thread_check_susp(td, false);
2112                 if (error == 0)
2113                         goto again;
2114         }
2115         umtxq_unbusy_unlocked(&key);
2116         umtx_key_release(&key);
2117         if (error == -1)
2118                 return (EFAULT);
2119         if (error == 0 && old != owner)
2120                 return (EINVAL);
2121         return (error);
2122 }
2123
2124 /*
2125  * Lock a PP mutex.
2126  */
2127 static int
2128 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2129     struct _umtx_time *timeout, int try)
2130 {
2131         struct abs_timeout timo;
2132         struct umtx_q *uq, *uq2;
2133         struct umtx_pi *pi;
2134         uint32_t ceiling;
2135         uint32_t owner, id;
2136         int error, pri, old_inherited_pri, su, rv;
2137
2138         id = td->td_tid;
2139         uq = td->td_umtxq;
2140         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2141             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2142             &uq->uq_key)) != 0)
2143                 return (error);
2144
2145         if (timeout != NULL)
2146                 abs_timeout_init2(&timo, timeout);
2147
2148         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2149         for (;;) {
2150                 old_inherited_pri = uq->uq_inherited_pri;
2151                 umtxq_lock(&uq->uq_key);
2152                 umtxq_busy(&uq->uq_key);
2153                 umtxq_unlock(&uq->uq_key);
2154
2155                 rv = fueword32(&m->m_ceilings[0], &ceiling);
2156                 if (rv == -1) {
2157                         error = EFAULT;
2158                         goto out;
2159                 }
2160                 ceiling = RTP_PRIO_MAX - ceiling;
2161                 if (ceiling > RTP_PRIO_MAX) {
2162                         error = EINVAL;
2163                         goto out;
2164                 }
2165
2166                 mtx_lock(&umtx_lock);
2167                 if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2168                         mtx_unlock(&umtx_lock);
2169                         error = EINVAL;
2170                         goto out;
2171                 }
2172                 if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2173                         uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2174                         thread_lock(td);
2175                         if (uq->uq_inherited_pri < UPRI(td))
2176                                 sched_lend_user_prio(td, uq->uq_inherited_pri);
2177                         thread_unlock(td);
2178                 }
2179                 mtx_unlock(&umtx_lock);
2180
2181                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2182                     id | UMUTEX_CONTESTED);
2183                 /* The address was invalid. */
2184                 if (rv == -1) {
2185                         error = EFAULT;
2186                         break;
2187                 }
2188                 if (rv == 0) {
2189                         MPASS(owner == UMUTEX_CONTESTED);
2190                         error = 0;
2191                         break;
2192                 }
2193                 /* rv == 1 */
2194                 if (owner == UMUTEX_RB_OWNERDEAD) {
2195                         rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2196                             &owner, id | UMUTEX_CONTESTED);
2197                         if (rv == -1) {
2198                                 error = EFAULT;
2199                                 break;
2200                         }
2201                         if (rv == 0) {
2202                                 MPASS(owner == UMUTEX_RB_OWNERDEAD);
2203                                 error = EOWNERDEAD; /* success */
2204                                 break;
2205                         }
2206
2207                         /*
2208                          *  rv == 1, only check for suspension if we
2209                          *  did not already catched a signal.  If we
2210                          *  get an error from the check, the same
2211                          *  condition is checked by the umtxq_sleep()
2212                          *  call below, so we should obliterate the
2213                          *  error to not skip the last loop iteration.
2214                          */
2215                         if (error == 0) {
2216                                 error = thread_check_susp(td, false);
2217                                 if (error == 0) {
2218                                         if (try != 0)
2219                                                 error = EBUSY;
2220                                         else
2221                                                 continue;
2222                                 }
2223                                 error = 0;
2224                         }
2225                 } else if (owner == UMUTEX_RB_NOTRECOV) {
2226                         error = ENOTRECOVERABLE;
2227                 }
2228
2229                 if (try != 0)
2230                         error = EBUSY;
2231
2232                 /*
2233                  * If we caught a signal, we have retried and now
2234                  * exit immediately.
2235                  */
2236                 if (error != 0)
2237                         break;
2238
2239                 umtxq_lock(&uq->uq_key);
2240                 umtxq_insert(uq);
2241                 umtxq_unbusy(&uq->uq_key);
2242                 error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2243                     NULL : &timo);
2244                 umtxq_remove(uq);
2245                 umtxq_unlock(&uq->uq_key);
2246
2247                 mtx_lock(&umtx_lock);
2248                 uq->uq_inherited_pri = old_inherited_pri;
2249                 pri = PRI_MAX;
2250                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2251                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
2252                         if (uq2 != NULL) {
2253                                 if (pri > UPRI(uq2->uq_thread))
2254                                         pri = UPRI(uq2->uq_thread);
2255                         }
2256                 }
2257                 if (pri > uq->uq_inherited_pri)
2258                         pri = uq->uq_inherited_pri;
2259                 thread_lock(td);
2260                 sched_lend_user_prio(td, pri);
2261                 thread_unlock(td);
2262                 mtx_unlock(&umtx_lock);
2263         }
2264
2265         if (error != 0 && error != EOWNERDEAD) {
2266                 mtx_lock(&umtx_lock);
2267                 uq->uq_inherited_pri = old_inherited_pri;
2268                 pri = PRI_MAX;
2269                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2270                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
2271                         if (uq2 != NULL) {
2272                                 if (pri > UPRI(uq2->uq_thread))
2273                                         pri = UPRI(uq2->uq_thread);
2274                         }
2275                 }
2276                 if (pri > uq->uq_inherited_pri)
2277                         pri = uq->uq_inherited_pri;
2278                 thread_lock(td);
2279                 sched_lend_user_prio(td, pri);
2280                 thread_unlock(td);
2281                 mtx_unlock(&umtx_lock);
2282         }
2283
2284 out:
2285         umtxq_unbusy_unlocked(&uq->uq_key);
2286         umtx_key_release(&uq->uq_key);
2287         return (error);
2288 }
2289
2290 /*
2291  * Unlock a PP mutex.
2292  */
2293 static int
2294 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2295 {
2296         struct umtx_key key;
2297         struct umtx_q *uq, *uq2;
2298         struct umtx_pi *pi;
2299         uint32_t id, owner, rceiling;
2300         int error, pri, new_inherited_pri, su;
2301
2302         id = td->td_tid;
2303         uq = td->td_umtxq;
2304         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2305
2306         /*
2307          * Make sure we own this mtx.
2308          */
2309         error = fueword32(&m->m_owner, &owner);
2310         if (error == -1)
2311                 return (EFAULT);
2312
2313         if ((owner & ~UMUTEX_CONTESTED) != id)
2314                 return (EPERM);
2315
2316         error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2317         if (error != 0)
2318                 return (error);
2319
2320         if (rceiling == -1)
2321                 new_inherited_pri = PRI_MAX;
2322         else {
2323                 rceiling = RTP_PRIO_MAX - rceiling;
2324                 if (rceiling > RTP_PRIO_MAX)
2325                         return (EINVAL);
2326                 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2327         }
2328
2329         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2330             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2331             &key)) != 0)
2332                 return (error);
2333         umtxq_lock(&key);
2334         umtxq_busy(&key);
2335         umtxq_unlock(&key);
2336         /*
2337          * For priority protected mutex, always set unlocked state
2338          * to UMUTEX_CONTESTED, so that userland always enters kernel
2339          * to lock the mutex, it is necessary because thread priority
2340          * has to be adjusted for such mutex.
2341          */
2342         error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2343             UMUTEX_CONTESTED);
2344
2345         umtxq_lock(&key);
2346         if (error == 0)
2347                 umtxq_signal(&key, 1);
2348         umtxq_unbusy(&key);
2349         umtxq_unlock(&key);
2350
2351         if (error == -1)
2352                 error = EFAULT;
2353         else {
2354                 mtx_lock(&umtx_lock);
2355                 if (su != 0)
2356                         uq->uq_inherited_pri = new_inherited_pri;
2357                 pri = PRI_MAX;
2358                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2359                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
2360                         if (uq2 != NULL) {
2361                                 if (pri > UPRI(uq2->uq_thread))
2362                                         pri = UPRI(uq2->uq_thread);
2363                         }
2364                 }
2365                 if (pri > uq->uq_inherited_pri)
2366                         pri = uq->uq_inherited_pri;
2367                 thread_lock(td);
2368                 sched_lend_user_prio(td, pri);
2369                 thread_unlock(td);
2370                 mtx_unlock(&umtx_lock);
2371         }
2372         umtx_key_release(&key);
2373         return (error);
2374 }
2375
2376 static int
2377 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2378     uint32_t *old_ceiling)
2379 {
2380         struct umtx_q *uq;
2381         uint32_t flags, id, owner, save_ceiling;
2382         int error, rv, rv1;
2383
2384         error = fueword32(&m->m_flags, &flags);
2385         if (error == -1)
2386                 return (EFAULT);
2387         if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2388                 return (EINVAL);
2389         if (ceiling > RTP_PRIO_MAX)
2390                 return (EINVAL);
2391         id = td->td_tid;
2392         uq = td->td_umtxq;
2393         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2394             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2395             &uq->uq_key)) != 0)
2396                 return (error);
2397         for (;;) {
2398                 umtxq_lock(&uq->uq_key);
2399                 umtxq_busy(&uq->uq_key);
2400                 umtxq_unlock(&uq->uq_key);
2401
2402                 rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2403                 if (rv == -1) {
2404                         error = EFAULT;
2405                         break;
2406                 }
2407
2408                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2409                     id | UMUTEX_CONTESTED);
2410                 if (rv == -1) {
2411                         error = EFAULT;
2412                         break;
2413                 }
2414
2415                 if (rv == 0) {
2416                         MPASS(owner == UMUTEX_CONTESTED);
2417                         rv = suword32(&m->m_ceilings[0], ceiling);
2418                         rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2419                         error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2420                         break;
2421                 }
2422
2423                 if ((owner & ~UMUTEX_CONTESTED) == id) {
2424                         rv = suword32(&m->m_ceilings[0], ceiling);
2425                         error = rv == 0 ? 0 : EFAULT;
2426                         break;
2427                 }
2428
2429                 if (owner == UMUTEX_RB_OWNERDEAD) {
2430                         error = EOWNERDEAD;
2431                         break;
2432                 } else if (owner == UMUTEX_RB_NOTRECOV) {
2433                         error = ENOTRECOVERABLE;
2434                         break;
2435                 }
2436
2437                 /*
2438                  * If we caught a signal, we have retried and now
2439                  * exit immediately.
