]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_umtx.c
Also pass interrupt binding request to non-root interrupt controllers.
[FreeBSD/FreeBSD.git] / sys / kern / kern_umtx.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice unmodified, this list of conditions, and the following
17  *    disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include "opt_umtx_profiling.h"
38
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/systm.h>
60 #include <sys/sysproto.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/taskqueue.h>
63 #include <sys/time.h>
64 #include <sys/eventhandler.h>
65 #include <sys/umtx.h>
66
67 #include <security/mac/mac_framework.h>
68
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74
75 #include <machine/atomic.h>
76 #include <machine/cpu.h>
77
78 #ifdef COMPAT_FREEBSD32
79 #include <compat/freebsd32/freebsd32.h>
80 #include <compat/freebsd32/freebsd32_proto.h>
81 #endif
82
83 #define _UMUTEX_TRY             1
84 #define _UMUTEX_WAIT            2
85
86 #ifdef UMTX_PROFILING
87 #define UPROF_PERC_BIGGER(w, f, sw, sf)                                 \
88         (((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
89 #endif
90
91 /* Priority inheritance mutex info. */
92 struct umtx_pi {
93         /* Owner thread */
94         struct thread           *pi_owner;
95
96         /* Reference count */
97         int                     pi_refcount;
98
99         /* List entry to link umtx holding by thread */
100         TAILQ_ENTRY(umtx_pi)    pi_link;
101
102         /* List entry in hash */
103         TAILQ_ENTRY(umtx_pi)    pi_hashlink;
104
105         /* List for waiters */
106         TAILQ_HEAD(,umtx_q)     pi_blocked;
107
108         /* Identify a userland lock object */
109         struct umtx_key         pi_key;
110 };
111
112 /* A userland synchronous object user. */
113 struct umtx_q {
114         /* Linked list for the hash. */
115         TAILQ_ENTRY(umtx_q)     uq_link;
116
117         /* Umtx key. */
118         struct umtx_key         uq_key;
119
120         /* Umtx flags. */
121         int                     uq_flags;
122 #define UQF_UMTXQ       0x0001
123
124         /* The thread waits on. */
125         struct thread           *uq_thread;
126
127         /*
128          * Blocked on PI mutex. read can use chain lock
129          * or umtx_lock, write must have both chain lock and
130          * umtx_lock being hold.
131          */
132         struct umtx_pi          *uq_pi_blocked;
133
134         /* On blocked list */
135         TAILQ_ENTRY(umtx_q)     uq_lockq;
136
137         /* Thread contending with us */
138         TAILQ_HEAD(,umtx_pi)    uq_pi_contested;
139
140         /* Inherited priority from PP mutex */
141         u_char                  uq_inherited_pri;
142
143         /* Spare queue ready to be reused */
144         struct umtxq_queue      *uq_spare_queue;
145
146         /* The queue we on */
147         struct umtxq_queue      *uq_cur_queue;
148 };
149
150 TAILQ_HEAD(umtxq_head, umtx_q);
151
152 /* Per-key wait-queue */
153 struct umtxq_queue {
154         struct umtxq_head       head;
155         struct umtx_key         key;
156         LIST_ENTRY(umtxq_queue) link;
157         int                     length;
158 };
159
160 LIST_HEAD(umtxq_list, umtxq_queue);
161
162 /* Userland lock object's wait-queue chain */
163 struct umtxq_chain {
164         /* Lock for this chain. */
165         struct mtx              uc_lock;
166
167         /* List of sleep queues. */
168         struct umtxq_list       uc_queue[2];
169 #define UMTX_SHARED_QUEUE       0
170 #define UMTX_EXCLUSIVE_QUEUE    1
171
172         LIST_HEAD(, umtxq_queue) uc_spare_queue;
173
174         /* Busy flag */
175         char                    uc_busy;
176
177         /* Chain lock waiters */
178         int                     uc_waiters;
179
180         /* All PI in the list */
181         TAILQ_HEAD(,umtx_pi)    uc_pi_list;
182
183 #ifdef UMTX_PROFILING
184         u_int                   length;
185         u_int                   max_length;
186 #endif
187 };
188
189 #define UMTXQ_LOCKED_ASSERT(uc)         mtx_assert(&(uc)->uc_lock, MA_OWNED)
190
191 /*
192  * Don't propagate time-sharing priority, there is a security reason,
193  * a user can simply introduce PI-mutex, let thread A lock the mutex,
194  * and let another thread B block on the mutex, because B is
195  * sleeping, its priority will be boosted, this causes A's priority to
196  * be boosted via priority propagating too and will never be lowered even
197  * if it is using 100%CPU, this is unfair to other processes.
198  */
199
200 #define UPRI(td)        (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
201                           (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
202                          PRI_MAX_TIMESHARE : (td)->td_user_pri)
203
204 #define GOLDEN_RATIO_PRIME      2654404609U
205 #ifndef UMTX_CHAINS
206 #define UMTX_CHAINS             512
207 #endif
208 #define UMTX_SHIFTS             (__WORD_BIT - 9)
209
210 #define GET_SHARE(flags)        \
211     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
212
213 #define BUSY_SPINS              200
214
215 struct abs_timeout {
216         int clockid;
217         bool is_abs_real;       /* TIMER_ABSTIME && CLOCK_REALTIME* */
218         struct timespec cur;
219         struct timespec end;
220 };
221
222 #ifdef COMPAT_FREEBSD32
223 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
224 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
225     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
226 #endif
227
228 int umtx_shm_vnobj_persistent = 0;
229 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
230     &umtx_shm_vnobj_persistent, 0,
231     "False forces destruction of umtx attached to file, on last close");
232 static int umtx_max_rb = 1000;
233 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
234     &umtx_max_rb, 0,
235     "Maximum number of robust mutexes allowed for each thread");
236
237 static uma_zone_t               umtx_pi_zone;
238 static struct umtxq_chain       umtxq_chains[2][UMTX_CHAINS];
239 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
240 static int                      umtx_pi_allocated;
241
242 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
243     "umtx debug");
244 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
245     &umtx_pi_allocated, 0, "Allocated umtx_pi");
246 static int umtx_verbose_rb = 1;
247 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
248     &umtx_verbose_rb, 0,
249     "");
250
251 #ifdef UMTX_PROFILING
252 static long max_length;
253 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
254 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
255     "umtx chain stats");
256 #endif
257
258 static void abs_timeout_update(struct abs_timeout *timo);
259
260 static void umtx_shm_init(void);
261 static void umtxq_sysinit(void *);
262 static void umtxq_hash(struct umtx_key *key);
263 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
264 static void umtxq_lock(struct umtx_key *key);
265 static void umtxq_unlock(struct umtx_key *key);
266 static void umtxq_busy(struct umtx_key *key);
267 static void umtxq_unbusy(struct umtx_key *key);
268 static void umtxq_insert_queue(struct umtx_q *uq, int q);
269 static void umtxq_remove_queue(struct umtx_q *uq, int q);
270 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
271 static int umtxq_count(struct umtx_key *key);
272 static struct umtx_pi *umtx_pi_alloc(int);
273 static void umtx_pi_free(struct umtx_pi *pi);
274 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
275     bool rb);
276 static void umtx_thread_cleanup(struct thread *td);
277 static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
278     struct image_params *imgp __unused);
279 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
280
281 #define umtxq_signal(key, nwake)        umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
282 #define umtxq_insert(uq)        umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
283 #define umtxq_remove(uq)        umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
284
285 static struct mtx umtx_lock;
286
287 #ifdef UMTX_PROFILING
288 static void
289 umtx_init_profiling(void)
290 {
291         struct sysctl_oid *chain_oid;
292         char chain_name[10];
293         int i;
294
295         for (i = 0; i < UMTX_CHAINS; ++i) {
296                 snprintf(chain_name, sizeof(chain_name), "%d", i);
297                 chain_oid = SYSCTL_ADD_NODE(NULL,
298                     SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
299                     chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
300                     "umtx hash stats");
301                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
302                     "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
303                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
304                     "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
305         }
306 }
307
308 static int
309 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
310 {
311         char buf[512];
312         struct sbuf sb;
313         struct umtxq_chain *uc;
314         u_int fract, i, j, tot, whole;
315         u_int sf0, sf1, sf2, sf3, sf4;
316         u_int si0, si1, si2, si3, si4;
317         u_int sw0, sw1, sw2, sw3, sw4;
318
319         sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
320         for (i = 0; i < 2; i++) {
321                 tot = 0;
322                 for (j = 0; j < UMTX_CHAINS; ++j) {
323                         uc = &umtxq_chains[i][j];
324                         mtx_lock(&uc->uc_lock);
325                         tot += uc->max_length;
326                         mtx_unlock(&uc->uc_lock);
327                 }
328                 if (tot == 0)
329                         sbuf_printf(&sb, "%u) Empty ", i);
330                 else {
331                         sf0 = sf1 = sf2 = sf3 = sf4 = 0;
332                         si0 = si1 = si2 = si3 = si4 = 0;
333                         sw0 = sw1 = sw2 = sw3 = sw4 = 0;
334                         for (j = 0; j < UMTX_CHAINS; j++) {
335                                 uc = &umtxq_chains[i][j];
336                                 mtx_lock(&uc->uc_lock);
337                                 whole = uc->max_length * 100;
338                                 mtx_unlock(&uc->uc_lock);
339                                 fract = (whole % tot) * 100;
340                                 if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
341                                         sf0 = fract;
342                                         si0 = j;
343                                         sw0 = whole;
344                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw1,
345                                     sf1)) {
346                                         sf1 = fract;
347                                         si1 = j;
348                                         sw1 = whole;
349                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw2,
350                                     sf2)) {
351                                         sf2 = fract;
352                                         si2 = j;
353                                         sw2 = whole;
354                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw3,
355                                     sf3)) {
356                                         sf3 = fract;
357                                         si3 = j;
358                                         sw3 = whole;
359                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw4,
360                                     sf4)) {
361                                         sf4 = fract;
362                                         si4 = j;
363                                         sw4 = whole;
364                                 }
365                         }
366                         sbuf_printf(&sb, "queue %u:\n", i);
367                         sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
368                             sf0 / tot, si0);
369                         sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
370                             sf1 / tot, si1);
371                         sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
372                             sf2 / tot, si2);
373                         sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
374                             sf3 / tot, si3);
375                         sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
376                             sf4 / tot, si4);
377                 }
378         }
379         sbuf_trim(&sb);
380         sbuf_finish(&sb);
381         sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
382         sbuf_delete(&sb);
383         return (0);
384 }
385
386 static int
387 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
388 {
389         struct umtxq_chain *uc;
390         u_int i, j;
391         int clear, error;
392
393         clear = 0;
394         error = sysctl_handle_int(oidp, &clear, 0, req);
395         if (error != 0 || req->newptr == NULL)
396                 return (error);
397
398         if (clear != 0) {
399                 for (i = 0; i < 2; ++i) {
400                         for (j = 0; j < UMTX_CHAINS; ++j) {
401                                 uc = &umtxq_chains[i][j];
402                                 mtx_lock(&uc->uc_lock);
403                                 uc->length = 0;
404                                 uc->max_length = 0;
405                                 mtx_unlock(&uc->uc_lock);
406                         }
407                 }
408         }
409         return (0);
410 }
411
412 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
413     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
414     sysctl_debug_umtx_chains_clear, "I",
415     "Clear umtx chains statistics");
416 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
417     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
418     sysctl_debug_umtx_chains_peaks, "A",
419     "Highest peaks in chains max length");
420 #endif
421
422 static void
423 umtxq_sysinit(void *arg __unused)
424 {
425         int i, j;
426
427         umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
428                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
429         for (i = 0; i < 2; ++i) {
430                 for (j = 0; j < UMTX_CHAINS; ++j) {
431                         mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
432                                  MTX_DEF | MTX_DUPOK);
433                         LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
434                         LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
435                         LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
436                         TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
437                         umtxq_chains[i][j].uc_busy = 0;
438                         umtxq_chains[i][j].uc_waiters = 0;
439 #ifdef UMTX_PROFILING
440                         umtxq_chains[i][j].length = 0;
441                         umtxq_chains[i][j].max_length = 0;
442 #endif
443                 }
444         }
445 #ifdef UMTX_PROFILING
446         umtx_init_profiling();
447 #endif
448         mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
449         EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
450             EVENTHANDLER_PRI_ANY);
451         umtx_shm_init();
452 }
453
454 struct umtx_q *
455 umtxq_alloc(void)
456 {
457         struct umtx_q *uq;
458
459         uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
460         uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
461             M_WAITOK | M_ZERO);
462         TAILQ_INIT(&uq->uq_spare_queue->head);
463         TAILQ_INIT(&uq->uq_pi_contested);
464         uq->uq_inherited_pri = PRI_MAX;
465         return (uq);
466 }
467
468 void
469 umtxq_free(struct umtx_q *uq)
470 {
471
472         MPASS(uq->uq_spare_queue != NULL);
473         free(uq->uq_spare_queue, M_UMTX);
474         free(uq, M_UMTX);
475 }
476
477 static inline void
478 umtxq_hash(struct umtx_key *key)
479 {
480         unsigned n;
481
482         n = (uintptr_t)key->info.both.a + key->info.both.b;
483         key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
484 }
485
486 static inline struct umtxq_chain *
487 umtxq_getchain(struct umtx_key *key)
488 {
489
490         if (key->type <= TYPE_SEM)
491                 return (&umtxq_chains[1][key->hash]);
492         return (&umtxq_chains[0][key->hash]);
493 }
494
495 /*
496  * Lock a chain.
497  */
498 static inline void
499 umtxq_lock(struct umtx_key *key)
500 {
501         struct umtxq_chain *uc;
502
503         uc = umtxq_getchain(key);
504         mtx_lock(&uc->uc_lock);
505 }
506
507 /*
508  * Unlock a chain.
509  */
510 static inline void
511 umtxq_unlock(struct umtx_key *key)
512 {
513         struct umtxq_chain *uc;
514
515         uc = umtxq_getchain(key);
516         mtx_unlock(&uc->uc_lock);
517 }
518
519 /*
520  * Set chain to busy state when following operation
521  * may be blocked (kernel mutex can not be used).
522  */
523 static inline void
524 umtxq_busy(struct umtx_key *key)
525 {
526         struct umtxq_chain *uc;
527
528         uc = umtxq_getchain(key);
529         mtx_assert(&uc->uc_lock, MA_OWNED);
530         if (uc->uc_busy) {
531 #ifdef SMP
532                 if (smp_cpus > 1) {
533                         int count = BUSY_SPINS;
534                         if (count > 0) {
535                                 umtxq_unlock(key);
536                                 while (uc->uc_busy && --count > 0)
537                                         cpu_spinwait();
538                                 umtxq_lock(key);
539                         }
540                 }
541 #endif
542                 while (uc->uc_busy) {
543                         uc->uc_waiters++;
544                         msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
545                         uc->uc_waiters--;
546                 }
547         }
548         uc->uc_busy = 1;
549 }
550
551 /*
552  * Unbusy a chain.
553  */
554 static inline void
555 umtxq_unbusy(struct umtx_key *key)
556 {
557         struct umtxq_chain *uc;
558
559         uc = umtxq_getchain(key);
560         mtx_assert(&uc->uc_lock, MA_OWNED);
561         KASSERT(uc->uc_busy != 0, ("not busy"));
562         uc->uc_busy = 0;
563         if (uc->uc_waiters)
564                 wakeup_one(uc);
565 }
566
567 static inline void
568 umtxq_unbusy_unlocked(struct umtx_key *key)
569 {
570
571         umtxq_lock(key);
572         umtxq_unbusy(key);
573         umtxq_unlock(key);
574 }
575
576 static struct umtxq_queue *
577 umtxq_queue_lookup(struct umtx_key *key, int q)
578 {
579         struct umtxq_queue *uh;
580         struct umtxq_chain *uc;
581
582         uc = umtxq_getchain(key);
583         UMTXQ_LOCKED_ASSERT(uc);
584         LIST_FOREACH(uh, &uc->uc_queue[q], link) {
585                 if (umtx_key_match(&uh->key, key))
586                         return (uh);
587         }
588
589         return (NULL);
590 }
591
592 static inline void
593 umtxq_insert_queue(struct umtx_q *uq, int q)
594 {
595         struct umtxq_queue *uh;
596         struct umtxq_chain *uc;
597
598         uc = umtxq_getchain(&uq->uq_key);
599         UMTXQ_LOCKED_ASSERT(uc);
600         KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
601         uh = umtxq_queue_lookup(&uq->uq_key, q);
602         if (uh != NULL) {
603                 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
604         } else {
605                 uh = uq->uq_spare_queue;
606                 uh->key = uq->uq_key;
607                 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
608 #ifdef UMTX_PROFILING
609                 uc->length++;
610                 if (uc->length > uc->max_length) {
611                         uc->max_length = uc->length;
612                         if (uc->max_length > max_length)
613                                 max_length = uc->max_length;
614                 }
615 #endif
616         }
617         uq->uq_spare_queue = NULL;
618
619         TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
620         uh->length++;
621         uq->uq_flags |= UQF_UMTXQ;
622         uq->uq_cur_queue = uh;
623         return;
624 }
625
626 static inline void
627 umtxq_remove_queue(struct umtx_q *uq, int q)
628 {
629         struct umtxq_chain *uc;
630         struct umtxq_queue *uh;
631
632         uc = umtxq_getchain(&uq->uq_key);
633         UMTXQ_LOCKED_ASSERT(uc);
634         if (uq->uq_flags & UQF_UMTXQ) {
635                 uh = uq->uq_cur_queue;
636                 TAILQ_REMOVE(&uh->head, uq, uq_link);
637                 uh->length--;
638                 uq->uq_flags &= ~UQF_UMTXQ;
639                 if (TAILQ_EMPTY(&uh->head)) {
640                         KASSERT(uh->length == 0,
641                             ("inconsistent umtxq_queue length"));
642 #ifdef UMTX_PROFILING
643                         uc->length--;
644 #endif
645                         LIST_REMOVE(uh, link);
646                 } else {
647                         uh = LIST_FIRST(&uc->uc_spare_queue);
648                         KASSERT(uh != NULL, ("uc_spare_queue is empty"));
649                         LIST_REMOVE(uh, link);
650                 }
651                 uq->uq_spare_queue = uh;
652                 uq->uq_cur_queue = NULL;
653         }
654 }
655
656 /*
657  * Check if there are multiple waiters
658  */
659 static int
660 umtxq_count(struct umtx_key *key)
661 {
662         struct umtxq_queue *uh;
663
664         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
665         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
666         if (uh != NULL)
667                 return (uh->length);
668         return (0);
669 }
670
671 /*
672  * Check if there are multiple PI waiters and returns first
673  * waiter.
674  */
675 static int
676 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
677 {
678         struct umtxq_queue *uh;
679
680         *first = NULL;
681         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
682         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
683         if (uh != NULL) {
684                 *first = TAILQ_FIRST(&uh->head);
685                 return (uh->length);
686         }
687         return (0);
688 }
689
690 /*
691  * Wake up threads waiting on an userland object.
692  */
693
694 static int
695 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
696 {
697         struct umtxq_queue *uh;
698         struct umtx_q *uq;
699         int ret;
700
701         ret = 0;
702         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
703         uh = umtxq_queue_lookup(key, q);
704         if (uh != NULL) {
705                 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
706                         umtxq_remove_queue(uq, q);
707                         wakeup(uq);
708                         if (++ret >= n_wake)
709                                 return (ret);
710                 }
711         }
712         return (ret);
713 }
714
715 /*
716  * Wake up specified thread.
717  */
718 static inline void
719 umtxq_signal_thread(struct umtx_q *uq)
720 {
721
722         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
723         umtxq_remove(uq);
724         wakeup(uq);
725 }
726
727 static inline int
728 tstohz(const struct timespec *tsp)
729 {
730         struct timeval tv;
731
732         TIMESPEC_TO_TIMEVAL(&tv, tsp);
733         return tvtohz(&tv);
734 }
735
736 static void
737 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
738         const struct timespec *timeout)
739 {
740
741         timo->clockid = clockid;
742         if (!absolute) {
743                 timo->is_abs_real = false;
744                 abs_timeout_update(timo);
745                 timespecadd(&timo->cur, timeout, &timo->end);
746         } else {
747                 timo->end = *timeout;
748                 timo->is_abs_real = clockid == CLOCK_REALTIME ||
749                     clockid == CLOCK_REALTIME_FAST ||
750                     clockid == CLOCK_REALTIME_PRECISE;
751                 /*
752                  * If is_abs_real, umtxq_sleep will read the clock
753                  * after setting td_rtcgen; otherwise, read it here.
754                  */
755                 if (!timo->is_abs_real) {
756                         abs_timeout_update(timo);
757                 }
758         }
759 }
760
761 static void
762 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
763 {
764
765         abs_timeout_init(timo, umtxtime->_clockid,
766             (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
767 }
768
769 static inline void
770 abs_timeout_update(struct abs_timeout *timo)
771 {
772
773         kern_clock_gettime(curthread, timo->clockid, &timo->cur);
774 }
775
776 static int
777 abs_timeout_gethz(struct abs_timeout *timo)
778 {
779         struct timespec tts;
780
781         if (timespeccmp(&timo->end, &timo->cur, <=))
782                 return (-1);
783         timespecsub(&timo->end, &timo->cur, &tts);
784         return (tstohz(&tts));
785 }
786
787 static uint32_t
788 umtx_unlock_val(uint32_t flags, bool rb)
789 {
790
791         if (rb)
792                 return (UMUTEX_RB_OWNERDEAD);
793         else if ((flags & UMUTEX_NONCONSISTENT) != 0)
794                 return (UMUTEX_RB_NOTRECOV);
795         else
796                 return (UMUTEX_UNOWNED);
797
798 }
799
800 /*
801  * Put thread into sleep state, before sleeping, check if
802  * thread was removed from umtx queue.
803  */
804 static inline int
805 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
806 {
807         struct umtxq_chain *uc;
808         int error, timo;
809
810         if (abstime != NULL && abstime->is_abs_real) {
811                 curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
812                 abs_timeout_update(abstime);
813         }
814
815         uc = umtxq_getchain(&uq->uq_key);
816         UMTXQ_LOCKED_ASSERT(uc);
817         for (;;) {
818                 if (!(uq->uq_flags & UQF_UMTXQ)) {
819                         error = 0;
820                         break;
821                 }
822                 if (abstime != NULL) {
823                         timo = abs_timeout_gethz(abstime);
824                         if (timo < 0) {
825                                 error = ETIMEDOUT;
826                                 break;
827                         }
828                 } else
829                         timo = 0;
830                 error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
831                 if (error == EINTR || error == ERESTART) {
832                         umtxq_lock(&uq->uq_key);
833                         break;
834                 }
835                 if (abstime != NULL) {
836                         if (abstime->is_abs_real)
837                                 curthread->td_rtcgen =
838                                     atomic_load_acq_int(&rtc_generation);
839                         abs_timeout_update(abstime);
840                 }
841                 umtxq_lock(&uq->uq_key);
842         }
843
844         curthread->td_rtcgen = 0;
845         return (error);
846 }
847
848 /*
849  * Convert userspace address into unique logical address.
850  */
851 int
852 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
853 {
854         struct thread *td = curthread;
855         vm_map_t map;
856         vm_map_entry_t entry;
857         vm_pindex_t pindex;
858         vm_prot_t prot;
859         boolean_t wired;
860
861         key->type = type;
862         if (share == THREAD_SHARE) {
863                 key->shared = 0;
864                 key->info.private.vs = td->td_proc->p_vmspace;
865                 key->info.private.addr = (uintptr_t)addr;
866         } else {
867                 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
868                 map = &td->td_proc->p_vmspace->vm_map;
869                 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
870                     &entry, &key->info.shared.object, &pindex, &prot,
871                     &wired) != KERN_SUCCESS) {
872                         return (EFAULT);
873                 }
874
875                 if ((share == PROCESS_SHARE) ||
876                     (share == AUTO_SHARE &&
877                      VM_INHERIT_SHARE == entry->inheritance)) {
878                         key->shared = 1;
879                         key->info.shared.offset = (vm_offset_t)addr -
880                             entry->start + entry->offset;
881                         vm_object_reference(key->info.shared.object);
882                 } else {
883                         key->shared = 0;
884                         key->info.private.vs = td->td_proc->p_vmspace;
885                         key->info.private.addr = (uintptr_t)addr;
886                 }
887                 vm_map_lookup_done(map, entry);
888         }
889
890         umtxq_hash(key);
891         return (0);
892 }
893
894 /*
895  * Release key.
896  */
897 void
898 umtx_key_release(struct umtx_key *key)
899 {
900         if (key->shared)
901                 vm_object_deallocate(key->info.shared.object);
902 }
903
904 /*
905  * Fetch and compare value, sleep on the address if value is not changed.
906  */
907 static int
908 do_wait(struct thread *td, void *addr, u_long id,
909     struct _umtx_time *timeout, int compat32, int is_private)
910 {
911         struct abs_timeout timo;
912         struct umtx_q *uq;
913         u_long tmp;
914         uint32_t tmp32;
915         int error = 0;
916
917         uq = td->td_umtxq;
918         if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
919                 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
920                 return (error);
921
922         if (timeout != NULL)
923                 abs_timeout_init2(&timo, timeout);
924
925         umtxq_lock(&uq->uq_key);
926         umtxq_insert(uq);
927         umtxq_unlock(&uq->uq_key);
928         if (compat32 == 0) {
929                 error = fueword(addr, &tmp);
930                 if (error != 0)
931                         error = EFAULT;
932         } else {
933                 error = fueword32(addr, &tmp32);
934                 if (error == 0)
935                         tmp = tmp32;
936                 else
937                         error = EFAULT;
938         }
939         umtxq_lock(&uq->uq_key);
940         if (error == 0) {
941                 if (tmp == id)
942                         error = umtxq_sleep(uq, "uwait", timeout == NULL ?
943                             NULL : &timo);
944                 if ((uq->uq_flags & UQF_UMTXQ) == 0)
945                         error = 0;
946                 else
947                         umtxq_remove(uq);
948         } else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
949                 umtxq_remove(uq);
950         }
951         umtxq_unlock(&uq->uq_key);
952         umtx_key_release(&uq->uq_key);
953         if (error == ERESTART)
954                 error = EINTR;
955         return (error);
956 }
957
958 /*
959  * Wake up threads sleeping on the specified address.
960  */
961 int
962 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
963 {
964         struct umtx_key key;
965         int ret;
966
967         if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
968             is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
969                 return (ret);
970         umtxq_lock(&key);
971         umtxq_signal(&key, n_wake);
972         umtxq_unlock(&key);
973         umtx_key_release(&key);
974         return (0);
975 }
976
977 /*
978  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
979  */
980 static int
981 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
982     struct _umtx_time *timeout, int mode)
983 {
984         struct abs_timeout timo;
985         struct umtx_q *uq;
986         uint32_t owner, old, id;
987         int error, rv;
988
989         id = td->td_tid;
990         uq = td->td_umtxq;
991         error = 0;
992         if (timeout != NULL)
993                 abs_timeout_init2(&timo, timeout);
994
995         /*
996          * Care must be exercised when dealing with umtx structure. It
997          * can fault on any access.
998          */
999         for (;;) {
1000                 rv = fueword32(&m->m_owner, &owner);
1001                 if (rv == -1)
1002                         return (EFAULT);
1003                 if (mode == _UMUTEX_WAIT) {
1004                         if (owner == UMUTEX_UNOWNED ||
1005                             owner == UMUTEX_CONTESTED ||
1006                             owner == UMUTEX_RB_OWNERDEAD ||
1007                             owner == UMUTEX_RB_NOTRECOV)
1008                                 return (0);
1009                 } else {
1010                         /*
1011                          * Robust mutex terminated.  Kernel duty is to
1012                          * return EOWNERDEAD to the userspace.  The
1013                          * umutex.m_flags UMUTEX_NONCONSISTENT is set
1014                          * by the common userspace code.
1015                          */
1016                         if (owner == UMUTEX_RB_OWNERDEAD) {
1017                                 rv = casueword32(&m->m_owner,
1018                                     UMUTEX_RB_OWNERDEAD, &owner,
1019                                     id | UMUTEX_CONTESTED);
1020                                 if (rv == -1)
1021                                         return (EFAULT);
1022                                 if (rv == 0) {
1023                                         MPASS(owner == UMUTEX_RB_OWNERDEAD);
1024                                         return (EOWNERDEAD); /* success */
1025                                 }
1026                                 MPASS(rv == 1);
1027                                 rv = thread_check_susp(td, false);
1028                                 if (rv != 0)
1029                                         return (rv);
1030                                 continue;
1031                         }
1032                         if (owner == UMUTEX_RB_NOTRECOV)
1033                                 return (ENOTRECOVERABLE);
1034
1035                         /*
1036                          * Try the uncontested case.  This should be
1037                          * done in userland.
1038                          */
1039                         rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1040                             &owner, id);
1041                         /* The address was invalid. */
1042                         if (rv == -1)
1043                                 return (EFAULT);
1044
1045                         /* The acquire succeeded. */
1046                         if (rv == 0) {
1047                                 MPASS(owner == UMUTEX_UNOWNED);
1048                                 return (0);
1049                         }
1050
1051                         /*
1052                          * If no one owns it but it is contested try
1053                          * to acquire it.
1054                          */
1055                         MPASS(rv == 1);
1056                         if (owner == UMUTEX_CONTESTED) {
1057                                 rv = casueword32(&m->m_owner,
1058                                     UMUTEX_CONTESTED, &owner,
1059                                     id | UMUTEX_CONTESTED);
1060                                 /* The address was invalid. */
1061                                 if (rv == -1)
1062                                         return (EFAULT);
1063                                 if (rv == 0) {
1064                                         MPASS(owner == UMUTEX_CONTESTED);
1065                                         return (0);
1066                                 }
1067                                 if (rv == 1) {
1068                                         rv = thread_check_susp(td, false);
1069                                         if (rv != 0)
1070                                                 return (rv);
1071                                 }
1072
1073                                 /*
1074                                  * If this failed the lock has
1075                                  * changed, restart.
1076                                  */
1077                                 continue;
1078                         }
1079
1080                         /* rv == 1 but not contested, likely store failure */
1081                         rv = thread_check_susp(td, false);
1082                         if (rv != 0)
1083                                 return (rv);
1084                 }
1085
1086                 if (mode == _UMUTEX_TRY)
1087                         return (EBUSY);
1088
1089                 /*
1090                  * If we caught a signal, we have retried and now
1091                  * exit immediately.
1092                  */
1093                 if (error != 0)
1094                         return (error);
1095
1096                 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1097                     GET_SHARE(flags), &uq->uq_key)) != 0)
1098                         return (error);
1099
1100                 umtxq_lock(&uq->uq_key);
1101                 umtxq_busy(&uq->uq_key);
1102                 umtxq_insert(uq);
1103                 umtxq_unlock(&uq->uq_key);
1104
1105                 /*
1106                  * Set the contested bit so that a release in user space
1107                  * knows to use the system call for unlock.  If this fails
1108                  * either some one else has acquired the lock or it has been
1109                  * released.
1110                  */
1111                 rv = casueword32(&m->m_owner, owner, &old,
1112                     owner | UMUTEX_CONTESTED);
1113
1114                 /* The address was invalid or casueword failed to store. */
1115                 if (rv == -1 || rv == 1) {
1116                         umtxq_lock(&uq->uq_key);
1117                         umtxq_remove(uq);
1118                         umtxq_unbusy(&uq->uq_key);
1119                         umtxq_unlock(&uq->uq_key);
1120                         umtx_key_release(&uq->uq_key);
1121                         if (rv == -1)
1122                                 return (EFAULT);
1123                         if (rv == 1) {
1124                                 rv = thread_check_susp(td, false);
1125                                 if (rv != 0)
1126                                         return (rv);
1127                         }
1128                         continue;
1129                 }
1130
1131                 /*
1132                  * We set the contested bit, sleep. Otherwise the lock changed
1133                  * and we need to retry or we lost a race to the thread
1134                  * unlocking the umtx.