2440                  */
2441                 if (error != 0)
2442                         break;
2443
2444                 /*
2445                  * We set the contested bit, sleep. Otherwise the lock changed
2446                  * and we need to retry or we lost a race to the thread
2447                  * unlocking the umtx.
2448                  */
2449                 umtxq_lock(&uq->uq_key);
2450                 umtxq_insert(uq);
2451                 umtxq_unbusy(&uq->uq_key);
2452                 error = umtxq_sleep(uq, "umtxpp", NULL);
2453                 umtxq_remove(uq);
2454                 umtxq_unlock(&uq->uq_key);
2455         }
2456         umtxq_lock(&uq->uq_key);
2457         if (error == 0)
2458                 umtxq_signal(&uq->uq_key, INT_MAX);
2459         umtxq_unbusy(&uq->uq_key);
2460         umtxq_unlock(&uq->uq_key);
2461         umtx_key_release(&uq->uq_key);
2462         if (error == 0 && old_ceiling != NULL) {
2463                 rv = suword32(old_ceiling, save_ceiling);
2464                 error = rv == 0 ? 0 : EFAULT;
2465         }
2466         return (error);
2467 }
2468
2469 /*
2470  * Lock a userland POSIX mutex.
2471  */
2472 static int
2473 do_lock_umutex(struct thread *td, struct umutex *m,
2474     struct _umtx_time *timeout, int mode)
2475 {
2476         uint32_t flags;
2477         int error;
2478
2479         error = fueword32(&m->m_flags, &flags);
2480         if (error == -1)
2481                 return (EFAULT);
2482
2483         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2484         case 0:
2485                 error = do_lock_normal(td, m, flags, timeout, mode);
2486                 break;
2487         case UMUTEX_PRIO_INHERIT:
2488                 error = do_lock_pi(td, m, flags, timeout, mode);
2489                 break;
2490         case UMUTEX_PRIO_PROTECT:
2491                 error = do_lock_pp(td, m, flags, timeout, mode);
2492                 break;
2493         default:
2494                 return (EINVAL);
2495         }
2496         if (timeout == NULL) {
2497                 if (error == EINTR && mode != _UMUTEX_WAIT)
2498                         error = ERESTART;
2499         } else {
2500                 /* Timed-locking is not restarted. */
2501                 if (error == ERESTART)
2502                         error = EINTR;
2503         }
2504         return (error);
2505 }
2506
2507 /*
2508  * Unlock a userland POSIX mutex.
2509  */
2510 static int
2511 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2512 {
2513         uint32_t flags;
2514         int error;
2515
2516         error = fueword32(&m->m_flags, &flags);
2517         if (error == -1)
2518                 return (EFAULT);
2519
2520         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2521         case 0:
2522                 return (do_unlock_normal(td, m, flags, rb));
2523         case UMUTEX_PRIO_INHERIT:
2524                 return (do_unlock_pi(td, m, flags, rb));
2525         case UMUTEX_PRIO_PROTECT:
2526                 return (do_unlock_pp(td, m, flags, rb));
2527         }
2528
2529         return (EINVAL);
2530 }
2531
2532 static int
2533 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2534     struct timespec *timeout, u_long wflags)
2535 {
2536         struct abs_timeout timo;
2537         struct umtx_q *uq;
2538         uint32_t flags, clockid, hasw;
2539         int error;
2540
2541         uq = td->td_umtxq;
2542         error = fueword32(&cv->c_flags, &flags);
2543         if (error == -1)
2544                 return (EFAULT);
2545         error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2546         if (error != 0)
2547                 return (error);
2548
2549         if ((wflags & CVWAIT_CLOCKID) != 0) {
2550                 error = fueword32(&cv->c_clockid, &clockid);
2551                 if (error == -1) {
2552                         umtx_key_release(&uq->uq_key);
2553                         return (EFAULT);
2554                 }
2555                 if (clockid < CLOCK_REALTIME ||
2556                     clockid >= CLOCK_THREAD_CPUTIME_ID) {
2557                         /* hmm, only HW clock id will work. */
2558                         umtx_key_release(&uq->uq_key);
2559                         return (EINVAL);
2560                 }
2561         } else {
2562                 clockid = CLOCK_REALTIME;
2563         }
2564
2565         umtxq_lock(&uq->uq_key);
2566         umtxq_busy(&uq->uq_key);
2567         umtxq_insert(uq);
2568         umtxq_unlock(&uq->uq_key);
2569
2570         /*
2571          * Set c_has_waiters to 1 before releasing user mutex, also
2572          * don't modify cache line when unnecessary.
2573          */
2574         error = fueword32(&cv->c_has_waiters, &hasw);
2575         if (error == 0 && hasw == 0)
2576                 suword32(&cv->c_has_waiters, 1);
2577
2578         umtxq_unbusy_unlocked(&uq->uq_key);
2579
2580         error = do_unlock_umutex(td, m, false);
2581
2582         if (timeout != NULL)
2583                 abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
2584                     timeout);
2585
2586         umtxq_lock(&uq->uq_key);
2587         if (error == 0) {
2588                 error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2589                     NULL : &timo);
2590         }
2591
2592         if ((uq->uq_flags & UQF_UMTXQ) == 0)
2593                 error = 0;
2594         else {
2595                 /*
2596                  * This must be timeout,interrupted by signal or
2597                  * surprious wakeup, clear c_has_waiter flag when
2598                  * necessary.
2599                  */
2600                 umtxq_busy(&uq->uq_key);
2601                 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2602                         int oldlen = uq->uq_cur_queue->length;
2603                         umtxq_remove(uq);
2604                         if (oldlen == 1) {
2605                                 umtxq_unlock(&uq->uq_key);
2606                                 suword32(&cv->c_has_waiters, 0);
2607                                 umtxq_lock(&uq->uq_key);
2608                         }
2609                 }
2610                 umtxq_unbusy(&uq->uq_key);
2611                 if (error == ERESTART)
2612                         error = EINTR;
2613         }
2614
2615         umtxq_unlock(&uq->uq_key);
2616         umtx_key_release(&uq->uq_key);
2617         return (error);
2618 }
2619
2620 /*
2621  * Signal a userland condition variable.
2622  */
2623 static int
2624 do_cv_signal(struct thread *td, struct ucond *cv)
2625 {
2626         struct umtx_key key;
2627         int error, cnt, nwake;
2628         uint32_t flags;
2629
2630         error = fueword32(&cv->c_flags, &flags);
2631         if (error == -1)
2632                 return (EFAULT);
2633         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2634                 return (error);
2635         umtxq_lock(&key);
2636         umtxq_busy(&key);
2637         cnt = umtxq_count(&key);
2638         nwake = umtxq_signal(&key, 1);
2639         if (cnt <= nwake) {
2640                 umtxq_unlock(&key);
2641                 error = suword32(&cv->c_has_waiters, 0);
2642                 if (error == -1)
2643                         error = EFAULT;
2644                 umtxq_lock(&key);
2645         }
2646         umtxq_unbusy(&key);
2647         umtxq_unlock(&key);
2648         umtx_key_release(&key);
2649         return (error);
2650 }
2651
2652 static int
2653 do_cv_broadcast(struct thread *td, struct ucond *cv)
2654 {
2655         struct umtx_key key;
2656         int error;
2657         uint32_t flags;
2658
2659         error = fueword32(&cv->c_flags, &flags);
2660         if (error == -1)
2661                 return (EFAULT);
2662         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2663                 return (error);
2664
2665         umtxq_lock(&key);
2666         umtxq_busy(&key);
2667         umtxq_signal(&key, INT_MAX);
2668         umtxq_unlock(&key);
2669
2670         error = suword32(&cv->c_has_waiters, 0);
2671         if (error == -1)
2672                 error = EFAULT;
2673
2674         umtxq_unbusy_unlocked(&key);
2675
2676         umtx_key_release(&key);
2677         return (error);
2678 }
2679
2680 static int
2681 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
2682     struct _umtx_time *timeout)
2683 {
2684         struct abs_timeout timo;
2685         struct umtx_q *uq;
2686         uint32_t flags, wrflags;
2687         int32_t state, oldstate;
2688         int32_t blocked_readers;
2689         int error, error1, rv;
2690
2691         uq = td->td_umtxq;
2692         error = fueword32(&rwlock->rw_flags, &flags);
2693         if (error == -1)
2694                 return (EFAULT);
2695         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2696         if (error != 0)
2697                 return (error);
2698
2699         if (timeout != NULL)
2700                 abs_timeout_init2(&timo, timeout);
2701
2702         wrflags = URWLOCK_WRITE_OWNER;
2703         if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
2704                 wrflags |= URWLOCK_WRITE_WAITERS;
2705
2706         for (;;) {
2707                 rv = fueword32(&rwlock->rw_state, &state);
2708                 if (rv == -1) {
2709                         umtx_key_release(&uq->uq_key);
2710                         return (EFAULT);
2711                 }
2712
2713                 /* try to lock it */
2714                 while (!(state & wrflags)) {
2715                         if (__predict_false(URWLOCK_READER_COUNT(state) ==
2716                             URWLOCK_MAX_READERS)) {
2717                                 umtx_key_release(&uq->uq_key);
2718                                 return (EAGAIN);
2719                         }
2720                         rv = casueword32(&rwlock->rw_state, state,
2721                             &oldstate, state + 1);
2722                         if (rv == -1) {
2723                                 umtx_key_release(&uq->uq_key);
2724                                 return (EFAULT);
2725                         }
2726                         if (rv == 0) {
2727                                 MPASS(oldstate == state);
2728                                 umtx_key_release(&uq->uq_key);
2729                                 return (0);
2730                         }
2731                         error = thread_check_susp(td, true);
2732                         if (error != 0)
2733                                 break;
2734                         state = oldstate;
2735                 }
2736
2737                 if (error)
2738                         break;
2739
2740                 /* grab monitor lock */
2741                 umtxq_lock(&uq->uq_key);
2742                 umtxq_busy(&uq->uq_key);
2743                 umtxq_unlock(&uq->uq_key);
2744
2745                 /*
2746                  * re-read the state, in case it changed between the try-lock above
2747                  * and the check below
2748                  */
2749                 rv = fueword32(&rwlock->rw_state, &state);
2750                 if (rv == -1)
2751                         error = EFAULT;
2752
2753                 /* set read contention bit */
2754                 while (error == 0 && (state & wrflags) &&
2755                     !(state & URWLOCK_READ_WAITERS)) {
2756                         rv = casueword32(&rwlock->rw_state, state,
2757                             &oldstate, state | URWLOCK_READ_WAITERS);
2758                         if (rv == -1) {
2759                                 error = EFAULT;
2760                                 break;
2761                         }
2762                         if (rv == 0) {
2763                                 MPASS(oldstate == state);
2764                                 goto sleep;
2765                         }
2766                         state = oldstate;
2767                         error = thread_check_susp(td, false);
2768                         if (error != 0)
2769                                 break;
2770                 }
2771                 if (error != 0) {
2772                         umtxq_unbusy_unlocked(&uq->uq_key);
2773                         break;
2774                 }
2775
2776                 /* state is changed while setting flags, restart */
2777                 if (!(state & wrflags)) {
2778                         umtxq_unbusy_unlocked(&uq->uq_key);
2779                         error = thread_check_susp(td, true);
2780                         if (error != 0)
2781                                 break;
2782                         continue;
2783                 }
2784
2785 sleep:
2786                 /*
2787                  * Contention bit is set, before sleeping, increase
2788                  * read waiter count.