1135                  */
1136                 umtxq_lock(&uq->uq_key);
1137                 umtxq_unbusy(&uq->uq_key);
1138                 MPASS(old == owner);
1139                 error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1140                     NULL : &timo);
1141                 umtxq_remove(uq);
1142                 umtxq_unlock(&uq->uq_key);
1143                 umtx_key_release(&uq->uq_key);
1144
1145                 if (error == 0)
1146                         error = thread_check_susp(td, false);
1147         }
1148
1149         return (0);
1150 }
1151
1152 /*
1153  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1154  */
1155 static int
1156 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1157 {
1158         struct umtx_key key;
1159         uint32_t owner, old, id, newlock;
1160         int error, count;
1161
1162         id = td->td_tid;
1163
1164 again:
1165         /*
1166          * Make sure we own this mtx.
1167          */
1168         error = fueword32(&m->m_owner, &owner);
1169         if (error == -1)
1170                 return (EFAULT);
1171
1172         if ((owner & ~UMUTEX_CONTESTED) != id)
1173                 return (EPERM);
1174
1175         newlock = umtx_unlock_val(flags, rb);
1176         if ((owner & UMUTEX_CONTESTED) == 0) {
1177                 error = casueword32(&m->m_owner, owner, &old, newlock);
1178                 if (error == -1)
1179                         return (EFAULT);
1180                 if (error == 1) {
1181                         error = thread_check_susp(td, false);
1182                         if (error != 0)
1183                                 return (error);
1184                         goto again;
1185                 }
1186                 MPASS(old == owner);
1187                 return (0);
1188         }
1189
1190         /* We should only ever be in here for contested locks */
1191         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1192             &key)) != 0)
1193                 return (error);
1194
1195         umtxq_lock(&key);
1196         umtxq_busy(&key);
1197         count = umtxq_count(&key);
1198         umtxq_unlock(&key);
1199
1200         /*
1201          * When unlocking the umtx, it must be marked as unowned if
1202          * there is zero or one thread only waiting for it.
1203          * Otherwise, it must be marked as contested.
1204          */
1205         if (count > 1)
1206                 newlock |= UMUTEX_CONTESTED;
1207         error = casueword32(&m->m_owner, owner, &old, newlock);
1208         umtxq_lock(&key);
1209         umtxq_signal(&key, 1);
1210         umtxq_unbusy(&key);
1211         umtxq_unlock(&key);
1212         umtx_key_release(&key);
1213         if (error == -1)
1214                 return (EFAULT);
1215         if (error == 1) {
1216                 if (old != owner)
1217                         return (EINVAL);
1218                 error = thread_check_susp(td, false);
1219                 if (error != 0)
1220                         return (error);
1221                 goto again;
1222         }
1223         return (0);
1224 }
1225
1226 /*
1227  * Check if the mutex is available and wake up a waiter,
1228  * only for simple mutex.
1229  */
1230 static int
1231 do_wake_umutex(struct thread *td, struct umutex *m)
1232 {
1233         struct umtx_key key;
1234         uint32_t owner;
1235         uint32_t flags;
1236         int error;
1237         int count;
1238
1239 again:
1240         error = fueword32(&m->m_owner, &owner);
1241         if (error == -1)
1242                 return (EFAULT);
1243
1244         if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1245             owner != UMUTEX_RB_NOTRECOV)
1246                 return (0);
1247
1248         error = fueword32(&m->m_flags, &flags);
1249         if (error == -1)
1250                 return (EFAULT);
1251
1252         /* We should only ever be in here for contested locks */
1253         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1254             &key)) != 0)
1255                 return (error);
1256
1257         umtxq_lock(&key);
1258         umtxq_busy(&key);
1259         count = umtxq_count(&key);
1260         umtxq_unlock(&key);
1261
1262         if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1263             owner != UMUTEX_RB_NOTRECOV) {
1264                 error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1265                     UMUTEX_UNOWNED);
1266                 if (error == -1) {
1267                         error = EFAULT;
1268                 } else if (error == 1) {
1269                         umtxq_lock(&key);
1270                         umtxq_unbusy(&key);
1271                         umtxq_unlock(&key);
1272                         umtx_key_release(&key);
1273                         error = thread_check_susp(td, false);
1274                         if (error != 0)
1275                                 return (error);
1276                         goto again;
1277                 }
1278         }
1279
1280         umtxq_lock(&key);
1281         if (error == 0 && count != 0) {
1282                 MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1283                     owner == UMUTEX_RB_OWNERDEAD ||
1284                     owner == UMUTEX_RB_NOTRECOV);
1285                 umtxq_signal(&key, 1);
1286         }
1287         umtxq_unbusy(&key);
1288         umtxq_unlock(&key);
1289         umtx_key_release(&key);
1290         return (error);
1291 }
1292
1293 /*
1294  * Check if the mutex has waiters and tries to fix contention bit.
1295  */
1296 static int
1297 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1298 {
1299         struct umtx_key key;
1300         uint32_t owner, old;
1301         int type;
1302         int error;
1303         int count;
1304
1305         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1306             UMUTEX_ROBUST)) {
1307         case 0:
1308         case UMUTEX_ROBUST:
1309                 type = TYPE_NORMAL_UMUTEX;
1310                 break;
1311         case UMUTEX_PRIO_INHERIT:
1312                 type = TYPE_PI_UMUTEX;
1313                 break;
1314         case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1315                 type = TYPE_PI_ROBUST_UMUTEX;
1316                 break;
1317         case UMUTEX_PRIO_PROTECT:
1318                 type = TYPE_PP_UMUTEX;
1319                 break;
1320         case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1321                 type = TYPE_PP_ROBUST_UMUTEX;
1322                 break;
1323         default:
1324                 return (EINVAL);
1325         }
1326         if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1327                 return (error);
1328
1329         owner = 0;
1330         umtxq_lock(&key);
1331         umtxq_busy(&key);
1332         count = umtxq_count(&key);
1333         umtxq_unlock(&key);
1334
1335         error = fueword32(&m->m_owner, &owner);
1336         if (error == -1)
1337                 error = EFAULT;
1338
1339         /*
1340          * Only repair contention bit if there is a waiter, this means
1341          * the mutex is still being referenced by userland code,
1342          * otherwise don't update any memory.
1343          */
1344         while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1345             (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1346                 error = casueword32(&m->m_owner, owner, &old,
1347                     owner | UMUTEX_CONTESTED);
1348                 if (error == -1) {
1349                         error = EFAULT;
1350                         break;
1351                 }
1352                 if (error == 0) {
1353                         MPASS(old == owner);
1354                         break;
1355                 }
1356                 owner = old;
1357                 error = thread_check_susp(td, false);
1358         }
1359
1360         umtxq_lock(&key);
1361         if (error == EFAULT) {
1362                 umtxq_signal(&key, INT_MAX);
1363         } else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1364             owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1365                 umtxq_signal(&key, 1);
1366         umtxq_unbusy(&key);
1367         umtxq_unlock(&key);
1368         umtx_key_release(&key);
1369         return (error);
1370 }
1371
1372 static inline struct umtx_pi *
1373 umtx_pi_alloc(int flags)
1374 {
1375         struct umtx_pi *pi;
1376
1377         pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1378         TAILQ_INIT(&pi->pi_blocked);
1379         atomic_add_int(&umtx_pi_allocated, 1);
1380         return (pi);
1381 }
1382
1383 static inline void
1384 umtx_pi_free(struct umtx_pi *pi)
1385 {
1386         uma_zfree(umtx_pi_zone, pi);
1387         atomic_add_int(&umtx_pi_allocated, -1);
1388 }
1389
1390 /*
1391  * Adjust the thread's position on a pi_state after its priority has been
1392  * changed.
1393  */
1394 static int
1395 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1396 {
1397         struct umtx_q *uq, *uq1, *uq2;
1398         struct thread *td1;
1399
1400         mtx_assert(&umtx_lock, MA_OWNED);
1401         if (pi == NULL)
1402                 return (0);
1403
1404         uq = td->td_umtxq;
1405
1406         /*
1407          * Check if the thread needs to be moved on the blocked chain.
1408          * It needs to be moved if either its priority is lower than
1409          * the previous thread or higher than the next thread.
1410          */
1411         uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1412         uq2 = TAILQ_NEXT(uq, uq_lockq);
1413         if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1414             (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1415                 /*
1416                  * Remove thread from blocked chain and determine where
1417                  * it should be moved to.
1418                  */
1419                 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1420                 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1421                         td1 = uq1->uq_thread;
1422                         MPASS(td1->td_proc->p_magic == P_MAGIC);
1423                         if (UPRI(td1) > UPRI(td))
1424                                 break;
1425                 }
1426
1427                 if (uq1 == NULL)
1428                         TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1429                 else
1430                         TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1431         }
1432         return (1);
1433 }
1434
1435 static struct umtx_pi *
1436 umtx_pi_next(struct umtx_pi *pi)
1437 {
1438         struct umtx_q *uq_owner;
1439
1440         if (pi->pi_owner == NULL)
1441                 return (NULL);
1442         uq_owner = pi->pi_owner->td_umtxq;
1443         if (uq_owner == NULL)
1444                 return (NULL);
1445         return (uq_owner->uq_pi_blocked);
1446 }
1447
1448 /*
1449  * Floyd's Cycle-Finding Algorithm.
1450  */
1451 static bool
1452 umtx_pi_check_loop(struct umtx_pi *pi)
1453 {
1454         struct umtx_pi *pi1;    /* fast iterator */
1455
1456         mtx_assert(&umtx_lock, MA_OWNED);
1457         if (pi == NULL)
1458                 return (false);
1459         pi1 = pi;
1460         for (;;) {
1461                 pi = umtx_pi_next(pi);
1462                 if (pi == NULL)
1463                         break;
1464                 pi1 = umtx_pi_next(pi1);
1465                 if (pi1 == NULL)
1466                         break;
1467                 pi1 = umtx_pi_next(pi1);
1468                 if (pi1 == NULL)
1469                         break;
1470                 if (pi == pi1)
1471                         return (true);
1472         }
1473         return (false);
1474 }
1475
1476 /*
1477  * Propagate priority when a thread is blocked on POSIX
1478  * PI mutex.
1479  */
1480 static void
1481 umtx_propagate_priority(struct thread *td)
1482 {
1483         struct umtx_q *uq;
1484         struct umtx_pi *pi;
1485         int pri;
1486
1487         mtx_assert(&umtx_lock, MA_OWNED);
1488         pri = UPRI(td);
1489         uq = td->td_umtxq;
1490         pi = uq->uq_pi_blocked;
1491         if (pi == NULL)
1492                 return;
1493         if (umtx_pi_check_loop(pi))
1494                 return;
1495
1496         for (;;) {
1497                 td = pi->pi_owner;
1498                 if (td == NULL || td == curthread)
1499                         return;
1500
1501                 MPASS(td->td_proc != NULL);
1502                 MPASS(td->td_proc->p_magic == P_MAGIC);
1503
1504                 thread_lock(td);
1505                 if (td->td_lend_user_pri > pri)
1506                         sched_lend_user_prio(td, pri);
1507                 else {
1508                         thread_unlock(td);
1509                         break;
1510                 }
1511                 thread_unlock(td);
1512
1513                 /*
1514                  * Pick up the lock that td is blocked on.
1515                  */
1516                 uq = td->td_umtxq;
1517                 pi = uq->uq_pi_blocked;
1518                 if (pi == NULL)
1519                         break;
1520                 /* Resort td on the list if needed. */
1521                 umtx_pi_adjust_thread(pi, td);
1522         }
1523 }
1524
1525 /*
1526  * Unpropagate priority for a PI mutex when a thread blocked on
1527  * it is interrupted by signal or resumed by others.
1528  */
1529 static void
1530 umtx_repropagate_priority(struct umtx_pi *pi)
1531 {
1532         struct umtx_q *uq, *uq_owner;
1533         struct umtx_pi *pi2;
1534         int pri;
1535
1536         mtx_assert(&umtx_lock, MA_OWNED);
1537
1538         if (umtx_pi_check_loop(pi))
1539                 return;
1540         while (pi != NULL && pi->pi_owner != NULL) {
1541                 pri = PRI_MAX;
1542                 uq_owner = pi->pi_owner->td_umtxq;
1543
1544                 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1545                         uq = TAILQ_FIRST(&pi2->pi_blocked);
1546                         if (uq != NULL) {
1547                                 if (pri > UPRI(uq->uq_thread))
1548                                         pri = UPRI(uq->uq_thread);
1549                         }
1550                 }
1551
1552                 if (pri > uq_owner->uq_inherited_pri)
1553                         pri = uq_owner->uq_inherited_pri;
1554                 thread_lock(pi->pi_owner);
1555                 sched_lend_user_prio(pi->pi_owner, pri);
1556                 thread_unlock(pi->pi_owner);
1557                 if ((pi = uq_owner->uq_pi_blocked) != NULL)
1558                         umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1559         }
1560 }
1561
1562 /*
1563  * Insert a PI mutex into owned list.
1564  */
1565 static void
1566 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1567 {
1568         struct umtx_q *uq_owner;
1569
1570         uq_owner = owner->td_umtxq;
1571         mtx_assert(&umtx_lock, MA_OWNED);
1572         MPASS(pi->pi_owner == NULL);
1573         pi->pi_owner = owner;
1574         TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1575 }
1576
1577 /*
1578  * Disown a PI mutex, and remove it from the owned list.
1579  */
1580 static void
1581 umtx_pi_disown(struct umtx_pi *pi)
1582 {
1583
1584         mtx_assert(&umtx_lock, MA_OWNED);
1585         TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1586         pi->pi_owner = NULL;
1587 }
1588
1589 /*
1590  * Claim ownership of a PI mutex.
1591  */
1592 static int
1593 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1594 {
1595         struct umtx_q *uq;
1596         int pri;
1597
1598         mtx_lock(&umtx_lock);
1599         if (pi->pi_owner == owner) {
1600                 mtx_unlock(&umtx_lock);
1601                 return (0);
1602         }
1603
1604         if (pi->pi_owner != NULL) {
1605                 /*
1606                  * userland may have already messed the mutex, sigh.
1607                  */
1608                 mtx_unlock(&umtx_lock);
1609                 return (EPERM);
1610         }
1611         umtx_pi_setowner(pi, owner);
1612         uq = TAILQ_FIRST(&pi->pi_blocked);
1613         if (uq != NULL) {
1614                 pri = UPRI(uq->uq_thread);
1615                 thread_lock(owner);
1616                 if (pri < UPRI(owner))
1617                         sched_lend_user_prio(owner, pri);
1618                 thread_unlock(owner);
1619         }
1620         mtx_unlock(&umtx_lock);
1621         return (0);
1622 }
1623
1624 /*
1625  * Adjust a thread's order position in its blocked PI mutex,
1626  * this may result new priority propagating process.
1627  */
1628 void
1629 umtx_pi_adjust(struct thread *td, u_char oldpri)
1630 {
1631         struct umtx_q *uq;
1632         struct umtx_pi *pi;
1633
1634         uq = td->td_umtxq;
1635         mtx_lock(&umtx_lock);
1636         /*
1637          * Pick up the lock that td is blocked on.
1638          */
1639         pi = uq->uq_pi_blocked;
1640         if (pi != NULL) {
1641                 umtx_pi_adjust_thread(pi, td);
1642                 umtx_repropagate_priority(pi);
1643         }
1644         mtx_unlock(&umtx_lock);
1645 }
1646
1647 /*
1648  * Sleep on a PI mutex.