2789                  */
2790                 rv = fueword32(&rwlock->rw_blocked_readers,
2791                     &blocked_readers);
2792                 if (rv == -1) {
2793                         umtxq_unbusy_unlocked(&uq->uq_key);
2794                         error = EFAULT;
2795                         break;
2796                 }
2797                 suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
2798
2799                 while (state & wrflags) {
2800                         umtxq_lock(&uq->uq_key);
2801                         umtxq_insert(uq);
2802                         umtxq_unbusy(&uq->uq_key);
2803
2804                         error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
2805                             NULL : &timo);
2806
2807                         umtxq_busy(&uq->uq_key);
2808                         umtxq_remove(uq);
2809                         umtxq_unlock(&uq->uq_key);
2810                         if (error)
2811                                 break;
2812                         rv = fueword32(&rwlock->rw_state, &state);
2813                         if (rv == -1) {
2814                                 error = EFAULT;
2815                                 break;
2816                         }
2817                 }
2818
2819                 /* decrease read waiter count, and may clear read contention bit */
2820                 rv = fueword32(&rwlock->rw_blocked_readers,
2821                     &blocked_readers);
2822                 if (rv == -1) {
2823                         umtxq_unbusy_unlocked(&uq->uq_key);
2824                         error = EFAULT;
2825                         break;
2826                 }
2827                 suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
2828                 if (blocked_readers == 1) {
2829                         rv = fueword32(&rwlock->rw_state, &state);
2830                         if (rv == -1) {
2831                                 umtxq_unbusy_unlocked(&uq->uq_key);
2832                                 error = EFAULT;
2833                                 break;
2834                         }
2835                         for (;;) {
2836                                 rv = casueword32(&rwlock->rw_state, state,
2837                                     &oldstate, state & ~URWLOCK_READ_WAITERS);
2838                                 if (rv == -1) {
2839                                         error = EFAULT;
2840                                         break;
2841                                 }
2842                                 if (rv == 0) {
2843                                         MPASS(oldstate == state);
2844                                         break;
2845                                 }
2846                                 state = oldstate;
2847                                 error1 = thread_check_susp(td, false);
2848                                 if (error1 != 0) {
2849                                         if (error == 0)
2850                                                 error = error1;
2851                                         break;
2852                                 }
2853                         }
2854                 }
2855
2856                 umtxq_unbusy_unlocked(&uq->uq_key);
2857                 if (error != 0)
2858                         break;
2859         }
2860         umtx_key_release(&uq->uq_key);
2861         if (error == ERESTART)
2862                 error = EINTR;
2863         return (error);
2864 }
2865
2866 static int
2867 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
2868 {
2869         struct abs_timeout timo;
2870         struct umtx_q *uq;
2871         uint32_t flags;
2872         int32_t state, oldstate;
2873         int32_t blocked_writers;
2874         int32_t blocked_readers;
2875         int error, error1, rv;
2876
2877         uq = td->td_umtxq;
2878         error = fueword32(&rwlock->rw_flags, &flags);
2879         if (error == -1)
2880                 return (EFAULT);
2881         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2882         if (error != 0)
2883                 return (error);
2884
2885         if (timeout != NULL)
2886                 abs_timeout_init2(&timo, timeout);
2887
2888         blocked_readers = 0;
2889         for (;;) {
2890                 rv = fueword32(&rwlock->rw_state, &state);
2891                 if (rv == -1) {
2892                         umtx_key_release(&uq->uq_key);
2893                         return (EFAULT);
2894                 }
2895                 while ((state & URWLOCK_WRITE_OWNER) == 0 &&
2896                     URWLOCK_READER_COUNT(state) == 0) {
2897                         rv = casueword32(&rwlock->rw_state, state,
2898                             &oldstate, state | URWLOCK_WRITE_OWNER);
2899                         if (rv == -1) {
2900                                 umtx_key_release(&uq->uq_key);
2901                                 return (EFAULT);
2902                         }
2903                         if (rv == 0) {
2904                                 MPASS(oldstate == state);
2905                                 umtx_key_release(&uq->uq_key);
2906                                 return (0);
2907                         }
2908                         state = oldstate;
2909                         error = thread_check_susp(td, true);
2910                         if (error != 0)
2911                                 break;
2912                 }
2913
2914                 if (error) {
2915                         if ((state & (URWLOCK_WRITE_OWNER |
2916                             URWLOCK_WRITE_WAITERS)) == 0 &&
2917                             blocked_readers != 0) {
2918                                 umtxq_lock(&uq->uq_key);
2919                                 umtxq_busy(&uq->uq_key);
2920                                 umtxq_signal_queue(&uq->uq_key, INT_MAX,
2921                                     UMTX_SHARED_QUEUE);
2922                                 umtxq_unbusy(&uq->uq_key);
2923                                 umtxq_unlock(&uq->uq_key);
2924                         }
2925
2926                         break;
2927                 }
2928
2929                 /* grab monitor lock */
2930                 umtxq_lock(&uq->uq_key);
2931                 umtxq_busy(&uq->uq_key);
2932                 umtxq_unlock(&uq->uq_key);
2933
2934                 /*
2935                  * Re-read the state, in case it changed between the
2936                  * try-lock above and the check below.
2937                  */
2938                 rv = fueword32(&rwlock->rw_state, &state);
2939                 if (rv == -1)
2940                         error = EFAULT;
2941
2942                 while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
2943                     URWLOCK_READER_COUNT(state) != 0) &&
2944                     (state & URWLOCK_WRITE_WAITERS) == 0) {
2945                         rv = casueword32(&rwlock->rw_state, state,
2946                             &oldstate, state | URWLOCK_WRITE_WAITERS);
2947                         if (rv == -1) {
2948                                 error = EFAULT;
2949                                 break;
2950                         }
2951                         if (rv == 0) {
2952                                 MPASS(oldstate == state);
2953                                 goto sleep;
2954                         }
2955                         state = oldstate;
2956                         error = thread_check_susp(td, false);
2957                         if (error != 0)
2958                                 break;
2959                 }
2960                 if (error != 0) {
2961                         umtxq_unbusy_unlocked(&uq->uq_key);
2962                         break;
2963                 }
2964
2965                 if ((state & URWLOCK_WRITE_OWNER) == 0 &&
2966                     URWLOCK_READER_COUNT(state) == 0) {
2967                         umtxq_unbusy_unlocked(&uq->uq_key);
2968                         error = thread_check_susp(td, false);
2969                         if (error != 0)
2970                                 break;
2971                         continue;
2972                 }
2973 sleep:
2974                 rv = fueword32(&rwlock->rw_blocked_writers,
2975                     &blocked_writers);
2976                 if (rv == -1) {
2977                         umtxq_unbusy_unlocked(&uq->uq_key);
2978                         error = EFAULT;
2979                         break;
2980                 }
2981                 suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
2982
2983                 while ((state & URWLOCK_WRITE_OWNER) ||
2984                     URWLOCK_READER_COUNT(state) != 0) {
2985                         umtxq_lock(&uq->uq_key);
2986                         umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2987                         umtxq_unbusy(&uq->uq_key);
2988
2989                         error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
2990                             NULL : &timo);
2991
2992                         umtxq_busy(&uq->uq_key);
2993                         umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2994                         umtxq_unlock(&uq->uq_key);
2995                         if (error)
2996                                 break;
2997                         rv = fueword32(&rwlock->rw_state, &state);
2998                         if (rv == -1) {
2999                                 error = EFAULT;
3000                                 break;
3001                         }
3002                 }
3003
3004                 rv = fueword32(&rwlock->rw_blocked_writers,
3005                     &blocked_writers);
3006                 if (rv == -1) {
3007                         umtxq_unbusy_unlocked(&uq->uq_key);
3008                         error = EFAULT;
3009                         break;
3010                 }
3011                 suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
3012                 if (blocked_writers == 1) {
3013                         rv = fueword32(&rwlock->rw_state, &state);
3014                         if (rv == -1) {
3015                                 umtxq_unbusy_unlocked(&uq->uq_key);
3016                                 error = EFAULT;
3017                                 break;
3018                         }
3019                         for (;;) {
3020                                 rv = casueword32(&rwlock->rw_state, state,
3021                                     &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3022                                 if (rv == -1) {
3023                                         error = EFAULT;
3024                                         break;
3025                                 }
3026                                 if (rv == 0) {
3027                                         MPASS(oldstate == state);
3028                                         break;
3029                                 }
3030                                 state = oldstate;
3031                                 error1 = thread_check_susp(td, false);
3032                                 /*
3033                                  * We are leaving the URWLOCK_WRITE_WAITERS
3034                                  * behind, but this should not harm the
3035                                  * correctness.