1649  */
1650 static int
1651 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
1652     const char *wmesg, struct abs_timeout *timo, bool shared)
1653 {
1654         struct thread *td, *td1;
1655         struct umtx_q *uq1;
1656         int error, pri;
1657 #ifdef INVARIANTS
1658         struct umtxq_chain *uc;
1659
1660         uc = umtxq_getchain(&pi->pi_key);
1661 #endif
1662         error = 0;
1663         td = uq->uq_thread;
1664         KASSERT(td == curthread, ("inconsistent uq_thread"));
1665         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
1666         KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
1667         umtxq_insert(uq);
1668         mtx_lock(&umtx_lock);
1669         if (pi->pi_owner == NULL) {
1670                 mtx_unlock(&umtx_lock);
1671                 td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
1672                 mtx_lock(&umtx_lock);
1673                 if (td1 != NULL) {
1674                         if (pi->pi_owner == NULL)
1675                                 umtx_pi_setowner(pi, td1);
1676                         PROC_UNLOCK(td1->td_proc);
1677                 }
1678         }
1679
1680         TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1681                 pri = UPRI(uq1->uq_thread);
1682                 if (pri > UPRI(td))
1683                         break;
1684         }
1685
1686         if (uq1 != NULL)
1687                 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1688         else
1689                 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1690
1691         uq->uq_pi_blocked = pi;
1692         thread_lock(td);
1693         td->td_flags |= TDF_UPIBLOCKED;
1694         thread_unlock(td);
1695         umtx_propagate_priority(td);
1696         mtx_unlock(&umtx_lock);
1697         umtxq_unbusy(&uq->uq_key);
1698
1699         error = umtxq_sleep(uq, wmesg, timo);
1700         umtxq_remove(uq);
1701
1702         mtx_lock(&umtx_lock);
1703         uq->uq_pi_blocked = NULL;
1704         thread_lock(td);
1705         td->td_flags &= ~TDF_UPIBLOCKED;
1706         thread_unlock(td);
1707         TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1708         umtx_repropagate_priority(pi);
1709         mtx_unlock(&umtx_lock);
1710         umtxq_unlock(&uq->uq_key);
1711
1712         return (error);
1713 }
1714
1715 /*
1716  * Add reference count for a PI mutex.
1717  */
1718 static void
1719 umtx_pi_ref(struct umtx_pi *pi)
1720 {
1721
1722         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
1723         pi->pi_refcount++;
1724 }
1725
1726 /*
1727  * Decrease reference count for a PI mutex, if the counter
1728  * is decreased to zero, its memory space is freed.
1729  */
1730 static void
1731 umtx_pi_unref(struct umtx_pi *pi)
1732 {
1733         struct umtxq_chain *uc;
1734
1735         uc = umtxq_getchain(&pi->pi_key);
1736         UMTXQ_LOCKED_ASSERT(uc);
1737         KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
1738         if (--pi->pi_refcount == 0) {
1739                 mtx_lock(&umtx_lock);
1740                 if (pi->pi_owner != NULL)
1741                         umtx_pi_disown(pi);
1742                 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
1743                         ("blocked queue not empty"));
1744                 mtx_unlock(&umtx_lock);
1745                 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
1746                 umtx_pi_free(pi);
1747         }
1748 }
1749
1750 /*
1751  * Find a PI mutex in hash table.
1752  */
1753 static struct umtx_pi *
1754 umtx_pi_lookup(struct umtx_key *key)
1755 {
1756         struct umtxq_chain *uc;
1757         struct umtx_pi *pi;
1758
1759         uc = umtxq_getchain(key);
1760         UMTXQ_LOCKED_ASSERT(uc);
1761
1762         TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
1763                 if (umtx_key_match(&pi->pi_key, key)) {
1764                         return (pi);
1765                 }
1766         }
1767         return (NULL);
1768 }
1769
1770 /*
1771  * Insert a PI mutex into hash table.
1772  */
1773 static inline void
1774 umtx_pi_insert(struct umtx_pi *pi)
1775 {
1776         struct umtxq_chain *uc;
1777
1778         uc = umtxq_getchain(&pi->pi_key);
1779         UMTXQ_LOCKED_ASSERT(uc);
1780         TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
1781 }
1782
1783 /*
1784  * Lock a PI mutex.
1785  */
1786 static int
1787 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
1788     struct _umtx_time *timeout, int try)
1789 {
1790         struct abs_timeout timo;
1791         struct umtx_q *uq;
1792         struct umtx_pi *pi, *new_pi;
1793         uint32_t id, old_owner, owner, old;
1794         int error, rv;
1795
1796         id = td->td_tid;
1797         uq = td->td_umtxq;
1798
1799         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
1800             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
1801             &uq->uq_key)) != 0)
1802                 return (error);
1803
1804         if (timeout != NULL)
1805                 abs_timeout_init2(&timo, timeout);
1806
1807         umtxq_lock(&uq->uq_key);
1808         pi = umtx_pi_lookup(&uq->uq_key);
1809         if (pi == NULL) {
1810                 new_pi = umtx_pi_alloc(M_NOWAIT);
1811                 if (new_pi == NULL) {
1812                         umtxq_unlock(&uq->uq_key);
1813                         new_pi = umtx_pi_alloc(M_WAITOK);
1814                         umtxq_lock(&uq->uq_key);
1815                         pi = umtx_pi_lookup(&uq->uq_key);
1816                         if (pi != NULL) {
1817                                 umtx_pi_free(new_pi);
1818                                 new_pi = NULL;
1819                         }
1820                 }
1821                 if (new_pi != NULL) {
1822                         new_pi->pi_key = uq->uq_key;
1823                         umtx_pi_insert(new_pi);
1824                         pi = new_pi;
1825                 }
1826         }
1827         umtx_pi_ref(pi);
1828         umtxq_unlock(&uq->uq_key);
1829
1830         /*
1831          * Care must be exercised when dealing with umtx structure.  It
1832          * can fault on any access.
1833          */
1834         for (;;) {
1835                 /*
1836                  * Try the uncontested case.  This should be done in userland.
1837                  */
1838                 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
1839                 /* The address was invalid. */
1840                 if (rv == -1) {
1841                         error = EFAULT;
1842                         break;
1843                 }
1844                 /* The acquire succeeded. */
1845                 if (rv == 0) {
1846                         MPASS(owner == UMUTEX_UNOWNED);
1847                         error = 0;
1848                         break;
1849                 }
1850
1851                 if (owner == UMUTEX_RB_NOTRECOV) {
1852                         error = ENOTRECOVERABLE;
1853                         break;
1854                 }
1855
1856                 /*
1857                  * Avoid overwriting a possible error from sleep due
1858                  * to the pending signal with suspension check result.
1859                  */
1860                 if (error == 0) {
1861                         error = thread_check_susp(td, true);
1862                         if (error != 0)
1863                                 break;
1864                 }
1865
1866                 /* If no one owns it but it is contested try to acquire it. */
1867                 if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
1868                         old_owner = owner;
1869                         rv = casueword32(&m->m_owner, owner, &owner,
1870                             id | UMUTEX_CONTESTED);
1871                         /* The address was invalid. */
1872                         if (rv == -1) {
1873                                 error = EFAULT;
1874                                 break;
1875                         }
1876                         if (rv == 1) {
1877                                 if (error == 0) {
1878                                         error = thread_check_susp(td, true);
1879                                         if (error != 0)
1880                                                 break;
1881                                 }
1882
1883                                 /*
1884                                  * If this failed the lock could
1885                                  * changed, restart.
1886                                  */
1887                                 continue;
1888                         }
1889
1890                         MPASS(rv == 0);
1891                         MPASS(owner == old_owner);
1892                         umtxq_lock(&uq->uq_key);
1893                         umtxq_busy(&uq->uq_key);
1894                         error = umtx_pi_claim(pi, td);
1895                         umtxq_unbusy(&uq->uq_key);
1896                         umtxq_unlock(&uq->uq_key);
1897                         if (error != 0) {
1898                                 /*
1899                                  * Since we're going to return an
1900                                  * error, restore the m_owner to its
1901                                  * previous, unowned state to avoid
1902                                  * compounding the problem.
1903                                  */
1904                                 (void)casuword32(&m->m_owner,
1905                                     id | UMUTEX_CONTESTED, old_owner);
1906                         }
1907                         if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
1908                                 error = EOWNERDEAD;
1909                         break;
1910                 }
1911
1912                 if ((owner & ~UMUTEX_CONTESTED) == id) {
1913                         error = EDEADLK;
1914                         break;
1915                 }
1916
1917                 if (try != 0) {
1918                         error = EBUSY;
1919                         break;
1920                 }
1921
1922                 /*
1923                  * If we caught a signal, we have retried and now
1924                  * exit immediately.
1925                  */
1926                 if (error != 0)
1927                         break;
1928
1929                 umtxq_lock(&uq->uq_key);
1930                 umtxq_busy(&uq->uq_key);
1931                 umtxq_unlock(&uq->uq_key);
1932
1933                 /*
1934                  * Set the contested bit so that a release in user space
1935                  * knows to use the system call for unlock.  If this fails
1936                  * either some one else has acquired the lock or it has been
1937                  * released.
1938                  */
1939                 rv = casueword32(&m->m_owner, owner, &old, owner |
1940                     UMUTEX_CONTESTED);
1941
1942                 /* The address was invalid. */
1943                 if (rv == -1) {
1944                         umtxq_unbusy_unlocked(&uq->uq_key);
1945                         error = EFAULT;
1946                         break;
1947                 }
1948                 if (rv == 1) {
1949                         umtxq_unbusy_unlocked(&uq->uq_key);
1950                         error = thread_check_susp(td, true);
1951                         if (error != 0)
1952                                 break;
1953
1954                         /*
1955                          * The lock changed and we need to retry or we
1956                          * lost a race to the thread unlocking the
1957                          * umtx.  Note that the UMUTEX_RB_OWNERDEAD
1958                          * value for owner is impossible there.
1959                          */
1960                         continue;
1961                 }
1962
1963                 umtxq_lock(&uq->uq_key);
1964
1965                 /* We set the contested bit, sleep. */
1966                 MPASS(old == owner);
1967                 error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
1968                     "umtxpi", timeout == NULL ? NULL : &timo,
1969                     (flags & USYNC_PROCESS_SHARED) != 0);
1970                 if (error != 0)
1971                         continue;
1972
1973                 error = thread_check_susp(td, false);
1974                 if (error != 0)
1975                         break;
1976         }
1977
1978         umtxq_lock(&uq->uq_key);
1979         umtx_pi_unref(pi);
1980         umtxq_unlock(&uq->uq_key);
1981
1982         umtx_key_release(&uq->uq_key);
1983         return (error);
1984 }
1985
1986 /*
1987  * Unlock a PI mutex.
1988  */
1989 static int
1990 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1991 {
1992         struct umtx_key key;
1993         struct umtx_q *uq_first, *uq_first2, *uq_me;
1994         struct umtx_pi *pi, *pi2;
1995         uint32_t id, new_owner, old, owner;
1996         int count, error, pri;
1997
1998         id = td->td_tid;
1999
2000 usrloop:
2001         /*
2002          * Make sure we own this mtx.
2003          */
2004         error = fueword32(&m->m_owner, &owner);
2005         if (error == -1)
2006                 return (EFAULT);
2007
2008         if ((owner & ~UMUTEX_CONTESTED) != id)
2009                 return (EPERM);
2010
2011         new_owner = umtx_unlock_val(flags, rb);
2012
2013         /* This should be done in userland */
2014         if ((owner & UMUTEX_CONTESTED) == 0) {
2015                 error = casueword32(&m->m_owner, owner, &old, new_owner);
2016                 if (error == -1)
2017                         return (EFAULT);
2018                 if (error == 1) {
2019                         error = thread_check_susp(td, true);
2020                         if (error != 0)
2021                                 return (error);
2022                         goto usrloop;
2023                 }
2024                 if (old == owner)
2025                         return (0);
2026                 owner = old;
2027         }
2028
2029         /* We should only ever be in here for contested locks */
2030         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2031             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2032             &key)) != 0)
2033                 return (error);
2034
2035         umtxq_lock(&key);
2036         umtxq_busy(&key);
2037         count = umtxq_count_pi(&key, &uq_first);
2038         if (uq_first != NULL) {
2039                 mtx_lock(&umtx_lock);
2040                 pi = uq_first->uq_pi_blocked;
2041                 KASSERT(pi != NULL, ("pi == NULL?"));
2042                 if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2043                         mtx_unlock(&umtx_lock);
2044                         umtxq_unbusy(&key);
2045                         umtxq_unlock(&key);
2046                         umtx_key_release(&key);
2047                         /* userland messed the mutex */
2048                         return (EPERM);
2049                 }
2050                 uq_me = td->td_umtxq;
2051                 if (pi->pi_owner == td)
2052                         umtx_pi_disown(pi);
2053                 /* get highest priority thread which is still sleeping. */
2054                 uq_first = TAILQ_FIRST(&pi->pi_blocked);
2055                 while (uq_first != NULL &&
2056                     (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2057                         uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2058                 }
2059                 pri = PRI_MAX;
2060                 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2061                         uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2062                         if (uq_first2 != NULL) {
2063                                 if (pri > UPRI(uq_first2->uq_thread))
2064                                         pri = UPRI(uq_first2->uq_thread);
2065                         }
2066                 }
2067                 thread_lock(td);
2068                 sched_lend_user_prio(td, pri);
2069                 thread_unlock(td);
2070                 mtx_unlock(&umtx_lock);
2071                 if (uq_first)
2072                         umtxq_signal_thread(uq_first);
2073         } else {
2074                 pi = umtx_pi_lookup(&key);
2075                 /*
2076                  * A umtx_pi can exist if a signal or timeout removed the
2077                  * last waiter from the umtxq, but there is still
2078                  * a thread in do_lock_pi() holding the umtx_pi.
2079                  */
2080                 if (pi != NULL) {
2081                         /*
2082                          * The umtx_pi can be unowned, such as when a thread
2083                          * has just entered do_lock_pi(), allocated the
2084                          * umtx_pi, and unlocked the umtxq.
2085                          * If the current thread owns it, it must disown it.
2086                          */
2087                         mtx_lock(&umtx_lock);
2088                         if (pi->pi_owner == td)
2089                                 umtx_pi_disown(pi);
2090                         mtx_unlock(&umtx_lock);
2091                 }
2092         }
2093         umtxq_unlock(&key);
2094
2095         /*
2096          * When unlocking the umtx, it must be marked as unowned if
2097          * there is zero or one thread only waiting for it.
2098          * Otherwise, it must be marked as contested.
2099          */
2100
2101         if (count > 1)
2102                 new_owner |= UMUTEX_CONTESTED;
2103 again:
2104         error = casueword32(&m->m_owner, owner, &old, new_owner);
2105         if (error == 1) {
2106                 error = thread_check_susp(td, false);
2107                 if (error == 0)
2108                         goto again;
2109         }
2110         umtxq_unbusy_unlocked(&key);
2111         umtx_key_release(&key);
2112         if (error == -1)
2113                 return (EFAULT);
2114         if (error == 0 && old != owner)
2115                 return (EINVAL);
2116         return (error);
2117 }
2118
2119 /*
2120  * Lock a PP mutex.
2121  */
2122 static int
2123 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2124     struct _umtx_time *timeout, int try)
2125 {
2126         struct abs_timeout timo;
2127         struct umtx_q *uq, *uq2;
2128         struct umtx_pi *pi;
2129         uint32_t ceiling;
2130         uint32_t owner, id;
2131         int error, pri, old_inherited_pri, su, rv;
2132
2133         id = td->td_tid;
2134         uq = td->td_umtxq;
2135         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2136             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2137             &uq->uq_key)) != 0)
2138                 return (error);
2139
2140         if (timeout != NULL)
2141                 abs_timeout_init2(&timo, timeout);
2142
2143         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2144         for (;;) {
2145                 old_inherited_pri = uq->uq_inherited_pri;
2146                 umtxq_lock(&uq->uq_key);
2147                 umtxq_busy(&uq->uq_key);
2148                 umtxq_unlock(&uq->uq_key);
2149
2150                 rv = fueword32(&m->m_ceilings[0], &ceiling);
2151                 if (rv == -1) {
2152                         error = EFAULT;
2153                         goto out;
2154                 }
2155                 ceiling = RTP_PRIO_MAX - ceiling;
2156                 if (ceiling > RTP_PRIO_MAX) {
2157                         error = EINVAL;
2158                         goto out;
2159                 }
2160
2161                 mtx_lock(&umtx_lock);
2162                 if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2163                         mtx_unlock(&umtx_lock);
2164                         error = EINVAL;
2165                         goto out;
2166                 }
2167                 if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2168                         uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2169                         thread_lock(td);
2170                         if (uq->uq_inherited_pri < UPRI(td))
2171                                 sched_lend_user_prio(td, uq->uq_inherited_pri);
2172                         thread_unlock(td);
2173                 }
2174                 mtx_unlock(&umtx_lock);
2175
2176                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2177                     id | UMUTEX_CONTESTED);
2178                 /* The address was invalid. */
2179                 if (rv == -1) {
2180                         error = EFAULT;
2181                         break;
2182                 }
2183                 if (rv == 0) {
2184                         MPASS(owner == UMUTEX_CONTESTED);
2185                         error = 0;
2186                         break;
2187                 }
2188                 /* rv == 1 */
2189                 if (owner == UMUTEX_RB_OWNERDEAD) {
2190                         rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2191                             &owner, id | UMUTEX_CONTESTED);
2192                         if (rv == -1) {
2193                                 error = EFAULT;
2194                                 break;
2195                         }
2196                         if (rv == 0) {
2197                                 MPASS(owner == UMUTEX_RB_OWNERDEAD);
2198                                 error = EOWNERDEAD; /* success */
2199                                 break;
2200                         }
2201
2202                         /*
2203                          *  rv == 1, only check for suspension if we
2204                          *  did not already catched a signal.  If we
2205                          *  get an error from the check, the same
2206                          *  condition is checked by the umtxq_sleep()
2207                          *  call below, so we should obliterate the
2208                          *  error to not skip the last loop iteration.
2209                          */
2210                         if (error == 0) {
2211                                 error = thread_check_susp(td, false);
2212                                 if (error == 0) {
2213                                         if (try != 0)
2214                                                 error = EBUSY;
2215                                         else
2216                                                 continue;
2217                                 }
2218                                 error = 0;
2219                         }
2220                 } else if (owner == UMUTEX_RB_NOTRECOV) {
2221                         error = ENOTRECOVERABLE;
2222                 }
2223
2224                 if (try != 0)
2225                         error = EBUSY;
2226
2227                 /*
2228                  * If we caught a signal, we have retried and now
2229                  * exit immediately.
2230                  */
2231                 if (error != 0)
2232                         break;
2233
2234                 umtxq_lock(&uq->uq_key);
2235                 umtxq_insert(uq);
2236                 umtxq_unbusy(&uq->uq_key);
2237                 error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2238                     NULL : &timo);
2239                 umtxq_remove(uq);
2240                 umtxq_unlock(&uq->uq_key);
2241
2242                 mtx_lock(&umtx_lock);
2243                 uq->uq_inherited_pri = old_inherited_pri;
2244                 pri = PRI_MAX;
2245                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2246                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
2247                         if (uq2 != NULL) {
2248                                 if (pri > UPRI(uq2->uq_thread))
2249                                         pri = UPRI(uq2->uq_thread);
2250                         }
2251                 }
2252                 if (pri > uq->uq_inherited_pri)
2253                         pri = uq->uq_inherited_pri;
2254                 thread_lock(td);
2255                 sched_lend_user_prio(td, pri);
2256                 thread_unlock(td);
2257                 mtx_unlock(&umtx_lock);
2258         }
2259
2260         if (error != 0 && error != EOWNERDEAD) {
2261                 mtx_lock(&umtx_lock);
2262                 uq->uq_inherited_pri = old_inherited_pri;
2263                 pri = PRI_MAX;
2264                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2265                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
2266                         if (uq2 != NULL) {
2267                                 if (pri > UPRI(uq2->uq_thread))
2268                                         pri = UPRI(uq2->uq_thread);
2269                         }
2270                 }
2271                 if (pri > uq->uq_inherited_pri)
2272                         pri = uq->uq_inherited_pri;
2273                 thread_lock(td);
2274                 sched_lend_user_prio(td, pri);
2275                 thread_unlock(td);
2276                 mtx_unlock(&umtx_lock);
2277         }
2278
2279 out:
2280         umtxq_unbusy_unlocked(&uq->uq_key);
2281         umtx_key_release(&uq->uq_key);
2282         return (error);
2283 }
2284
2285 /*
2286  * Unlock a PP mutex.
2287  */
2288 static int
2289 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2290 {
2291         struct umtx_key key;
2292         struct umtx_q *uq, *uq2;
2293         struct umtx_pi *pi;
2294         uint32_t id, owner, rceiling;
2295         int error, pri, new_inherited_pri, su;
2296
2297         id = td->td_tid;
2298         uq = td->td_umtxq;
2299         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2300
2301         /*
2302          * Make sure we own this mtx.
2303          */
2304         error = fueword32(&m->m_owner, &owner);
2305         if (error == -1)
2306                 return (EFAULT);
2307
2308         if ((owner & ~UMUTEX_CONTESTED) != id)
2309                 return (EPERM);
2310
2311         error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2312         if (error != 0)
2313                 return (error);
2314
2315         if (rceiling == -1)
2316                 new_inherited_pri = PRI_MAX;
2317         else {
2318                 rceiling = RTP_PRIO_MAX - rceiling;
2319                 if (rceiling > RTP_PRIO_MAX)
2320                         return (EINVAL);
2321                 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2322         }
2323
2324         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2325             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2326             &key)) != 0)
2327                 return (error);
2328         umtxq_lock(&key);
2329         umtxq_busy(&key);
2330         umtxq_unlock(&key);
2331         /*
2332          * For priority protected mutex, always set unlocked state
2333          * to UMUTEX_CONTESTED, so that userland always enters kernel
2334          * to lock the mutex, it is necessary because thread priority
2335          * has to be adjusted for such mutex.
2336          */
2337         error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2338             UMUTEX_CONTESTED);
2339
2340         umtxq_lock(&key);
2341         if (error == 0)
2342                 umtxq_signal(&key, 1);
2343         umtxq_unbusy(&key);
2344         umtxq_unlock(&key);
2345
2346         if (error == -1)
2347                 error = EFAULT;
2348         else {
2349                 mtx_lock(&umtx_lock);
2350                 if (su != 0)
2351                         uq->uq_inherited_pri = new_inherited_pri;
2352                 pri = PRI_MAX;
2353                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2354                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
2355                         if (uq2 != NULL) {
2356                                 if (pri > UPRI(uq2->uq_thread))
2357                                         pri = UPRI(uq2->uq_thread);
2358                         }
2359                 }
2360                 if (pri > uq->uq_inherited_pri)
2361                         pri = uq->uq_inherited_pri;
2362                 thread_lock(td);
2363                 sched_lend_user_prio(td, pri);
2364                 thread_unlock(td);
2365                 mtx_unlock(&umtx_lock);
2366         }
2367         umtx_key_release(&key);
2368         return (error);
2369 }
2370
2371 static int
2372 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2373     uint32_t *old_ceiling)
2374 {
2375         struct umtx_q *uq;
2376         uint32_t flags, id, owner, save_ceiling;
2377         int error, rv, rv1;
2378
2379         error = fueword32(&m->m_flags, &flags);
2380         if (error == -1)
2381                 return (EFAULT);
2382         if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2383                 return (EINVAL);
2384         if (ceiling > RTP_PRIO_MAX)
2385                 return (EINVAL);
2386         id = td->td_tid;
2387         uq = td->td_umtxq;
2388         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2389             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2390             &uq->uq_key)) != 0)
2391                 return (error);
2392         for (;;) {
2393                 umtxq_lock(&uq->uq_key);
2394                 umtxq_busy(&uq->uq_key);
2395                 umtxq_unlock(&uq->uq_key);
2396
2397                 rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2398                 if (rv == -1) {
2399                         error = EFAULT;
2400                         break;
2401                 }
2402
2403                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2404                     id | UMUTEX_CONTESTED);
2405                 if (rv == -1) {
2406                         error = EFAULT;
2407                         break;
2408                 }
2409
2410                 if (rv == 0) {
2411                         MPASS(owner == UMUTEX_CONTESTED);
2412                         rv = suword32(&m->m_ceilings[0], ceiling);
2413                         rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2414                         error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2415                         break;
2416                 }
2417
2418                 if ((owner & ~UMUTEX_CONTESTED) == id) {
2419                         rv = suword32(&m->m_ceilings[0], ceiling);
2420                         error = rv == 0 ? 0 : EFAULT;
2421                         break;
2422                 }
2423
2424                 if (owner == UMUTEX_RB_OWNERDEAD) {
2425                         error = EOWNERDEAD;
2426                         break;
2427                 } else if (owner == UMUTEX_RB_NOTRECOV) {
2428                         error = ENOTRECOVERABLE;
2429                         break;
2430                 }
2431
2432                 /*
2433                  * If we caught a signal, we have retried and now
2434                  * exit immediately.
2435                  */
2436                 if (error != 0)
2437                         break;
2438
2439                 /*
2440                  * We set the contested bit, sleep. Otherwise the lock changed
2441                  * and we need to retry or we lost a race to the thread
2442                  * unlocking the umtx.
2443                  */
2444                 umtxq_lock(&uq->uq_key);
2445                 umtxq_insert(uq);
2446                 umtxq_unbusy(&uq->uq_key);
2447                 error = umtxq_sleep(uq, "umtxpp", NULL);
2448                 umtxq_remove(uq);
2449                 umtxq_unlock(&uq->uq_key);
2450         }
2451         umtxq_lock(&uq->uq_key);
2452         if (error == 0)
2453                 umtxq_signal(&uq->uq_key, INT_MAX);
2454         umtxq_unbusy(&uq->uq_key);
2455         umtxq_unlock(&uq->uq_key);
2456         umtx_key_release(&uq->uq_key);
2457         if (error == 0 && old_ceiling != NULL) {
2458                 rv = suword32(old_ceiling, save_ceiling);
2459                 error = rv == 0 ? 0 : EFAULT;
2460         }
2461         return (error);
2462 }
2463
2464 /*
2465  * Lock a userland POSIX mutex.
2466  */
2467 static int
2468 do_lock_umutex(struct thread *td, struct umutex *m,
2469     struct _umtx_time *timeout, int mode)
2470 {
2471         uint32_t flags;
2472         int error;
2473
2474         error = fueword32(&m->m_flags, &flags);
2475         if (error == -1)
2476                 return (EFAULT);
2477
2478         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2479         case 0:
2480                 error = do_lock_normal(td, m, flags, timeout, mode);
2481                 break;
2482         case UMUTEX_PRIO_INHERIT:
2483                 error = do_lock_pi(td, m, flags, timeout, mode);
2484                 break;
2485         case UMUTEX_PRIO_PROTECT:
2486                 error = do_lock_pp(td, m, flags, timeout, mode);
2487                 break;
2488         default:
2489                 return (EINVAL);
2490         }
2491         if (timeout == NULL) {
2492                 if (error == EINTR && mode != _UMUTEX_WAIT)
2493                         error = ERESTART;
2494         } else {
2495                 /* Timed-locking is not restarted. */
2496                 if (error == ERESTART)
2497                         error = EINTR;
2498         }
2499         return (error);
2500 }
2501
2502 /*
2503  * Unlock a userland POSIX mutex.
2504  */
2505 static int
2506 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2507 {
2508         uint32_t flags;
2509         int error;
2510
2511         error = fueword32(&m->m_flags, &flags);
2512         if (error == -1)
2513                 return (EFAULT);
2514
2515         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2516         case 0:
2517                 return (do_unlock_normal(td, m, flags, rb));
2518         case UMUTEX_PRIO_INHERIT:
2519                 return (do_unlock_pi(td, m, flags, rb));
2520         case UMUTEX_PRIO_PROTECT:
2521                 return (do_unlock_pp(td, m, flags, rb));
2522         }
2523
2524         return (EINVAL);
2525 }
2526
2527 static int
2528 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2529     struct timespec *timeout, u_long wflags)
2530 {
2531         struct abs_timeout timo;
2532         struct umtx_q *uq;
2533         uint32_t flags, clockid, hasw;
2534         int error;
2535
2536         uq = td->td_umtxq;
2537         error = fueword32(&cv->c_flags, &flags);
2538         if (error == -1)
2539                 return (EFAULT);
2540         error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2541         if (error != 0)
2542                 return (error);
2543
2544         if ((wflags & CVWAIT_CLOCKID) != 0) {
2545                 error = fueword32(&cv->c_clockid, &clockid);
2546                 if (error == -1) {
2547                         umtx_key_release(&uq->uq_key);
2548                         return (EFAULT);
2549                 }
2550                 if (clockid < CLOCK_REALTIME ||
2551                     clockid >= CLOCK_THREAD_CPUTIME_ID) {
2552                         /* hmm, only HW clock id will work. */
2553                         umtx_key_release(&uq->uq_key);
2554                         return (EINVAL);
2555                 }
2556         } else {
2557                 clockid = CLOCK_REALTIME;
2558         }
2559
2560         umtxq_lock(&uq->uq_key);
2561         umtxq_busy(&uq->uq_key);
2562         umtxq_insert(uq);
2563         umtxq_unlock(&uq->uq_key);
2564
2565         /*
2566          * Set c_has_waiters to 1 before releasing user mutex, also
2567          * don't modify cache line when unnecessary.
2568          */
2569         error = fueword32(&cv->c_has_waiters, &hasw);
2570         if (error == 0 && hasw == 0)
2571                 suword32(&cv->c_has_waiters, 1);
2572
2573         umtxq_unbusy_unlocked(&uq->uq_key);
2574
2575         error = do_unlock_umutex(td, m, false);
2576
2577         if (timeout != NULL)
2578                 abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
2579                     timeout);
2580
2581         umtxq_lock(&uq->uq_key);
2582         if (error == 0) {
2583                 error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2584                     NULL : &timo);
2585         }
2586
2587         if ((uq->uq_flags & UQF_UMTXQ) == 0)
2588                 error = 0;
2589         else {
2590                 /*
2591                  * This must be timeout,interrupted by signal or
2592                  * surprious wakeup, clear c_has_waiter flag when
2593                  * necessary.
2594                  */
2595                 umtxq_busy(&uq->uq_key);
2596                 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2597                         int oldlen = uq->uq_cur_queue->length;
2598                         umtxq_remove(uq);
2599                         if (oldlen == 1) {
2600                                 umtxq_unlock(&uq->uq_key);
2601                                 suword32(&cv->c_has_waiters, 0);
2602                                 umtxq_lock(&uq->uq_key);
2603                         }
2604                 }
2605                 umtxq_unbusy(&uq->uq_key);
2606                 if (error == ERESTART)
2607                         error = EINTR;
2608         }
2609
2610         umtxq_unlock(&uq->uq_key);
2611         umtx_key_release(&uq->uq_key);
2612         return (error);
2613 }
2614
2615 /*
2616  * Signal a userland condition variable.