3036                                  */
3037                                 if (error1 != 0) {
3038                                         if (error == 0)
3039                                                 error = error1;
3040                                         break;
3041                                 }
3042                         }
3043                         rv = fueword32(&rwlock->rw_blocked_readers,
3044                             &blocked_readers);
3045                         if (rv == -1) {
3046                                 umtxq_unbusy_unlocked(&uq->uq_key);
3047                                 error = EFAULT;
3048                                 break;
3049                         }
3050                 } else
3051                         blocked_readers = 0;
3052
3053                 umtxq_unbusy_unlocked(&uq->uq_key);
3054         }
3055
3056         umtx_key_release(&uq->uq_key);
3057         if (error == ERESTART)
3058                 error = EINTR;
3059         return (error);
3060 }
3061
3062 static int
3063 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3064 {
3065         struct umtx_q *uq;
3066         uint32_t flags;
3067         int32_t state, oldstate;
3068         int error, rv, q, count;
3069
3070         uq = td->td_umtxq;
3071         error = fueword32(&rwlock->rw_flags, &flags);
3072         if (error == -1)
3073                 return (EFAULT);
3074         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3075         if (error != 0)
3076                 return (error);
3077
3078         error = fueword32(&rwlock->rw_state, &state);
3079         if (error == -1) {
3080                 error = EFAULT;
3081                 goto out;
3082         }
3083         if (state & URWLOCK_WRITE_OWNER) {
3084                 for (;;) {
3085                         rv = casueword32(&rwlock->rw_state, state,
3086                             &oldstate, state & ~URWLOCK_WRITE_OWNER);
3087                         if (rv == -1) {
3088                                 error = EFAULT;
3089                                 goto out;
3090                         }
3091                         if (rv == 1) {
3092                                 state = oldstate;
3093                                 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3094                                         error = EPERM;
3095                                         goto out;
3096                                 }
3097                                 error = thread_check_susp(td, true);
3098                                 if (error != 0)
3099                                         goto out;
3100                         } else
3101                                 break;
3102                 }
3103         } else if (URWLOCK_READER_COUNT(state) != 0) {
3104                 for (;;) {
3105                         rv = casueword32(&rwlock->rw_state, state,
3106                             &oldstate, state - 1);
3107                         if (rv == -1) {
3108                                 error = EFAULT;
3109                                 goto out;
3110                         }
3111                         if (rv == 1) {
3112                                 state = oldstate;
3113                                 if (URWLOCK_READER_COUNT(oldstate) == 0) {
3114                                         error = EPERM;
3115                                         goto out;
3116                                 }
3117                                 error = thread_check_susp(td, true);
3118                                 if (error != 0)
3119                                         goto out;
3120                         } else
3121                                 break;
3122                 }
3123         } else {
3124                 error = EPERM;
3125                 goto out;
3126         }
3127
3128         count = 0;
3129
3130         if (!(flags & URWLOCK_PREFER_READER)) {
3131                 if (state & URWLOCK_WRITE_WAITERS) {
3132                         count = 1;
3133                         q = UMTX_EXCLUSIVE_QUEUE;
3134                 } else if (state & URWLOCK_READ_WAITERS) {
3135                         count = INT_MAX;
3136                         q = UMTX_SHARED_QUEUE;
3137                 }
3138         } else {
3139                 if (state & URWLOCK_READ_WAITERS) {
3140                         count = INT_MAX;
3141                         q = UMTX_SHARED_QUEUE;
3142                 } else if (state & URWLOCK_WRITE_WAITERS) {
3143                         count = 1;
3144                         q = UMTX_EXCLUSIVE_QUEUE;
3145                 }
3146         }
3147
3148         if (count) {
3149                 umtxq_lock(&uq->uq_key);
3150                 umtxq_busy(&uq->uq_key);
3151                 umtxq_signal_queue(&uq->uq_key, count, q);
3152                 umtxq_unbusy(&uq->uq_key);
3153                 umtxq_unlock(&uq->uq_key);
3154         }
3155 out:
3156         umtx_key_release(&uq->uq_key);
3157         return (error);
3158 }
3159
3160 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3161 static int
3162 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3163 {
3164         struct abs_timeout timo;
3165         struct umtx_q *uq;
3166         uint32_t flags, count, count1;
3167         int error, rv, rv1;
3168
3169         uq = td->td_umtxq;
3170         error = fueword32(&sem->_flags, &flags);
3171         if (error == -1)
3172                 return (EFAULT);
3173         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3174         if (error != 0)
3175                 return (error);
3176
3177         if (timeout != NULL)
3178                 abs_timeout_init2(&timo, timeout);
3179
3180 again:
3181         umtxq_lock(&uq->uq_key);
3182         umtxq_busy(&uq->uq_key);
3183         umtxq_insert(uq);
3184         umtxq_unlock(&uq->uq_key);
3185         rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3186         if (rv == 0)
3187                 rv1 = fueword32(&sem->_count, &count);
3188         if (rv == -1 || (rv == 0 && (rv1 == -1 || count != 0)) ||
3189             (rv == 1 && count1 == 0)) {
3190                 umtxq_lock(&uq->uq_key);
3191                 umtxq_unbusy(&uq->uq_key);
3192                 umtxq_remove(uq);
3193                 umtxq_unlock(&uq->uq_key);
3194                 if (rv == 1) {
3195                         rv = thread_check_susp(td, true);
3196                         if (rv == 0)
3197                                 goto again;
3198                         error = rv;
3199                         goto out;
3200                 }
3201                 if (rv == 0)
3202                         rv = rv1;
3203                 error = rv == -1 ? EFAULT : 0;
3204                 goto out;
3205         }
3206         umtxq_lock(&uq->uq_key);
3207         umtxq_unbusy(&uq->uq_key);
3208
3209         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3210
3211         if ((uq->uq_flags & UQF_UMTXQ) == 0)
3212                 error = 0;
3213         else {
3214                 umtxq_remove(uq);
3215                 /* A relative timeout cannot be restarted. */
3216                 if (error == ERESTART && timeout != NULL &&
3217                     (timeout->_flags & UMTX_ABSTIME) == 0)
3218                         error = EINTR;
3219         }
3220         umtxq_unlock(&uq->uq_key);
3221 out:
3222         umtx_key_release(&uq->uq_key);
3223         return (error);
3224 }
3225
3226 /*
3227  * Signal a userland semaphore.
3228  */
3229 static int
3230 do_sem_wake(struct thread *td, struct _usem *sem)
3231 {
3232         struct umtx_key key;
3233         int error, cnt;
3234         uint32_t flags;
3235
3236         error = fueword32(&sem->_flags, &flags);
3237         if (error == -1)
3238                 return (EFAULT);
3239         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3240                 return (error);
3241         umtxq_lock(&key);
3242         umtxq_busy(&key);
3243         cnt = umtxq_count(&key);
3244         if (cnt > 0) {
3245                 /*
3246                  * Check if count is greater than 0, this means the memory is
3247                  * still being referenced by user code, so we can safely
3248                  * update _has_waiters flag.
3249                  */
3250                 if (cnt == 1) {
3251                         umtxq_unlock(&key);
3252                         error = suword32(&sem->_has_waiters, 0);
3253                         umtxq_lock(&key);
3254                         if (error == -1)
3255                                 error = EFAULT;
3256                 }
3257                 umtxq_signal(&key, 1);
3258         }
3259         umtxq_unbusy(&key);
3260         umtxq_unlock(&key);
3261         umtx_key_release(&key);
3262         return (error);
3263 }
3264 #endif
3265
3266 static int
3267 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3268 {
3269         struct abs_timeout timo;
3270         struct umtx_q *uq;
3271         uint32_t count, flags;
3272         int error, rv;
3273
3274         uq = td->td_umtxq;
3275         flags = fuword32(&sem->_flags);
3276         if (timeout != NULL)
3277                 abs_timeout_init2(&timo, timeout);
3278
3279 again:
3280         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3281         if (error != 0)
3282                 return (error);
3283         umtxq_lock(&uq->uq_key);
3284         umtxq_busy(&uq->uq_key);
3285         umtxq_insert(uq);
3286         umtxq_unlock(&uq->uq_key);
3287         rv = fueword32(&sem->_count, &count);
3288         if (rv == -1) {
3289                 umtxq_lock(&uq->uq_key);
3290                 umtxq_unbusy(&uq->uq_key);
3291                 umtxq_remove(uq);
3292                 umtxq_unlock(&uq->uq_key);
3293                 umtx_key_release(&uq->uq_key);
3294                 return (EFAULT);
3295         }
3296         for (;;) {
3297                 if (USEM_COUNT(count) != 0) {
3298                         umtxq_lock(&uq->uq_key);
3299                         umtxq_unbusy(&uq->uq_key);
3300                         umtxq_remove(uq);
3301                         umtxq_unlock(&uq->uq_key);
3302                         umtx_key_release(&uq->uq_key);
3303                         return (0);
3304                 }
3305                 if (count == USEM_HAS_WAITERS)
3306                         break;
3307                 rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3308                 if (rv == 0)
3309                         break;
3310                 umtxq_lock(&uq->uq_key);
3311                 umtxq_unbusy(&uq->uq_key);
3312                 umtxq_remove(uq);
3313                 umtxq_unlock(&uq->uq_key);
3314                 umtx_key_release(&uq->uq_key);
3315                 if (rv == -1)
3316                         return (EFAULT);
3317                 rv = thread_check_susp(td, true);
3318                 if (rv != 0)
3319                         return (rv);
3320                 goto again;
3321         }
3322         umtxq_lock(&uq->uq_key);
3323         umtxq_unbusy(&uq->uq_key);
3324
3325         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3326
3327         if ((uq->uq_flags & UQF_UMTXQ) == 0)
3328                 error = 0;
3329         else {
3330                 umtxq_remove(uq);
3331                 if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3332                         /* A relative timeout cannot be restarted. */
3333                         if (error == ERESTART)
3334                                 error = EINTR;
3335                         if (error == EINTR) {
3336                                 abs_timeout_update(&timo);
3337                                 timespecsub(&timo.end, &timo.cur,
3338                                     &timeout->_timeout);
3339                         }
3340                 }
3341         }
3342         umtxq_unlock(&uq->uq_key);
3343         umtx_key_release(&uq->uq_key);
3344         return (error);
3345 }
3346
3347 /*
3348  * Signal a userland semaphore.
3349  */
3350 static int
3351 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3352 {
3353         struct umtx_key key;
3354         int error, cnt, rv;
3355         uint32_t count, flags;
3356
3357         rv = fueword32(&sem->_flags, &flags);
3358         if (rv == -1)
3359                 return (EFAULT);
3360         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3361                 return (error);
3362         umtxq_lock(&key);
3363         umtxq_busy(&key);
3364         cnt = umtxq_count(&key);
3365         if (cnt > 0) {
3366                 /*
3367                  * If this was the last sleeping thread, clear the waiters
3368                  * flag in _count.
3369                  */
3370                 if (cnt == 1) {
3371                         umtxq_unlock(&key);
3372                         rv = fueword32(&sem->_count, &count);
3373                         while (rv != -1 && count & USEM_HAS_WAITERS) {
3374                                 rv = casueword32(&sem->_count, count, &count,
3375                                     count & ~USEM_HAS_WAITERS);
3376                                 if (rv == 1) {
3377                                         rv = thread_check_susp(td, true);
3378                                         if (rv != 0)
3379                                                 break;
3380                                 }
3381                         }
3382                         if (rv == -1)
3383                                 error = EFAULT;
3384                         else if (rv > 0) {
3385                                 error = rv;
3386                         }
3387                         umtxq_lock(&key);
3388                 }
3389
3390                 umtxq_signal(&key, 1);
3391         }
3392         umtxq_unbusy(&key);
3393         umtxq_unlock(&key);
3394         umtx_key_release(&key);
3395         return (error);
3396 }
3397
3398 inline int
3399 umtx_copyin_timeout(const void *addr, struct timespec *tsp)
3400 {
3401         int error;
3402
3403         error = copyin(addr, tsp, sizeof(struct timespec));
3404         if (error == 0) {
3405                 if (tsp->tv_sec < 0 ||
3406                     tsp->tv_nsec >= 1000000000 ||
3407                     tsp->tv_nsec < 0)
3408                         error = EINVAL;
3409         }
3410         return (error);
3411 }
3412
3413 static inline int
3414 umtx_copyin_umtx_time(const void *addr, size_t size, struct _umtx_time *tp)
3415 {
3416         int error;
3417
3418         if (size <= sizeof(struct timespec)) {
3419                 tp->_clockid = CLOCK_REALTIME;
3420                 tp->_flags = 0;
3421                 error = copyin(addr, &tp->_timeout, sizeof(struct timespec));
3422         } else
3423                 error = copyin(addr, tp, sizeof(struct _umtx_time));
3424         if (error != 0)
3425                 return (error);
3426         if (tp->_timeout.tv_sec < 0 ||
3427             tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
3428                 return (EINVAL);
3429         return (0);
3430 }
3431
3432 static int
3433 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap)
3434 {
3435
3436         return (EOPNOTSUPP);
3437 }
3438
3439 static int
3440 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
3441 {
3442         struct _umtx_time timeout, *tm_p;
3443         int error;
3444
3445         if (uap->uaddr2 == NULL)
3446                 tm_p = NULL;
3447         else {
3448                 error = umtx_copyin_umtx_time(
3449                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3450                 if (error != 0)
3451                         return (error);
3452                 tm_p = &timeout;
3453         }
3454         return (do_wait(td, uap->obj, uap->val, tm_p, 0, 0));
3455 }
3456
3457 static int
3458 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
3459 {
3460         struct _umtx_time timeout, *tm_p;
3461         int error;
3462
3463         if (uap->uaddr2 == NULL)
3464                 tm_p = NULL;
3465         else {
3466                 error = umtx_copyin_umtx_time(
3467                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3468                 if (error != 0)
3469                         return (error);
3470                 tm_p = &timeout;
3471         }
3472         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3473 }
3474
3475 static int
3476 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
3477 {
3478         struct _umtx_time *tm_p, timeout;
3479         int error;
3480
3481         if (uap->uaddr2 == NULL)
3482                 tm_p = NULL;
3483         else {
3484                 error = umtx_copyin_umtx_time(
3485                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3486                 if (error != 0)
3487                         return (error);
3488                 tm_p = &timeout;
3489         }
3490         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3491 }
3492
3493 static int
3494 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
3495 {
3496
3497         return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3498 }
3499
3500 #define BATCH_SIZE      128
3501 static int
3502 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap)
3503 {
3504         char *uaddrs[BATCH_SIZE], **upp;
3505         int count, error, i, pos, tocopy;
3506
3507         upp = (char **)uap->obj;
3508         error = 0;
3509         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3510             pos += tocopy) {
3511                 tocopy = MIN(count, BATCH_SIZE);
3512                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3513                 if (error != 0)
3514                         break;
3515                 for (i = 0; i < tocopy; ++i)
3516                         kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3517                 maybe_yield();
3518         }
3519         return (error);
3520 }
3521
3522 static int
3523 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
3524 {
3525
3526         return (kern_umtx_wake(td, uap->obj, uap->val, 1));
3527 }
3528
3529 static int
3530 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
3531 {
3532         struct _umtx_time *tm_p, timeout;
3533         int error;
3534
3535         /* Allow a null timespec (wait forever). */
3536         if (uap->uaddr2 == NULL)
3537                 tm_p = NULL;
3538         else {
3539                 error = umtx_copyin_umtx_time(
3540                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3541                 if (error != 0)
3542                         return (error);
3543                 tm_p = &timeout;
3544         }
3545         return (do_lock_umutex(td, uap->obj, tm_p, 0));
3546 }
3547
3548 static int
3549 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
3550 {
3551
3552         return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
3553 }
3554
3555 static int
3556 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
3557 {
3558         struct _umtx_time *tm_p, timeout;
3559         int error;
3560
3561         /* Allow a null timespec (wait forever). */
3562         if (uap->uaddr2 == NULL)
3563                 tm_p = NULL;
3564         else {
3565                 error = umtx_copyin_umtx_time(
3566                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3567                 if (error != 0)
3568                         return (error);
3569                 tm_p = &timeout;
3570         }
3571         return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
3572 }
3573
3574 static int
3575 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
3576 {
3577
3578         return (do_wake_umutex(td, uap->obj));
3579 }
3580
3581 static int
3582 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
3583 {
3584
3585         return (do_unlock_umutex(td, uap->obj, false));
3586 }
3587
3588 static int
3589 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
3590 {
3591
3592         return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
3593 }
3594
3595 static int
3596 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
3597 {
3598         struct timespec *ts, timeout;
3599         int error;
3600
3601         /* Allow a null timespec (wait forever). */
3602         if (uap->uaddr2 == NULL)
3603                 ts = NULL;
3604         else {
3605                 error = umtx_copyin_timeout(uap->uaddr2, &timeout);
3606                 if (error != 0)
3607                         return (error);
3608                 ts = &timeout;
3609         }
3610         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
3611 }
3612
3613 static int
3614 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
3615 {
3616
3617         return (do_cv_signal(td, uap->obj));
3618 }
3619
3620 static int
3621 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
3622 {
3623
3624         return (do_cv_broadcast(td, uap->obj));
3625 }
3626
3627 static int
3628 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
3629 {
3630         struct _umtx_time timeout;
3631         int error;
3632
3633         /* Allow a null timespec (wait forever). */
3634         if (uap->uaddr2 == NULL) {
3635                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
3636         } else {
3637                 error = umtx_copyin_umtx_time(uap->uaddr2,
3638                    (size_t)uap->uaddr1, &timeout);
3639                 if (error != 0)
3640                         return (error);
3641                 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
3642         }
3643         return (error);
3644 }
3645
3646 static int
3647 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
3648 {
3649         struct _umtx_time timeout;
3650         int error;
3651
3652         /* Allow a null timespec (wait forever). */
3653         if (uap->uaddr2 == NULL) {
3654                 error = do_rw_wrlock(td, uap->obj, 0);
3655         } else {
3656                 error = umtx_copyin_umtx_time(uap->uaddr2,
3657                    (size_t)uap->uaddr1, &timeout);
3658                 if (error != 0)
3659                         return (error);
3660
3661                 error = do_rw_wrlock(td, uap->obj, &timeout);
3662         }
3663         return (error);
3664 }
3665
3666 static int
3667 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
3668 {
3669
3670         return (do_rw_unlock(td, uap->obj));
3671 }
3672
3673 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3674 static int
3675 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
3676 {
3677         struct _umtx_time *tm_p, timeout;
3678         int error;
3679
3680         /* Allow a null timespec (wait forever). */
3681         if (uap->uaddr2 == NULL)
3682                 tm_p = NULL;
3683         else {
3684                 error = umtx_copyin_umtx_time(
3685                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3686                 if (error != 0)
3687                         return (error);
3688                 tm_p = &timeout;
3689         }
3690         return (do_sem_wait(td, uap->obj, tm_p));
3691 }
3692
3693 static int
3694 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
3695 {
3696
3697         return (do_sem_wake(td, uap->obj));
3698 }
3699 #endif
3700
3701 static int
3702 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap)
3703 {
3704
3705         return (do_wake2_umutex(td, uap->obj, uap->val));
3706 }
3707
3708 static int
3709 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap)
3710 {
3711         struct _umtx_time *tm_p, timeout;
3712         size_t uasize;
3713         int error;
3714
3715         /* Allow a null timespec (wait forever). */
3716         if (uap->uaddr2 == NULL) {
3717                 uasize = 0;
3718                 tm_p = NULL;
3719         } else {
3720                 uasize = (size_t)uap->uaddr1;
3721                 error = umtx_copyin_umtx_time(uap->uaddr2, uasize, &timeout);
3722                 if (error != 0)
3723                         return (error);
3724                 tm_p = &timeout;
3725         }