2617  */
2618 static int
2619 do_cv_signal(struct thread *td, struct ucond *cv)
2620 {
2621         struct umtx_key key;
2622         int error, cnt, nwake;
2623         uint32_t flags;
2624
2625         error = fueword32(&cv->c_flags, &flags);
2626         if (error == -1)
2627                 return (EFAULT);
2628         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2629                 return (error);
2630         umtxq_lock(&key);
2631         umtxq_busy(&key);
2632         cnt = umtxq_count(&key);
2633         nwake = umtxq_signal(&key, 1);
2634         if (cnt <= nwake) {
2635                 umtxq_unlock(&key);
2636                 error = suword32(&cv->c_has_waiters, 0);
2637                 if (error == -1)
2638                         error = EFAULT;
2639                 umtxq_lock(&key);
2640         }
2641         umtxq_unbusy(&key);
2642         umtxq_unlock(&key);
2643         umtx_key_release(&key);
2644         return (error);
2645 }
2646
2647 static int
2648 do_cv_broadcast(struct thread *td, struct ucond *cv)
2649 {
2650         struct umtx_key key;
2651         int error;
2652         uint32_t flags;
2653
2654         error = fueword32(&cv->c_flags, &flags);
2655         if (error == -1)
2656                 return (EFAULT);
2657         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2658                 return (error);
2659
2660         umtxq_lock(&key);
2661         umtxq_busy(&key);
2662         umtxq_signal(&key, INT_MAX);
2663         umtxq_unlock(&key);
2664
2665         error = suword32(&cv->c_has_waiters, 0);
2666         if (error == -1)
2667                 error = EFAULT;
2668
2669         umtxq_unbusy_unlocked(&key);
2670
2671         umtx_key_release(&key);
2672         return (error);
2673 }
2674
2675 static int
2676 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
2677     struct _umtx_time *timeout)
2678 {
2679         struct abs_timeout timo;
2680         struct umtx_q *uq;
2681         uint32_t flags, wrflags;
2682         int32_t state, oldstate;
2683         int32_t blocked_readers;
2684         int error, error1, rv;
2685
2686         uq = td->td_umtxq;
2687         error = fueword32(&rwlock->rw_flags, &flags);
2688         if (error == -1)
2689                 return (EFAULT);
2690         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2691         if (error != 0)
2692                 return (error);
2693
2694         if (timeout != NULL)
2695                 abs_timeout_init2(&timo, timeout);
2696
2697         wrflags = URWLOCK_WRITE_OWNER;
2698         if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
2699                 wrflags |= URWLOCK_WRITE_WAITERS;
2700
2701         for (;;) {
2702                 rv = fueword32(&rwlock->rw_state, &state);
2703                 if (rv == -1) {
2704                         umtx_key_release(&uq->uq_key);
2705                         return (EFAULT);
2706                 }
2707
2708                 /* try to lock it */
2709                 while (!(state & wrflags)) {
2710                         if (__predict_false(URWLOCK_READER_COUNT(state) ==
2711                             URWLOCK_MAX_READERS)) {
2712                                 umtx_key_release(&uq->uq_key);
2713                                 return (EAGAIN);
2714                         }
2715                         rv = casueword32(&rwlock->rw_state, state,
2716                             &oldstate, state + 1);
2717                         if (rv == -1) {
2718                                 umtx_key_release(&uq->uq_key);
2719                                 return (EFAULT);
2720                         }
2721                         if (rv == 0) {
2722                                 MPASS(oldstate == state);
2723                                 umtx_key_release(&uq->uq_key);
2724                                 return (0);
2725                         }
2726                         error = thread_check_susp(td, true);
2727                         if (error != 0)
2728                                 break;
2729                         state = oldstate;
2730                 }
2731
2732                 if (error)
2733                         break;
2734
2735                 /* grab monitor lock */
2736                 umtxq_lock(&uq->uq_key);
2737                 umtxq_busy(&uq->uq_key);
2738                 umtxq_unlock(&uq->uq_key);
2739
2740                 /*
2741                  * re-read the state, in case it changed between the try-lock above
2742                  * and the check below
2743                  */
2744                 rv = fueword32(&rwlock->rw_state, &state);
2745                 if (rv == -1)
2746                         error = EFAULT;
2747
2748                 /* set read contention bit */
2749                 while (error == 0 && (state & wrflags) &&
2750                     !(state & URWLOCK_READ_WAITERS)) {
2751                         rv = casueword32(&rwlock->rw_state, state,
2752                             &oldstate, state | URWLOCK_READ_WAITERS);
2753                         if (rv == -1) {
2754                                 error = EFAULT;
2755                                 break;
2756                         }
2757                         if (rv == 0) {
2758                                 MPASS(oldstate == state);
2759                                 goto sleep;
2760                         }
2761                         state = oldstate;
2762                         error = thread_check_susp(td, false);
2763                         if (error != 0)
2764                                 break;
2765                 }
2766                 if (error != 0) {
2767                         umtxq_unbusy_unlocked(&uq->uq_key);
2768                         break;
2769                 }
2770
2771                 /* state is changed while setting flags, restart */
2772                 if (!(state & wrflags)) {
2773                         umtxq_unbusy_unlocked(&uq->uq_key);
2774                         error = thread_check_susp(td, true);
2775                         if (error != 0)
2776                                 break;
2777                         continue;
2778                 }
2779
2780 sleep:
2781                 /*
2782                  * Contention bit is set, before sleeping, increase
2783                  * read waiter count.
2784                  */
2785                 rv = fueword32(&rwlock->rw_blocked_readers,
2786                     &blocked_readers);
2787                 if (rv == -1) {
2788                         umtxq_unbusy_unlocked(&uq->uq_key);
2789                         error = EFAULT;
2790                         break;
2791                 }
2792                 suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
2793
2794                 while (state & wrflags) {
2795                         umtxq_lock(&uq->uq_key);
2796                         umtxq_insert(uq);
2797                         umtxq_unbusy(&uq->uq_key);
2798
2799                         error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
2800                             NULL : &timo);
2801
2802                         umtxq_busy(&uq->uq_key);
2803                         umtxq_remove(uq);
2804                         umtxq_unlock(&uq->uq_key);
2805                         if (error)
2806                                 break;
2807                         rv = fueword32(&rwlock->rw_state, &state);
2808                         if (rv == -1) {
2809                                 error = EFAULT;
2810                                 break;
2811                         }
2812                 }
2813
2814                 /* decrease read waiter count, and may clear read contention bit */
2815                 rv = fueword32(&rwlock->rw_blocked_readers,
2816                     &blocked_readers);
2817                 if (rv == -1) {
2818                         umtxq_unbusy_unlocked(&uq->uq_key);
2819                         error = EFAULT;
2820                         break;
2821                 }
2822                 suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
2823                 if (blocked_readers == 1) {
2824                         rv = fueword32(&rwlock->rw_state, &state);
2825                         if (rv == -1) {
2826                                 umtxq_unbusy_unlocked(&uq->uq_key);
2827                                 error = EFAULT;
2828                                 break;
2829                         }
2830                         for (;;) {
2831                                 rv = casueword32(&rwlock->rw_state, state,
2832                                     &oldstate, state & ~URWLOCK_READ_WAITERS);
2833                                 if (rv == -1) {
2834                                         error = EFAULT;
2835                                         break;
2836                                 }
2837                                 if (rv == 0) {
2838                                         MPASS(oldstate == state);
2839                                         break;
2840                                 }
2841                                 state = oldstate;
2842                                 error1 = thread_check_susp(td, false);
2843                                 if (error1 != 0) {
2844                                         if (error == 0)
2845                                                 error = error1;
2846                                         break;
2847                                 }
2848                         }
2849                 }
2850
2851                 umtxq_unbusy_unlocked(&uq->uq_key);
2852                 if (error != 0)
2853                         break;
2854         }
2855         umtx_key_release(&uq->uq_key);
2856         if (error == ERESTART)
2857                 error = EINTR;
2858         return (error);
2859 }
2860
2861 static int
2862 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
2863 {
2864         struct abs_timeout timo;
2865         struct umtx_q *uq;
2866         uint32_t flags;
2867         int32_t state, oldstate;
2868         int32_t blocked_writers;
2869         int32_t blocked_readers;
2870         int error, error1, rv;
2871
2872         uq = td->td_umtxq;
2873         error = fueword32(&rwlock->rw_flags, &flags);
2874         if (error == -1)
2875                 return (EFAULT);
2876         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2877         if (error != 0)
2878                 return (error);
2879
2880         if (timeout != NULL)
2881                 abs_timeout_init2(&timo, timeout);
2882
2883         blocked_readers = 0;
2884         for (;;) {
2885                 rv = fueword32(&rwlock->rw_state, &state);
2886                 if (rv == -1) {
2887                         umtx_key_release(&uq->uq_key);
2888                         return (EFAULT);
2889                 }
2890                 while ((state & URWLOCK_WRITE_OWNER) == 0 &&
2891                     URWLOCK_READER_COUNT(state) == 0) {
2892                         rv = casueword32(&rwlock->rw_state, state,
2893                             &oldstate, state | URWLOCK_WRITE_OWNER);
2894                         if (rv == -1) {
2895                                 umtx_key_release(&uq->uq_key);
2896                                 return (EFAULT);
2897                         }
2898                         if (rv == 0) {
2899                                 MPASS(oldstate == state);
2900                                 umtx_key_release(&uq->uq_key);
2901                                 return (0);
2902                         }
2903                         state = oldstate;
2904                         error = thread_check_susp(td, true);
2905                         if (error != 0)
2906                                 break;
2907                 }
2908
2909                 if (error) {
2910                         if ((state & (URWLOCK_WRITE_OWNER |
2911                             URWLOCK_WRITE_WAITERS)) == 0 &&
2912                             blocked_readers != 0) {
2913                                 umtxq_lock(&uq->uq_key);
2914                                 umtxq_busy(&uq->uq_key);
2915                                 umtxq_signal_queue(&uq->uq_key, INT_MAX,
2916                                     UMTX_SHARED_QUEUE);
2917                                 umtxq_unbusy(&uq->uq_key);
2918                                 umtxq_unlock(&uq->uq_key);
2919                         }
2920
2921                         break;
2922                 }
2923
2924                 /* grab monitor lock */
2925                 umtxq_lock(&uq->uq_key);
2926                 umtxq_busy(&uq->uq_key);
2927                 umtxq_unlock(&uq->uq_key);
2928
2929                 /*
2930                  * Re-read the state, in case it changed between the
2931                  * try-lock above and the check below.
2932                  */
2933                 rv = fueword32(&rwlock->rw_state, &state);
2934                 if (rv == -1)
2935                         error = EFAULT;
2936
2937                 while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
2938                     URWLOCK_READER_COUNT(state) != 0) &&
2939                     (state & URWLOCK_WRITE_WAITERS) == 0) {
2940                         rv = casueword32(&rwlock->rw_state, state,
2941                             &oldstate, state | URWLOCK_WRITE_WAITERS);
2942                         if (rv == -1) {
2943                                 error = EFAULT;
2944                                 break;
2945                         }
2946                         if (rv == 0) {
2947                                 MPASS(oldstate == state);
2948                                 goto sleep;
2949                         }
2950                         state = oldstate;
2951                         error = thread_check_susp(td, false);
2952                         if (error != 0)
2953                                 break;
2954                 }
2955                 if (error != 0) {
2956                         umtxq_unbusy_unlocked(&uq->uq_key);
2957                         break;
2958                 }
2959
2960                 if ((state & URWLOCK_WRITE_OWNER) == 0 &&
2961                     URWLOCK_READER_COUNT(state) == 0) {
2962                         umtxq_unbusy_unlocked(&uq->uq_key);
2963                         error = thread_check_susp(td, false);
2964                         if (error != 0)
2965                                 break;
2966                         continue;
2967                 }
2968 sleep:
2969                 rv = fueword32(&rwlock->rw_blocked_writers,
2970                     &blocked_writers);
2971                 if (rv == -1) {
2972                         umtxq_unbusy_unlocked(&uq->uq_key);
2973                         error = EFAULT;
2974                         break;
2975                 }
2976                 suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
2977
2978                 while ((state & URWLOCK_WRITE_OWNER) ||
2979                     URWLOCK_READER_COUNT(state) != 0) {
2980                         umtxq_lock(&uq->uq_key);
2981                         umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2982                         umtxq_unbusy(&uq->uq_key);
2983
2984                         error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
2985                             NULL : &timo);
2986
2987                         umtxq_busy(&uq->uq_key);
2988                         umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2989                         umtxq_unlock(&uq->uq_key);
2990                         if (error)
2991                                 break;
2992                         rv = fueword32(&rwlock->rw_state, &state);
2993                         if (rv == -1) {
2994                                 error = EFAULT;
2995                                 break;
2996                         }
2997                 }
2998
2999                 rv = fueword32(&rwlock->rw_blocked_writers,
3000                     &blocked_writers);
3001                 if (rv == -1) {
3002                         umtxq_unbusy_unlocked(&uq->uq_key);
3003                         error = EFAULT;
3004                         break;
3005                 }
3006                 suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
3007                 if (blocked_writers == 1) {
3008                         rv = fueword32(&rwlock->rw_state, &state);
3009                         if (rv == -1) {
3010                                 umtxq_unbusy_unlocked(&uq->uq_key);
3011                                 error = EFAULT;
3012                                 break;
3013                         }
3014                         for (;;) {
3015                                 rv = casueword32(&rwlock->rw_state, state,
3016                                     &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3017                                 if (rv == -1) {
3018                                         error = EFAULT;
3019                                         break;
3020                                 }
3021                                 if (rv == 0) {
3022                                         MPASS(oldstate == state);
3023                                         break;
3024                                 }
3025                                 state = oldstate;
3026                                 error1 = thread_check_susp(td, false);
3027                                 /*
3028                                  * We are leaving the URWLOCK_WRITE_WAITERS
3029                                  * behind, but this should not harm the
3030                                  * correctness.