3726         error = do_sem2_wait(td, uap->obj, tm_p);
3727         if (error == EINTR && uap->uaddr2 != NULL &&
3728             (timeout._flags & UMTX_ABSTIME) == 0 &&
3729             uasize >= sizeof(struct _umtx_time) + sizeof(struct timespec)) {
3730                 error = copyout(&timeout._timeout,
3731                     (struct _umtx_time *)uap->uaddr2 + 1,
3732                     sizeof(struct timespec));
3733                 if (error == 0) {
3734                         error = EINTR;
3735                 }
3736         }
3737
3738         return (error);
3739 }
3740
3741 static int
3742 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap)
3743 {
3744
3745         return (do_sem2_wake(td, uap->obj));
3746 }
3747
3748 #define USHM_OBJ_UMTX(o)                                                \
3749     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
3750
3751 #define USHMF_REG_LINKED        0x0001
3752 #define USHMF_OBJ_LINKED        0x0002
3753 struct umtx_shm_reg {
3754         TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
3755         LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
3756         struct umtx_key         ushm_key;
3757         struct ucred            *ushm_cred;
3758         struct shmfd            *ushm_obj;
3759         u_int                   ushm_refcnt;
3760         u_int                   ushm_flags;
3761 };
3762
3763 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
3764 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
3765
3766 static uma_zone_t umtx_shm_reg_zone;
3767 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
3768 static struct mtx umtx_shm_lock;
3769 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
3770     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
3771
3772 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
3773
3774 static void
3775 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
3776 {
3777         struct umtx_shm_reg_head d;
3778         struct umtx_shm_reg *reg, *reg1;
3779
3780         TAILQ_INIT(&d);
3781         mtx_lock(&umtx_shm_lock);
3782         TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
3783         mtx_unlock(&umtx_shm_lock);
3784         TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
3785                 TAILQ_REMOVE(&d, reg, ushm_reg_link);
3786                 umtx_shm_free_reg(reg);
3787         }
3788 }
3789
3790 static struct task umtx_shm_reg_delfree_task =
3791     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
3792
3793 static struct umtx_shm_reg *
3794 umtx_shm_find_reg_locked(const struct umtx_key *key)
3795 {
3796         struct umtx_shm_reg *reg;
3797         struct umtx_shm_reg_head *reg_head;
3798
3799         KASSERT(key->shared, ("umtx_p_find_rg: private key"));
3800         mtx_assert(&umtx_shm_lock, MA_OWNED);
3801         reg_head = &umtx_shm_registry[key->hash];
3802         TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
3803                 KASSERT(reg->ushm_key.shared,
3804                     ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
3805                 if (reg->ushm_key.info.shared.object ==
3806                     key->info.shared.object &&
3807                     reg->ushm_key.info.shared.offset ==
3808                     key->info.shared.offset) {
3809                         KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
3810                         KASSERT(reg->ushm_refcnt > 0,
3811                             ("reg %p refcnt 0 onlist", reg));
3812                         KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
3813                             ("reg %p not linked", reg));
3814                         reg->ushm_refcnt++;
3815                         return (reg);
3816                 }
3817         }
3818         return (NULL);
3819 }
3820
3821 static struct umtx_shm_reg *
3822 umtx_shm_find_reg(const struct umtx_key *key)
3823 {
3824         struct umtx_shm_reg *reg;
3825
3826         mtx_lock(&umtx_shm_lock);
3827         reg = umtx_shm_find_reg_locked(key);
3828         mtx_unlock(&umtx_shm_lock);
3829         return (reg);
3830 }
3831
3832 static void
3833 umtx_shm_free_reg(struct umtx_shm_reg *reg)
3834 {
3835
3836         chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
3837         crfree(reg->ushm_cred);
3838         shm_drop(reg->ushm_obj);
3839         uma_zfree(umtx_shm_reg_zone, reg);
3840 }
3841
3842 static bool
3843 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
3844 {
3845         bool res;
3846
3847         mtx_assert(&umtx_shm_lock, MA_OWNED);
3848         KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
3849         reg->ushm_refcnt--;
3850         res = reg->ushm_refcnt == 0;
3851         if (res || force) {
3852                 if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
3853                         TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
3854                             reg, ushm_reg_link);
3855                         reg->ushm_flags &= ~USHMF_REG_LINKED;
3856                 }
3857                 if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
3858                         LIST_REMOVE(reg, ushm_obj_link);
3859                         reg->ushm_flags &= ~USHMF_OBJ_LINKED;
3860                 }
3861         }
3862         return (res);
3863 }
3864
3865 static void
3866 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
3867 {
3868         vm_object_t object;
3869         bool dofree;
3870
3871         if (force) {
3872                 object = reg->ushm_obj->shm_object;
3873                 VM_OBJECT_WLOCK(object);
3874                 object->flags |= OBJ_UMTXDEAD;
3875                 VM_OBJECT_WUNLOCK(object);
3876         }
3877         mtx_lock(&umtx_shm_lock);
3878         dofree = umtx_shm_unref_reg_locked(reg, force);
3879         mtx_unlock(&umtx_shm_lock);
3880         if (dofree)
3881                 umtx_shm_free_reg(reg);
3882 }
3883
3884 void
3885 umtx_shm_object_init(vm_object_t object)
3886 {
3887
3888         LIST_INIT(USHM_OBJ_UMTX(object));
3889 }
3890
3891 void
3892 umtx_shm_object_terminated(vm_object_t object)
3893 {
3894         struct umtx_shm_reg *reg, *reg1;
3895         bool dofree;
3896
3897         dofree = false;
3898         mtx_lock(&umtx_shm_lock);
3899         LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
3900                 if (umtx_shm_unref_reg_locked(reg, true)) {
3901                         TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
3902                             ushm_reg_link);
3903                         dofree = true;
3904                 }
3905         }
3906         mtx_unlock(&umtx_shm_lock);
3907         if (dofree)
3908                 taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
3909 }
3910
3911 static int
3912 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
3913     struct umtx_shm_reg **res)
3914 {
3915         struct umtx_shm_reg *reg, *reg1;
3916         struct ucred *cred;
3917         int error;
3918
3919         reg = umtx_shm_find_reg(key);
3920         if (reg != NULL) {
3921                 *res = reg;
3922                 return (0);
3923         }
3924         cred = td->td_ucred;
3925         if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
3926                 return (ENOMEM);
3927         reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
3928         reg->ushm_refcnt = 1;
3929         bcopy(key, &reg->ushm_key, sizeof(*key));
3930         reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR);
3931         reg->ushm_cred = crhold(cred);
3932         error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
3933         if (error != 0) {
3934                 umtx_shm_free_reg(reg);
3935                 return (error);
3936         }
3937         mtx_lock(&umtx_shm_lock);
3938         reg1 = umtx_shm_find_reg_locked(key);
3939         if (reg1 != NULL) {
3940                 mtx_unlock(&umtx_shm_lock);
3941                 umtx_shm_free_reg(reg);
3942                 *res = reg1;
3943                 return (0);
3944         }
3945         reg->ushm_refcnt++;
3946         TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
3947         LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
3948             ushm_obj_link);
3949         reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
3950         mtx_unlock(&umtx_shm_lock);
3951         *res = reg;
3952         return (0);
3953 }
3954
3955 static int
3956 umtx_shm_alive(struct thread *td, void *addr)
3957 {
3958         vm_map_t map;
3959         vm_map_entry_t entry;
3960         vm_object_t object;
3961         vm_pindex_t pindex;
3962         vm_prot_t prot;
3963         int res, ret;
3964         boolean_t wired;
3965
3966         map = &td->td_proc->p_vmspace->vm_map;
3967         res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
3968             &object, &pindex, &prot, &wired);
3969         if (res != KERN_SUCCESS)
3970                 return (EFAULT);
3971         if (object == NULL)
3972                 ret = EINVAL;
3973         else
3974                 ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
3975         vm_map_lookup_done(map, entry);
3976         return (ret);
3977 }
3978
3979 static void
3980 umtx_shm_init(void)
3981 {
3982         int i;
3983
3984         umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
3985             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
3986         mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
3987         for (i = 0; i < nitems(umtx_shm_registry); i++)
3988                 TAILQ_INIT(&umtx_shm_registry[i]);
3989 }
3990
3991 static int
3992 umtx_shm(struct thread *td, void *addr, u_int flags)
3993 {
3994         struct umtx_key key;
3995         struct umtx_shm_reg *reg;
3996         struct file *fp;
3997         int error, fd;
3998
3999         if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4000             UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4001                 return (EINVAL);
4002         if ((flags & UMTX_SHM_ALIVE) != 0)
4003                 return (umtx_shm_alive(td, addr));
4004         error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4005         if (error != 0)
4006                 return (error);
4007         KASSERT(key.shared == 1, ("non-shared key"));
4008         if ((flags & UMTX_SHM_CREAT) != 0) {
4009                 error = umtx_shm_create_reg(td, &key, &reg);
4010         } else {
4011                 reg = umtx_shm_find_reg(&key);
4012                 if (reg == NULL)
4013                         error = ESRCH;
4014         }
4015         umtx_key_release(&key);
4016         if (error != 0)
4017                 return (error);
4018         KASSERT(reg != NULL, ("no reg"));
4019         if ((flags & UMTX_SHM_DESTROY) != 0) {
4020                 umtx_shm_unref_reg(reg, true);
4021         } else {
4022 #if 0
4023 #ifdef MAC
4024                 error = mac_posixshm_check_open(td->td_ucred,
4025                     reg->ushm_obj, FFLAGS(O_RDWR));
4026                 if (error == 0)
4027 #endif
4028                         error = shm_access(reg->ushm_obj, td->td_ucred,
4029                             FFLAGS(O_RDWR));
4030                 if (error == 0)
4031 #endif
4032                         error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4033                 if (error == 0) {
4034                         shm_hold(reg->ushm_obj);
4035                         finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4036                             &shm_ops);
4037                         td->td_retval[0] = fd;
4038                         fdrop(fp, td);
4039                 }
4040         }
4041         umtx_shm_unref_reg(reg, false);
4042         return (error);
4043 }
4044
4045 static int
4046 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap)
4047 {
4048
4049         return (umtx_shm(td, uap->uaddr1, uap->val));
4050 }
4051
4052 static int
4053 umtx_robust_lists(struct thread *td, struct umtx_robust_lists_params *rbp)
4054 {
4055
4056         td->td_rb_list = rbp->robust_list_offset;
4057         td->td_rbp_list = rbp->robust_priv_list_offset;
4058         td->td_rb_inact = rbp->robust_inact_offset;
4059         return (0);
4060 }
4061
4062 static int
4063 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap)
4064 {
4065         struct umtx_robust_lists_params rb;
4066         int error;
4067
4068         if (uap->val > sizeof(rb))
4069                 return (EINVAL);
4070         bzero(&rb, sizeof(rb));
4071         error = copyin(uap->uaddr1, &rb, uap->val);
4072         if (error != 0)
4073                 return (error);
4074         return (umtx_robust_lists(td, &rb));
4075 }
4076
4077 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
4078
4079 static const _umtx_op_func op_table[] = {
4080         [UMTX_OP_RESERVED0]     = __umtx_op_unimpl,
4081         [UMTX_OP_RESERVED1]     = __umtx_op_unimpl,
4082         [UMTX_OP_WAIT]          = __umtx_op_wait,
4083         [UMTX_OP_WAKE]          = __umtx_op_wake,
4084         [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
4085         [UMTX_OP_MUTEX_LOCK]    = __umtx_op_lock_umutex,
4086         [UMTX_OP_MUTEX_UNLOCK]  = __umtx_op_unlock_umutex,
4087         [UMTX_OP_SET_CEILING]   = __umtx_op_set_ceiling,
4088         [UMTX_OP_CV_WAIT]       = __umtx_op_cv_wait,
4089         [UMTX_OP_CV_SIGNAL]     = __umtx_op_cv_signal,
4090         [UMTX_OP_CV_BROADCAST]  = __umtx_op_cv_broadcast,
4091         [UMTX_OP_WAIT_UINT]     = __umtx_op_wait_uint,
4092         [UMTX_OP_RW_RDLOCK]     = __umtx_op_rw_rdlock,
4093         [UMTX_OP_RW_WRLOCK]     = __umtx_op_rw_wrlock,
4094         [UMTX_OP_RW_UNLOCK]     = __umtx_op_rw_unlock,
4095         [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4096         [UMTX_OP_WAKE_PRIVATE]  = __umtx_op_wake_private,
4097         [UMTX_OP_MUTEX_WAIT]    = __umtx_op_wait_umutex,
4098         [UMTX_OP_MUTEX_WAKE]    = __umtx_op_wake_umutex,
4099 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4100         [UMTX_OP_SEM_WAIT]      = __umtx_op_sem_wait,
4101         [UMTX_OP_SEM_WAKE]      = __umtx_op_sem_wake,
4102 #else
4103         [UMTX_OP_SEM_WAIT]      = __umtx_op_unimpl,
4104         [UMTX_OP_SEM_WAKE]      = __umtx_op_unimpl,
4105 #endif
4106         [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
4107         [UMTX_OP_MUTEX_WAKE2]   = __umtx_op_wake2_umutex,
4108         [UMTX_OP_SEM2_WAIT]     = __umtx_op_sem2_wait,
4109         [UMTX_OP_SEM2_WAKE]     = __umtx_op_sem2_wake,
4110         [UMTX_OP_SHM]           = __umtx_op_shm,
4111         [UMTX_OP_ROBUST_LISTS]  = __umtx_op_robust_lists,
4112 };
4113
4114 int
4115 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4116 {
4117
4118         if ((unsigned)uap->op < nitems(op_table))
4119                 return (*op_table[uap->op])(td, uap);
4120         return (EINVAL);
4121 }
4122
4123 #ifdef COMPAT_FREEBSD32
4124
4125 struct timespec32 {
4126         int32_t tv_sec;
4127         int32_t tv_nsec;
4128 };
4129
4130 struct umtx_time32 {
4131         struct  timespec32      timeout;
4132         uint32_t                flags;
4133         uint32_t                clockid;
4134 };
4135
4136 static inline int
4137 umtx_copyin_timeout32(void *addr, struct timespec *tsp)
4138 {
4139         struct timespec32 ts32;
4140         int error;
4141
4142         error = copyin(addr, &ts32, sizeof(struct timespec32));
4143         if (error == 0) {
4144                 if (ts32.tv_sec < 0 ||
4145                     ts32.tv_nsec >= 1000000000 ||
4146                     ts32.tv_nsec < 0)
4147                         error = EINVAL;
4148                 else {
4149                         tsp->tv_sec = ts32.tv_sec;
4150                         tsp->tv_nsec = ts32.tv_nsec;
4151                 }
4152         }
4153         return (error);
4154 }
4155
4156 static inline int
4157 umtx_copyin_umtx_time32(const void *addr, size_t size, struct _umtx_time *tp)
4158 {
4159         struct umtx_time32 t32;
4160         int error;
4161
4162         t32.clockid = CLOCK_REALTIME;
4163         t32.flags   = 0;
4164         if (size <= sizeof(struct timespec32))
4165                 error = copyin(addr, &t32.timeout, sizeof(struct timespec32));
4166         else
4167                 error = copyin(addr, &t32, sizeof(struct umtx_time32));
4168         if (error != 0)
4169                 return (error);
4170         if (t32.timeout.tv_sec < 0 ||
4171             t32.timeout.tv_nsec >= 1000000000 || t32.timeout.tv_nsec < 0)
4172                 return (EINVAL);
4173         tp->_timeout.tv_sec = t32.timeout.tv_sec;
4174         tp->_timeout.tv_nsec = t32.timeout.tv_nsec;
4175         tp->_flags = t32.flags;
4176         tp->_clockid = t32.clockid;
4177         return (0);
4178 }
4179
4180 static int
4181 __umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4182 {
4183         struct _umtx_time *tm_p, timeout;
4184         int error;
4185
4186         if (uap->uaddr2 == NULL)
4187                 tm_p = NULL;
4188         else {
4189                 error = umtx_copyin_umtx_time32(uap->uaddr2,
4190                         (size_t)uap->uaddr1, &timeout);
4191                 if (error != 0)
4192                         return (error);
4193                 tm_p = &timeout;
4194         }
4195         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
4196 }
4197
4198 static int
4199 __umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
4200 {
4201         struct _umtx_time *tm_p, timeout;
4202         int error;
4203
4204         /* Allow a null timespec (wait forever). */
4205         if (uap->uaddr2 == NULL)
4206                 tm_p = NULL;
4207         else {
4208                 error = umtx_copyin_umtx_time32(uap->uaddr2,
4209                             (size_t)uap->uaddr1, &timeout);
4210                 if (error != 0)
4211                         return (error);
4212                 tm_p = &timeout;
4213         }
4214         return (do_lock_umutex(td, uap->obj, tm_p, 0));
4215 }
4216
4217 static int
4218 __umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
4219 {
4220         struct _umtx_time *tm_p, timeout;
4221         int error;
4222
4223         /* Allow a null timespec (wait forever). */
4224         if (uap->uaddr2 == NULL)
4225                 tm_p = NULL;
4226         else {
4227                 error = umtx_copyin_umtx_time32(uap->uaddr2,
4228                     (size_t)uap->uaddr1, &timeout);
4229                 if (error != 0)
4230                         return (error);
4231                 tm_p = &timeout;
4232         }
4233         return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4234 }
4235
4236 static int
4237 __umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4238 {
4239         struct timespec *ts, timeout;
4240         int error;
4241
4242         /* Allow a null timespec (wait forever). */
4243         if (uap->uaddr2 == NULL)
4244                 ts = NULL;
4245         else {
4246                 error = umtx_copyin_timeout32(uap->uaddr2, &timeout);
4247                 if (error != 0)
4248                         return (error);
4249                 ts = &timeout;
4250         }
4251         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4252 }
4253
4254 static int
4255 __umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
4256 {
4257         struct _umtx_time timeout;
4258         int error;
4259
4260         /* Allow a null timespec (wait forever). */
4261         if (uap->uaddr2 == NULL) {
4262                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4263         } else {
4264                 error = umtx_copyin_umtx_time32(uap->uaddr2,
4265                     (size_t)uap->uaddr1, &timeout);
4266                 if (error != 0)
4267                         return (error);
4268                 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4269         }
4270         return (error);
4271 }
4272
4273 static int
4274 __umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
4275 {
4276         struct _umtx_time timeout;
4277         int error;
4278
4279         /* Allow a null timespec (wait forever). */
4280         if (uap->uaddr2 == NULL) {
4281                 error = do_rw_wrlock(td, uap->obj, 0);
4282         } else {
4283                 error = umtx_copyin_umtx_time32(uap->uaddr2,
4284                     (size_t)uap->uaddr1, &timeout);
4285                 if (error != 0)
4286                         return (error);
4287                 error = do_rw_wrlock(td, uap->obj, &timeout);
4288         }
4289         return (error);
4290 }
4291
4292 static int
4293 __umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
4294 {
4295         struct _umtx_time *tm_p, timeout;
4296         int error;
4297
4298         if (uap->uaddr2 == NULL)
4299                 tm_p = NULL;
4300         else {
4301                 error = umtx_copyin_umtx_time32(
4302                     uap->uaddr2, (size_t)uap->uaddr1,&timeout);
4303                 if (error != 0)
4304                         return (error);
4305                 tm_p = &timeout;
4306         }
4307         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
4308 }
4309
4310 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4311 static int
4312 __umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4313 {
4314         struct _umtx_time *tm_p, timeout;
4315         int error;
4316
4317         /* Allow a null timespec (wait forever). */
4318         if (uap->uaddr2 == NULL)
4319                 tm_p = NULL;
4320         else {
4321                 error = umtx_copyin_umtx_time32(uap->uaddr2,
4322                     (size_t)uap->uaddr1, &timeout);
4323                 if (error != 0)
4324                         return (error);
4325                 tm_p = &timeout;
4326         }
4327         return (do_sem_wait(td, uap->obj, tm_p));
4328 }
4329 #endif
4330
4331 static int
4332 __umtx_op_sem2_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4333 {
4334         struct _umtx_time *tm_p, timeout;
4335         size_t uasize;
4336         int error;
4337
4338         /* Allow a null timespec (wait forever). */
4339         if (uap->uaddr2 == NULL) {
4340                 uasize = 0;
4341                 tm_p = NULL;
4342         } else {
4343                 uasize = (size_t)uap->uaddr1;
4344                 error = umtx_copyin_umtx_time32(uap->uaddr2, uasize, &timeout);
4345                 if (error != 0)
4346                         return (error);
4347                 tm_p = &timeout;
4348         }
4349         error = do_sem2_wait(td, uap->obj, tm_p);
4350         if (error == EINTR && uap->uaddr2 != NULL &&
4351             (timeout._flags & UMTX_ABSTIME) == 0 &&