3031                                  */
3032                                 if (error1 != 0) {
3033                                         if (error == 0)
3034                                                 error = error1;
3035                                         break;
3036                                 }
3037                         }
3038                         rv = fueword32(&rwlock->rw_blocked_readers,
3039                             &blocked_readers);
3040                         if (rv == -1) {
3041                                 umtxq_unbusy_unlocked(&uq->uq_key);
3042                                 error = EFAULT;
3043                                 break;
3044                         }
3045                 } else
3046                         blocked_readers = 0;
3047
3048                 umtxq_unbusy_unlocked(&uq->uq_key);
3049         }
3050
3051         umtx_key_release(&uq->uq_key);
3052         if (error == ERESTART)
3053                 error = EINTR;
3054         return (error);
3055 }
3056
3057 static int
3058 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3059 {
3060         struct umtx_q *uq;
3061         uint32_t flags;
3062         int32_t state, oldstate;
3063         int error, rv, q, count;
3064
3065         uq = td->td_umtxq;
3066         error = fueword32(&rwlock->rw_flags, &flags);
3067         if (error == -1)
3068                 return (EFAULT);
3069         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3070         if (error != 0)
3071                 return (error);
3072
3073         error = fueword32(&rwlock->rw_state, &state);
3074         if (error == -1) {
3075                 error = EFAULT;
3076                 goto out;
3077         }
3078         if (state & URWLOCK_WRITE_OWNER) {
3079                 for (;;) {
3080                         rv = casueword32(&rwlock->rw_state, state,
3081                             &oldstate, state & ~URWLOCK_WRITE_OWNER);
3082                         if (rv == -1) {
3083                                 error = EFAULT;
3084                                 goto out;
3085                         }
3086                         if (rv == 1) {
3087                                 state = oldstate;
3088                                 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3089                                         error = EPERM;
3090                                         goto out;
3091                                 }
3092                                 error = thread_check_susp(td, true);
3093                                 if (error != 0)
3094                                         goto out;
3095                         } else
3096                                 break;
3097                 }
3098         } else if (URWLOCK_READER_COUNT(state) != 0) {
3099                 for (;;) {
3100                         rv = casueword32(&rwlock->rw_state, state,
3101                             &oldstate, state - 1);
3102                         if (rv == -1) {
3103                                 error = EFAULT;
3104                                 goto out;
3105                         }
3106                         if (rv == 1) {
3107                                 state = oldstate;
3108                                 if (URWLOCK_READER_COUNT(oldstate) == 0) {
3109                                         error = EPERM;
3110                                         goto out;
3111                                 }
3112                                 error = thread_check_susp(td, true);
3113                                 if (error != 0)
3114                                         goto out;
3115                         } else
3116                                 break;
3117                 }
3118         } else {
3119                 error = EPERM;
3120                 goto out;
3121         }
3122
3123         count = 0;
3124
3125         if (!(flags & URWLOCK_PREFER_READER)) {
3126                 if (state & URWLOCK_WRITE_WAITERS) {
3127                         count = 1;
3128                         q = UMTX_EXCLUSIVE_QUEUE;
3129                 } else if (state & URWLOCK_READ_WAITERS) {
3130                         count = INT_MAX;
3131                         q = UMTX_SHARED_QUEUE;
3132                 }
3133         } else {
3134                 if (state & URWLOCK_READ_WAITERS) {
3135                         count = INT_MAX;
3136                         q = UMTX_SHARED_QUEUE;
3137                 } else if (state & URWLOCK_WRITE_WAITERS) {
3138                         count = 1;
3139                         q = UMTX_EXCLUSIVE_QUEUE;
3140                 }
3141         }
3142
3143         if (count) {
3144                 umtxq_lock(&uq->uq_key);
3145                 umtxq_busy(&uq->uq_key);
3146                 umtxq_signal_queue(&uq->uq_key, count, q);
3147                 umtxq_unbusy(&uq->uq_key);
3148                 umtxq_unlock(&uq->uq_key);
3149         }
3150 out:
3151         umtx_key_release(&uq->uq_key);
3152         return (error);
3153 }
3154
3155 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3156 static int
3157 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3158 {
3159         struct abs_timeout timo;
3160         struct umtx_q *uq;
3161         uint32_t flags, count, count1;
3162         int error, rv, rv1;
3163
3164         uq = td->td_umtxq;
3165         error = fueword32(&sem->_flags, &flags);
3166         if (error == -1)
3167                 return (EFAULT);
3168         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3169         if (error != 0)
3170                 return (error);
3171
3172         if (timeout != NULL)
3173                 abs_timeout_init2(&timo, timeout);
3174
3175 again:
3176         umtxq_lock(&uq->uq_key);
3177         umtxq_busy(&uq->uq_key);
3178         umtxq_insert(uq);
3179         umtxq_unlock(&uq->uq_key);
3180         rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3181         if (rv == 0)
3182                 rv1 = fueword32(&sem->_count, &count);
3183         if (rv == -1 || (rv == 0 && (rv1 == -1 || count != 0)) ||
3184             (rv == 1 && count1 == 0)) {
3185                 umtxq_lock(&uq->uq_key);
3186                 umtxq_unbusy(&uq->uq_key);
3187                 umtxq_remove(uq);
3188                 umtxq_unlock(&uq->uq_key);
3189                 if (rv == 1) {
3190                         rv = thread_check_susp(td, true);
3191                         if (rv == 0)
3192                                 goto again;
3193                         error = rv;
3194                         goto out;
3195                 }
3196                 if (rv == 0)
3197                         rv = rv1;
3198                 error = rv == -1 ? EFAULT : 0;
3199                 goto out;
3200         }
3201         umtxq_lock(&uq->uq_key);
3202         umtxq_unbusy(&uq->uq_key);
3203
3204         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3205
3206         if ((uq->uq_flags & UQF_UMTXQ) == 0)
3207                 error = 0;
3208         else {
3209                 umtxq_remove(uq);
3210                 /* A relative timeout cannot be restarted. */
3211                 if (error == ERESTART && timeout != NULL &&
3212                     (timeout->_flags & UMTX_ABSTIME) == 0)
3213                         error = EINTR;
3214         }
3215         umtxq_unlock(&uq->uq_key);
3216 out:
3217         umtx_key_release(&uq->uq_key);
3218         return (error);
3219 }
3220
3221 /*
3222  * Signal a userland semaphore.
3223  */
3224 static int
3225 do_sem_wake(struct thread *td, struct _usem *sem)
3226 {
3227         struct umtx_key key;
3228         int error, cnt;
3229         uint32_t flags;
3230
3231         error = fueword32(&sem->_flags, &flags);
3232         if (error == -1)
3233                 return (EFAULT);
3234         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3235                 return (error);
3236         umtxq_lock(&key);
3237         umtxq_busy(&key);
3238         cnt = umtxq_count(&key);
3239         if (cnt > 0) {
3240                 /*
3241                  * Check if count is greater than 0, this means the memory is
3242                  * still being referenced by user code, so we can safely
3243                  * update _has_waiters flag.
3244                  */
3245                 if (cnt == 1) {
3246                         umtxq_unlock(&key);
3247                         error = suword32(&sem->_has_waiters, 0);
3248                         umtxq_lock(&key);
3249                         if (error == -1)
3250                                 error = EFAULT;
3251                 }
3252                 umtxq_signal(&key, 1);
3253         }
3254         umtxq_unbusy(&key);
3255         umtxq_unlock(&key);
3256         umtx_key_release(&key);
3257         return (error);
3258 }
3259 #endif
3260
3261 static int
3262 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3263 {
3264         struct abs_timeout timo;
3265         struct umtx_q *uq;
3266         uint32_t count, flags;
3267         int error, rv;
3268
3269         uq = td->td_umtxq;
3270         flags = fuword32(&sem->_flags);
3271         if (timeout != NULL)
3272                 abs_timeout_init2(&timo, timeout);
3273
3274 again:
3275         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3276         if (error != 0)
3277                 return (error);
3278         umtxq_lock(&uq->uq_key);
3279         umtxq_busy(&uq->uq_key);
3280         umtxq_insert(uq);
3281         umtxq_unlock(&uq->uq_key);
3282         rv = fueword32(&sem->_count, &count);
3283         if (rv == -1) {
3284                 umtxq_lock(&uq->uq_key);
3285                 umtxq_unbusy(&uq->uq_key);
3286                 umtxq_remove(uq);
3287                 umtxq_unlock(&uq->uq_key);
3288                 umtx_key_release(&uq->uq_key);
3289                 return (EFAULT);
3290         }
3291         for (;;) {
3292                 if (USEM_COUNT(count) != 0) {
3293                         umtxq_lock(&uq->uq_key);
3294                         umtxq_unbusy(&uq->uq_key);
3295                         umtxq_remove(uq);
3296                         umtxq_unlock(&uq->uq_key);
3297                         umtx_key_release(&uq->uq_key);
3298                         return (0);
3299                 }
3300                 if (count == USEM_HAS_WAITERS)
3301                         break;
3302                 rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3303                 if (rv == 0)
3304                         break;
3305                 umtxq_lock(&uq->uq_key);
3306                 umtxq_unbusy(&uq->uq_key);
3307                 umtxq_remove(uq);
3308                 umtxq_unlock(&uq->uq_key);
3309                 umtx_key_release(&uq->uq_key);
3310                 if (rv == -1)
3311                         return (EFAULT);
3312                 rv = thread_check_susp(td, true);
3313                 if (rv != 0)
3314                         return (rv);
3315                 goto again;
3316         }
3317         umtxq_lock(&uq->uq_key);
3318         umtxq_unbusy(&uq->uq_key);
3319
3320         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3321
3322         if ((uq->uq_flags & UQF_UMTXQ) == 0)
3323                 error = 0;
3324         else {
3325                 umtxq_remove(uq);
3326                 if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3327                         /* A relative timeout cannot be restarted. */
3328                         if (error == ERESTART)
3329                                 error = EINTR;
3330                         if (error == EINTR) {
3331                                 abs_timeout_update(&timo);
3332                                 timespecsub(&timo.end, &timo.cur,
3333                                     &timeout->_timeout);
3334                         }
3335                 }
3336         }
3337         umtxq_unlock(&uq->uq_key);
3338         umtx_key_release(&uq->uq_key);
3339         return (error);
3340 }
3341
3342 /*
3343  * Signal a userland semaphore.
3344  */
3345 static int
3346 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3347 {
3348         struct umtx_key key;
3349         int error, cnt, rv;
3350         uint32_t count, flags;
3351
3352         rv = fueword32(&sem->_flags, &flags);
3353         if (rv == -1)
3354                 return (EFAULT);
3355         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3356                 return (error);
3357         umtxq_lock(&key);
3358         umtxq_busy(&key);
3359         cnt = umtxq_count(&key);
3360         if (cnt > 0) {
3361                 /*
3362                  * If this was the last sleeping thread, clear the waiters
3363                  * flag in _count.
3364                  */
3365                 if (cnt == 1) {
3366                         umtxq_unlock(&key);
3367                         rv = fueword32(&sem->_count, &count);
3368                         while (rv != -1 && count & USEM_HAS_WAITERS) {
3369                                 rv = casueword32(&sem->_count, count, &count,
3370                                     count & ~USEM_HAS_WAITERS);
3371                                 if (rv == 1) {
3372                                         rv = thread_check_susp(td, true);
3373                                         if (rv != 0)
3374                                                 break;
3375                                 }
3376                         }
3377                         if (rv == -1)
3378                                 error = EFAULT;
3379                         else if (rv > 0) {
3380                                 error = rv;
3381                         }
3382                         umtxq_lock(&key);
3383                 }
3384
3385                 umtxq_signal(&key, 1);
3386         }
3387         umtxq_unbusy(&key);
3388         umtxq_unlock(&key);
3389         umtx_key_release(&key);
3390         return (error);
3391 }
3392
3393 inline int
3394 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
3395 {
3396         int error;
3397
3398         error = copyin(uaddr, tsp, sizeof(*tsp));
3399         if (error == 0) {
3400                 if (tsp->tv_sec < 0 ||
3401                     tsp->tv_nsec >= 1000000000 ||
3402                     tsp->tv_nsec < 0)
3403                         error = EINVAL;
3404         }
3405         return (error);
3406 }
3407
3408 static inline int
3409 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
3410 {
3411         int error;
3412
3413         if (size <= sizeof(tp->_timeout)) {
3414                 tp->_clockid = CLOCK_REALTIME;
3415                 tp->_flags = 0;
3416                 error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
3417         } else
3418                 error = copyin(uaddr, tp, sizeof(*tp));
3419         if (error != 0)
3420                 return (error);
3421         if (tp->_timeout.tv_sec < 0 ||
3422             tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
3423                 return (EINVAL);
3424         return (0);
3425 }
3426
3427 static int
3428 umtx_copyin_robust_lists(const void *uaddr, size_t size,
3429     struct umtx_robust_lists_params *rb)
3430 {
3431
3432         if (size > sizeof(*rb))
3433                 return (EINVAL);
3434         return (copyin(uaddr, rb, size));
3435 }
3436
3437 static int
3438 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
3439 {
3440
3441         /*
3442          * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
3443          * and we're only called if sz >= sizeof(timespec) as supplied in the
3444          * copyops.
3445          */
3446         KASSERT(sz >= sizeof(*tsp),
3447             ("umtx_copyops specifies incorrect sizes"));
3448
3449         return (copyout(tsp, uaddr, sizeof(*tsp)));
3450 }
3451
3452 static int
3453 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap,
3454     const struct umtx_copyops *ops __unused)
3455 {
3456
3457         return (EOPNOTSUPP);
3458 }
3459
3460 static int
3461 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
3462     const struct umtx_copyops *ops)
3463 {
3464         struct _umtx_time timeout, *tm_p;
3465         int error;
3466
3467         if (uap->uaddr2 == NULL)
3468                 tm_p = NULL;
3469         else {
3470                 error = ops->copyin_umtx_time(
3471                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3472                 if (error != 0)
3473                         return (error);
3474                 tm_p = &timeout;
3475         }
3476         return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
3477 }
3478
3479 static int
3480 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
3481     const struct umtx_copyops *ops)
3482 {
3483         struct _umtx_time timeout, *tm_p;
3484         int error;
3485
3486         if (uap->uaddr2 == NULL)
3487                 tm_p = NULL;
3488         else {
3489                 error = ops->copyin_umtx_time(
3490                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3491                 if (error != 0)
3492                         return (error);
3493                 tm_p = &timeout;
3494         }
3495         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3496 }
3497
3498 static int
3499 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
3500     const struct umtx_copyops *ops)
3501 {
3502         struct _umtx_time *tm_p, timeout;
3503         int error;
3504
3505         if (uap->uaddr2 == NULL)
3506                 tm_p = NULL;
3507         else {
3508                 error = ops->copyin_umtx_time(
3509                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3510                 if (error != 0)
3511                         return (error);
3512                 tm_p = &timeout;
3513         }
3514         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3515 }
3516
3517 static int
3518 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
3519     const struct umtx_copyops *ops __unused)
3520 {
3521
3522         return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3523 }
3524
3525 #define BATCH_SIZE      128
3526 static int
3527 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
3528 {
3529         char *uaddrs[BATCH_SIZE], **upp;
3530         int count, error, i, pos, tocopy;
3531
3532         upp = (char **)uap->obj;
3533         error = 0;
3534         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3535             pos += tocopy) {
3536                 tocopy = MIN(count, BATCH_SIZE);
3537                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3538                 if (error != 0)
3539                         break;
3540                 for (i = 0; i < tocopy; ++i) {
3541                         kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3542                 }
3543                 maybe_yield();
3544         }
3545         return (error);
3546 }
3547
3548 static int
3549 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
3550 {
3551         uint32_t uaddrs[BATCH_SIZE], *upp;
3552         int count, error, i, pos, tocopy;
3553
3554         upp = (uint32_t *)uap->obj;
3555         error = 0;
3556         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3557             pos += tocopy) {
3558                 tocopy = MIN(count, BATCH_SIZE);
3559                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
3560                 if (error != 0)
3561                         break;
3562                 for (i = 0; i < tocopy; ++i) {
3563                         kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
3564                             INT_MAX, 1);
3565                 }
3566                 maybe_yield();
3567         }
3568         return (error);
3569 }
3570
3571 static int
3572 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
3573     const struct umtx_copyops *ops)
3574 {
3575
3576         if (ops->compat32)
3577                 return (__umtx_op_nwake_private_compat32(td, uap));
3578         return (__umtx_op_nwake_private_native(td, uap));
3579 }
3580
3581 static int
3582 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
3583     const struct umtx_copyops *ops __unused)
3584 {
3585
3586         return (kern_umtx_wake(td, uap->obj, uap->val, 1));
3587 }
3588
3589 static int
3590 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
3591    const struct umtx_copyops *ops)
3592 {
3593         struct _umtx_time *tm_p, timeout;
3594         int error;
3595
3596         /* Allow a null timespec (wait forever). */
3597         if (uap->uaddr2 == NULL)