4352             uasize >= sizeof(struct umtx_time32) + sizeof(struct timespec32)) {
4353                 struct timespec32 remain32 = {
4354                         .tv_sec = timeout._timeout.tv_sec,
4355                         .tv_nsec = timeout._timeout.tv_nsec
4356                 };
4357                 error = copyout(&remain32,
4358                     (struct umtx_time32 *)uap->uaddr2 + 1,
4359                     sizeof(struct timespec32));
4360                 if (error == 0) {
4361                         error = EINTR;
4362                 }
4363         }
4364
4365         return (error);
4366 }
4367
4368 static int
4369 __umtx_op_nwake_private32(struct thread *td, struct _umtx_op_args *uap)
4370 {
4371         uint32_t uaddrs[BATCH_SIZE], **upp;
4372         int count, error, i, pos, tocopy;
4373
4374         upp = (uint32_t **)uap->obj;
4375         error = 0;
4376         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4377             pos += tocopy) {
4378                 tocopy = MIN(count, BATCH_SIZE);
4379                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
4380                 if (error != 0)
4381                         break;
4382                 for (i = 0; i < tocopy; ++i)
4383                         kern_umtx_wake(td, (void *)(intptr_t)uaddrs[i],
4384                             INT_MAX, 1);
4385                 maybe_yield();
4386         }
4387         return (error);
4388 }
4389
4390 struct umtx_robust_lists_params_compat32 {
4391         uint32_t        robust_list_offset;
4392         uint32_t        robust_priv_list_offset;
4393         uint32_t        robust_inact_offset;
4394 };
4395
4396 static int
4397 __umtx_op_robust_lists_compat32(struct thread *td, struct _umtx_op_args *uap)
4398 {
4399         struct umtx_robust_lists_params rb;
4400         struct umtx_robust_lists_params_compat32 rb32;
4401         int error;
4402
4403         if (uap->val > sizeof(rb32))
4404                 return (EINVAL);
4405         bzero(&rb, sizeof(rb));
4406         bzero(&rb32, sizeof(rb32));
4407         error = copyin(uap->uaddr1, &rb32, uap->val);
4408         if (error != 0)
4409                 return (error);
4410         rb.robust_list_offset = rb32.robust_list_offset;
4411         rb.robust_priv_list_offset = rb32.robust_priv_list_offset;
4412         rb.robust_inact_offset = rb32.robust_inact_offset;
4413         return (umtx_robust_lists(td, &rb));
4414 }
4415
4416 static const _umtx_op_func op_table_compat32[] = {
4417         [UMTX_OP_RESERVED0]     = __umtx_op_unimpl,
4418         [UMTX_OP_RESERVED1]     = __umtx_op_unimpl,
4419         [UMTX_OP_WAIT]          = __umtx_op_wait_compat32,
4420         [UMTX_OP_WAKE]          = __umtx_op_wake,
4421         [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
4422         [UMTX_OP_MUTEX_LOCK]    = __umtx_op_lock_umutex_compat32,
4423         [UMTX_OP_MUTEX_UNLOCK]  = __umtx_op_unlock_umutex,
4424         [UMTX_OP_SET_CEILING]   = __umtx_op_set_ceiling,
4425         [UMTX_OP_CV_WAIT]       = __umtx_op_cv_wait_compat32,
4426         [UMTX_OP_CV_SIGNAL]     = __umtx_op_cv_signal,
4427         [UMTX_OP_CV_BROADCAST]  = __umtx_op_cv_broadcast,
4428         [UMTX_OP_WAIT_UINT]     = __umtx_op_wait_compat32,
4429         [UMTX_OP_RW_RDLOCK]     = __umtx_op_rw_rdlock_compat32,
4430         [UMTX_OP_RW_WRLOCK]     = __umtx_op_rw_wrlock_compat32,
4431         [UMTX_OP_RW_UNLOCK]     = __umtx_op_rw_unlock,
4432         [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private_compat32,
4433         [UMTX_OP_WAKE_PRIVATE]  = __umtx_op_wake_private,
4434         [UMTX_OP_MUTEX_WAIT]    = __umtx_op_wait_umutex_compat32,
4435         [UMTX_OP_MUTEX_WAKE]    = __umtx_op_wake_umutex,
4436 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4437         [UMTX_OP_SEM_WAIT]      = __umtx_op_sem_wait_compat32,
4438         [UMTX_OP_SEM_WAKE]      = __umtx_op_sem_wake,
4439 #else
4440         [UMTX_OP_SEM_WAIT]      = __umtx_op_unimpl,
4441         [UMTX_OP_SEM_WAKE]      = __umtx_op_unimpl,
4442 #endif
4443         [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private32,
4444         [UMTX_OP_MUTEX_WAKE2]   = __umtx_op_wake2_umutex,
4445         [UMTX_OP_SEM2_WAIT]     = __umtx_op_sem2_wait_compat32,
4446         [UMTX_OP_SEM2_WAKE]     = __umtx_op_sem2_wake,
4447         [UMTX_OP_SHM]           = __umtx_op_shm,
4448         [UMTX_OP_ROBUST_LISTS]  = __umtx_op_robust_lists_compat32,
4449 };
4450
4451 int
4452 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
4453 {
4454
4455         if ((unsigned)uap->op < nitems(op_table_compat32)) {
4456                 return (*op_table_compat32[uap->op])(td,
4457                     (struct _umtx_op_args *)uap);
4458         }
4459         return (EINVAL);
4460 }
4461 #endif
4462
4463 void
4464 umtx_thread_init(struct thread *td)
4465 {
4466
4467         td->td_umtxq = umtxq_alloc();
4468         td->td_umtxq->uq_thread = td;
4469 }
4470
4471 void
4472 umtx_thread_fini(struct thread *td)
4473 {
4474
4475         umtxq_free(td->td_umtxq);
4476 }
4477
4478 /*
4479  * It will be called when new thread is created, e.g fork().
4480  */
4481 void
4482 umtx_thread_alloc(struct thread *td)
4483 {
4484         struct umtx_q *uq;
4485
4486         uq = td->td_umtxq;
4487         uq->uq_inherited_pri = PRI_MAX;
4488
4489         KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
4490         KASSERT(uq->uq_thread == td, ("uq_thread != td"));
4491         KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
4492         KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
4493 }
4494
4495 /*
4496  * exec() hook.
4497  *
4498  * Clear robust lists for all process' threads, not delaying the
4499  * cleanup to thread_exit hook, since the relevant address space is
4500  * destroyed right now.
4501  */
4502 static void
4503 umtx_exec_hook(void *arg __unused, struct proc *p,
4504     struct image_params *imgp __unused)
4505 {
4506         struct thread *td;
4507
4508         KASSERT(p == curproc, ("need curproc"));
4509         PROC_LOCK(p);
4510         KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
4511             (p->p_flag & P_STOPPED_SINGLE) != 0,
4512             ("curproc must be single-threaded"));
4513         FOREACH_THREAD_IN_PROC(p, td) {
4514                 KASSERT(td == curthread ||
4515                     ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
4516                     ("running thread %p %p", p, td));
4517                 PROC_UNLOCK(p);
4518                 umtx_thread_cleanup(td);
4519                 PROC_LOCK(p);
4520                 td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
4521         }
4522         PROC_UNLOCK(p);
4523 }
4524
4525 /*
4526  * thread_exit() hook.
4527  */
4528 void
4529 umtx_thread_exit(struct thread *td)
4530 {
4531
4532         umtx_thread_cleanup(td);
4533 }
4534
4535 static int
4536 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res)
4537 {
4538         u_long res1;
4539 #ifdef COMPAT_FREEBSD32
4540         uint32_t res32;
4541 #endif
4542         int error;
4543
4544 #ifdef COMPAT_FREEBSD32
4545         if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
4546                 error = fueword32((void *)ptr, &res32);
4547                 if (error == 0)
4548                         res1 = res32;
4549         } else
4550 #endif
4551         {
4552                 error = fueword((void *)ptr, &res1);
4553         }
4554         if (error == 0)
4555                 *res = res1;
4556         else
4557                 error = EFAULT;
4558         return (error);
4559 }
4560
4561 static void
4562 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list)
4563 {
4564 #ifdef COMPAT_FREEBSD32
4565         struct umutex32 m32;
4566
4567         if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
4568                 memcpy(&m32, m, sizeof(m32));
4569                 *rb_list = m32.m_rb_lnk;
4570         } else
4571 #endif
4572                 *rb_list = m->m_rb_lnk;
4573 }
4574
4575 static int
4576 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact)
4577 {
4578         struct umutex m;
4579         int error;
4580
4581         KASSERT(td->td_proc == curproc, ("need current vmspace"));
4582         error = copyin((void *)rbp, &m, sizeof(m));
4583         if (error != 0)
4584                 return (error);
4585         if (rb_list != NULL)
4586                 umtx_read_rb_list(td, &m, rb_list);
4587         if ((m.m_flags & UMUTEX_ROBUST) == 0)
4588                 return (EINVAL);
4589         if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
4590                 /* inact is cleared after unlock, allow the inconsistency */
4591                 return (inact ? 0 : EINVAL);
4592         return (do_unlock_umutex(td, (struct umutex *)rbp, true));
4593 }
4594
4595 static void
4596 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
4597     const char *name)
4598 {
4599         int error, i;
4600         uintptr_t rbp;
4601         bool inact;
4602
4603         if (rb_list == 0)
4604                 return;
4605         error = umtx_read_uptr(td, rb_list, &rbp);
4606         for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
4607                 if (rbp == *rb_inact) {
4608                         inact = true;
4609                         *rb_inact = 0;
4610                 } else
4611                         inact = false;
4612                 error = umtx_handle_rb(td, rbp, &rbp, inact);
4613         }
4614         if (i == umtx_max_rb && umtx_verbose_rb) {
4615                 uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
4616                     td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
4617         }
4618         if (error != 0 && umtx_verbose_rb) {
4619                 uprintf("comm %s pid %d: handling %srb error %d\n",
4620                     td->td_proc->p_comm, td->td_proc->p_pid, name, error);
4621         }
4622 }
4623
4624 /*
4625  * Clean up umtx data.
4626  */
4627 static void
4628 umtx_thread_cleanup(struct thread *td)
4629 {
4630         struct umtx_q *uq;
4631         struct umtx_pi *pi;
4632         uintptr_t rb_inact;
4633
4634         /*
4635          * Disown pi mutexes.
4636          */
4637         uq = td->td_umtxq;
4638         if (uq != NULL) {
4639                 mtx_lock(&umtx_lock);
4640                 uq->uq_inherited_pri = PRI_MAX;
4641                 while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
4642                         pi->pi_owner = NULL;
4643                         TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
4644                 }
4645                 mtx_unlock(&umtx_lock);
4646                 thread_lock(td);
4647                 sched_lend_user_prio(td, PRI_MAX);
4648                 thread_unlock(td);
4649         }
4650
4651         /*
4652          * Handle terminated robust mutexes.  Must be done after
4653          * robust pi disown, otherwise unlock could see unowned
4654          * entries.
4655          */
4656         rb_inact = td->td_rb_inact;
4657         if (rb_inact != 0)
4658                 (void)umtx_read_uptr(td, rb_inact, &rb_inact);
4659         umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "");
4660         umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ");
4661         if (rb_inact != 0)
4662                 (void)umtx_handle_rb(td, rb_inact, NULL, true);
4663 }