3598                 tm_p = NULL;
3599         else {
3600                 error = ops->copyin_umtx_time(
3601                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3602                 if (error != 0)
3603                         return (error);
3604                 tm_p = &timeout;
3605         }
3606         return (do_lock_umutex(td, uap->obj, tm_p, 0));
3607 }
3608
3609 static int
3610 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
3611     const struct umtx_copyops *ops __unused)
3612 {
3613
3614         return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
3615 }
3616
3617 static int
3618 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
3619     const struct umtx_copyops *ops)
3620 {
3621         struct _umtx_time *tm_p, timeout;
3622         int error;
3623
3624         /* Allow a null timespec (wait forever). */
3625         if (uap->uaddr2 == NULL)
3626                 tm_p = NULL;
3627         else {
3628                 error = ops->copyin_umtx_time(
3629                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3630                 if (error != 0)
3631                         return (error);
3632                 tm_p = &timeout;
3633         }
3634         return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
3635 }
3636
3637 static int
3638 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
3639     const struct umtx_copyops *ops __unused)
3640 {
3641
3642         return (do_wake_umutex(td, uap->obj));
3643 }
3644
3645 static int
3646 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
3647     const struct umtx_copyops *ops __unused)
3648 {
3649
3650         return (do_unlock_umutex(td, uap->obj, false));
3651 }
3652
3653 static int
3654 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
3655     const struct umtx_copyops *ops __unused)
3656 {
3657
3658         return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
3659 }
3660
3661 static int
3662 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
3663     const struct umtx_copyops *ops)
3664 {
3665         struct timespec *ts, timeout;
3666         int error;
3667
3668         /* Allow a null timespec (wait forever). */
3669         if (uap->uaddr2 == NULL)
3670                 ts = NULL;
3671         else {
3672                 error = ops->copyin_timeout(uap->uaddr2, &timeout);
3673                 if (error != 0)
3674                         return (error);
3675                 ts = &timeout;
3676         }
3677         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
3678 }
3679
3680 static int
3681 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
3682     const struct umtx_copyops *ops __unused)
3683 {
3684
3685         return (do_cv_signal(td, uap->obj));
3686 }
3687
3688 static int
3689 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
3690     const struct umtx_copyops *ops __unused)
3691 {
3692
3693         return (do_cv_broadcast(td, uap->obj));
3694 }
3695
3696 static int
3697 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
3698     const struct umtx_copyops *ops)
3699 {
3700         struct _umtx_time timeout;
3701         int error;
3702
3703         /* Allow a null timespec (wait forever). */
3704         if (uap->uaddr2 == NULL) {
3705                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
3706         } else {
3707                 error = ops->copyin_umtx_time(uap->uaddr2,
3708                    (size_t)uap->uaddr1, &timeout);
3709                 if (error != 0)
3710                         return (error);
3711                 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
3712         }
3713         return (error);
3714 }
3715
3716 static int
3717 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
3718     const struct umtx_copyops *ops)
3719 {
3720         struct _umtx_time timeout;
3721         int error;
3722
3723         /* Allow a null timespec (wait forever). */
3724         if (uap->uaddr2 == NULL) {
3725                 error = do_rw_wrlock(td, uap->obj, 0);
3726         } else {
3727                 error = ops->copyin_umtx_time(uap->uaddr2,
3728                    (size_t)uap->uaddr1, &timeout);
3729                 if (error != 0)
3730                         return (error);
3731
3732                 error = do_rw_wrlock(td, uap->obj, &timeout);
3733         }
3734         return (error);
3735 }
3736
3737 static int
3738 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
3739     const struct umtx_copyops *ops __unused)
3740 {
3741
3742         return (do_rw_unlock(td, uap->obj));
3743 }
3744
3745 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3746 static int
3747 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
3748     const struct umtx_copyops *ops)
3749 {
3750         struct _umtx_time *tm_p, timeout;
3751         int error;
3752
3753         /* Allow a null timespec (wait forever). */
3754         if (uap->uaddr2 == NULL)
3755                 tm_p = NULL;
3756         else {
3757                 error = ops->copyin_umtx_time(
3758                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3759                 if (error != 0)
3760                         return (error);
3761                 tm_p = &timeout;
3762         }
3763         return (do_sem_wait(td, uap->obj, tm_p));
3764 }
3765
3766 static int
3767 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
3768     const struct umtx_copyops *ops __unused)
3769 {
3770
3771         return (do_sem_wake(td, uap->obj));
3772 }
3773 #endif
3774
3775 static int
3776 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
3777     const struct umtx_copyops *ops __unused)
3778 {
3779
3780         return (do_wake2_umutex(td, uap->obj, uap->val));
3781 }
3782
3783 static int
3784 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
3785     const struct umtx_copyops *ops)
3786 {
3787         struct _umtx_time *tm_p, timeout;
3788         size_t uasize;
3789         int error;
3790
3791         /* Allow a null timespec (wait forever). */
3792         if (uap->uaddr2 == NULL) {
3793                 uasize = 0;
3794                 tm_p = NULL;
3795         } else {
3796                 uasize = (size_t)uap->uaddr1;
3797                 error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
3798                 if (error != 0)
3799                         return (error);
3800                 tm_p = &timeout;
3801         }
3802         error = do_sem2_wait(td, uap->obj, tm_p);
3803         if (error == EINTR && uap->uaddr2 != NULL &&
3804             (timeout._flags & UMTX_ABSTIME) == 0 &&
3805             uasize >= ops->umtx_time_sz + ops->timespec_sz) {
3806                 error = ops->copyout_timeout(
3807                     (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
3808                     uasize - ops->umtx_time_sz, &timeout._timeout);
3809                 if (error == 0) {
3810                         error = EINTR;
3811                 }
3812         }
3813
3814         return (error);
3815 }
3816
3817 static int
3818 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
3819     const struct umtx_copyops *ops __unused)
3820 {
3821
3822         return (do_sem2_wake(td, uap->obj));
3823 }
3824
3825 #define USHM_OBJ_UMTX(o)                                                \
3826     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
3827
3828 #define USHMF_REG_LINKED        0x0001
3829 #define USHMF_OBJ_LINKED        0x0002
3830 struct umtx_shm_reg {
3831         TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
3832         LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
3833         struct umtx_key         ushm_key;
3834         struct ucred            *ushm_cred;
3835         struct shmfd            *ushm_obj;
3836         u_int                   ushm_refcnt;
3837         u_int                   ushm_flags;
3838 };
3839
3840 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
3841 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
3842
3843 static uma_zone_t umtx_shm_reg_zone;
3844 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
3845 static struct mtx umtx_shm_lock;
3846 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
3847     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
3848
3849 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
3850
3851 static void
3852 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
3853 {
3854         struct umtx_shm_reg_head d;
3855         struct umtx_shm_reg *reg, *reg1;
3856
3857         TAILQ_INIT(&d);
3858         mtx_lock(&umtx_shm_lock);
3859         TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
3860         mtx_unlock(&umtx_shm_lock);
3861         TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
3862                 TAILQ_REMOVE(&d, reg, ushm_reg_link);
3863                 umtx_shm_free_reg(reg);
3864         }
3865 }
3866
3867 static struct task umtx_shm_reg_delfree_task =
3868     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
3869
3870 static struct umtx_shm_reg *
3871 umtx_shm_find_reg_locked(const struct umtx_key *key)
3872 {
3873         struct umtx_shm_reg *reg;
3874         struct umtx_shm_reg_head *reg_head;
3875
3876         KASSERT(key->shared, ("umtx_p_find_rg: private key"));
3877         mtx_assert(&umtx_shm_lock, MA_OWNED);
3878         reg_head = &umtx_shm_registry[key->hash];
3879         TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
3880                 KASSERT(reg->ushm_key.shared,
3881                     ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
3882                 if (reg->ushm_key.info.shared.object ==
3883                     key->info.shared.object &&
3884                     reg->ushm_key.info.shared.offset ==
3885                     key->info.shared.offset) {
3886                         KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
3887                         KASSERT(reg->ushm_refcnt > 0,
3888                             ("reg %p refcnt 0 onlist", reg));
3889                         KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
3890                             ("reg %p not linked", reg));
3891                         reg->ushm_refcnt++;
3892                         return (reg);
3893                 }
3894         }
3895         return (NULL);
3896 }
3897
3898 static struct umtx_shm_reg *
3899 umtx_shm_find_reg(const struct umtx_key *key)
3900 {
3901         struct umtx_shm_reg *reg;
3902
3903         mtx_lock(&umtx_shm_lock);
3904         reg = umtx_shm_find_reg_locked(key);
3905         mtx_unlock(&umtx_shm_lock);
3906         return (reg);
3907 }
3908
3909 static void
3910 umtx_shm_free_reg(struct umtx_shm_reg *reg)
3911 {
3912
3913         chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
3914         crfree(reg->ushm_cred);
3915         shm_drop(reg->ushm_obj);
3916         uma_zfree(umtx_shm_reg_zone, reg);
3917 }
3918
3919 static bool
3920 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
3921 {
3922         bool res;
3923
3924         mtx_assert(&umtx_shm_lock, MA_OWNED);
3925         KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
3926         reg->ushm_refcnt--;
3927         res = reg->ushm_refcnt == 0;
3928         if (res || force) {
3929                 if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
3930                         TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
3931                             reg, ushm_reg_link);
3932                         reg->ushm_flags &= ~USHMF_REG_LINKED;
3933                 }
3934                 if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
3935                         LIST_REMOVE(reg, ushm_obj_link);
3936                         reg->ushm_flags &= ~USHMF_OBJ_LINKED;
3937                 }
3938         }
3939         return (res);
3940 }
3941
3942 static void
3943 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
3944 {
3945         vm_object_t object;
3946         bool dofree;
3947
3948         if (force) {
3949                 object = reg->ushm_obj->shm_object;
3950                 VM_OBJECT_WLOCK(object);
3951                 object->flags |= OBJ_UMTXDEAD;
3952                 VM_OBJECT_WUNLOCK(object);
3953         }
3954         mtx_lock(&umtx_shm_lock);
3955         dofree = umtx_shm_unref_reg_locked(reg, force);
3956         mtx_unlock(&umtx_shm_lock);
3957         if (dofree)
3958                 umtx_shm_free_reg(reg);
3959 }
3960
3961 void
3962 umtx_shm_object_init(vm_object_t object)
3963 {
3964
3965         LIST_INIT(USHM_OBJ_UMTX(object));
3966 }
3967
3968 void
3969 umtx_shm_object_terminated(vm_object_t object)
3970 {
3971         struct umtx_shm_reg *reg, *reg1;
3972         bool dofree;
3973
3974         if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
3975                 return;
3976
3977         dofree = false;
3978         mtx_lock(&umtx_shm_lock);
3979         LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
3980                 if (umtx_shm_unref_reg_locked(reg, true)) {
3981                         TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
3982                             ushm_reg_link);
3983                         dofree = true;
3984                 }
3985         }
3986         mtx_unlock(&umtx_shm_lock);
3987         if (dofree)
3988                 taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
3989 }
3990
3991 static int
3992 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
3993     struct umtx_shm_reg **res)
3994 {
3995         struct umtx_shm_reg *reg, *reg1;
3996         struct ucred *cred;
3997         int error;
3998
3999         reg = umtx_shm_find_reg(key);
4000         if (reg != NULL) {
4001                 *res = reg;
4002                 return (0);
4003         }
4004         cred = td->td_ucred;
4005         if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
4006                 return (ENOMEM);
4007         reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
4008         reg->ushm_refcnt = 1;
4009         bcopy(key, &reg->ushm_key, sizeof(*key));
4010         reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR, false);
4011         reg->ushm_cred = crhold(cred);
4012         error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
4013         if (error != 0) {
4014                 umtx_shm_free_reg(reg);
4015                 return (error);
4016         }
4017         mtx_lock(&umtx_shm_lock);
4018         reg1 = umtx_shm_find_reg_locked(key);
4019         if (reg1 != NULL) {
4020                 mtx_unlock(&umtx_shm_lock);
4021                 umtx_shm_free_reg(reg);
4022                 *res = reg1;
4023                 return (0);
4024         }
4025         reg->ushm_refcnt++;
4026         TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
4027         LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
4028             ushm_obj_link);
4029         reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
4030         mtx_unlock(&umtx_shm_lock);
4031         *res = reg;
4032         return (0);
4033 }
4034
4035 static int
4036 umtx_shm_alive(struct thread *td, void *addr)
4037 {
4038         vm_map_t map;
4039         vm_map_entry_t entry;
4040         vm_object_t object;
4041         vm_pindex_t pindex;
4042         vm_prot_t prot;
4043         int res, ret;
4044         boolean_t wired;
4045
4046         map = &td->td_proc->p_vmspace->vm_map;
4047         res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
4048             &object, &pindex, &prot, &wired);
4049         if (res != KERN_SUCCESS)
4050                 return (EFAULT);
4051         if (object == NULL)
4052                 ret = EINVAL;
4053         else
4054                 ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
4055         vm_map_lookup_done(map, entry);
4056         return (ret);
4057 }
4058
4059 static void
4060 umtx_shm_init(void)
4061 {
4062         int i;
4063
4064         umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
4065             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
4066         mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
4067         for (i = 0; i < nitems(umtx_shm_registry); i++)
4068                 TAILQ_INIT(&umtx_shm_registry[i]);
4069 }
4070
4071 static int
4072 umtx_shm(struct thread *td, void *addr, u_int flags)
4073 {
4074         struct umtx_key key;
4075         struct umtx_shm_reg *reg;
4076         struct file *fp;
4077         int error, fd;
4078
4079         if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4080             UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4081                 return (EINVAL);
4082         if ((flags & UMTX_SHM_ALIVE) != 0)
4083                 return (umtx_shm_alive(td, addr));
4084         error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4085         if (error != 0)
4086                 return (error);
4087         KASSERT(key.shared == 1, ("non-shared key"));
4088         if ((flags & UMTX_SHM_CREAT) != 0) {
4089                 error = umtx_shm_create_reg(td, &key, &reg);
4090         } else {
4091                 reg = umtx_shm_find_reg(&key);
4092                 if (reg == NULL)
4093                         error = ESRCH;
4094         }
4095         umtx_key_release(&key);
4096         if (error != 0)
4097                 return (error);
4098         KASSERT(reg != NULL, ("no reg"));
4099         if ((flags & UMTX_SHM_DESTROY) != 0) {
4100                 umtx_shm_unref_reg(reg, true);
4101         } else {
4102 #if 0
4103 #ifdef MAC
4104                 error = mac_posixshm_check_open(td->td_ucred,
4105                     reg->ushm_obj, FFLAGS(O_RDWR));
4106                 if (error == 0)
4107 #endif
4108                         error = shm_access(reg->ushm_obj, td->td_ucred,
4109                             FFLAGS(O_RDWR));
4110                 if (error == 0)
4111 #endif
4112                         error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4113                 if (error == 0) {
4114                         shm_hold(reg->ushm_obj);
4115                         finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4116                             &shm_ops);
4117                         td->td_retval[0] = fd;
4118                         fdrop(fp, td);
4119                 }
4120         }
4121         umtx_shm_unref_reg(reg, false);
4122         return (error);
4123 }
4124
4125 static int
4126 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
4127     const struct umtx_copyops *ops __unused)
4128 {
4129
4130         return (umtx_shm(td, uap->uaddr1, uap->val));
4131 }
4132
4133 static int
4134 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
4135     const struct umtx_copyops *ops)
4136 {
4137         struct umtx_robust_lists_params rb;
4138         int error;
4139
4140         bzero(&rb, sizeof(rb));
4141         error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
4142         if (error != 0)
4143                 return (error);
4144
4145         if (ops->compat32)
4146                 td->td_pflags2 |= TDP2_COMPAT32RB;
4147         else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0)
4148                 return (EINVAL);
4149
4150         td->td_rb_list = rb.robust_list_offset;
4151         td->td_rbp_list = rb.robust_priv_list_offset;
4152         td->td_rb_inact = rb.robust_inact_offset;
4153         return (0);
4154 }
4155
4156 #ifdef COMPAT_FREEBSD32
4157 static inline int
4158 umtx_copyin_timeout32(const void *uaddr, struct timespec *tsp)
4159 {
4160         struct timespec32 ts32;
4161         int error;
4162
4163         error = copyin(uaddr, &ts32, sizeof(ts32));
4164         if (error == 0) {
4165                 if (ts32.tv_sec < 0 ||
4166                     ts32.tv_nsec >= 1000000000 ||
4167                     ts32.tv_nsec < 0)
4168                         error = EINVAL;
4169                 else {
4170                         CP(ts32, *tsp, tv_sec);
4171                         CP(ts32, *tsp, tv_nsec);
4172                 }
4173         }
4174         return (error);
4175 }
4176
4177 static inline int
4178 umtx_copyin_umtx_time32(const void *uaddr, size_t size, struct _umtx_time *tp)
4179 {
4180         struct umtx_time32 t32;
4181         int error;
4182
4183         t32._clockid = CLOCK_REALTIME;
4184         t32._flags   = 0;
4185         if (size <= sizeof(t32._timeout))
4186                 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4187         else
4188                 error = copyin(uaddr, &t32, sizeof(t32));
4189         if (error != 0)
4190                 return (error);
4191         if (t32._timeout.tv_sec < 0 ||
4192             t32._timeout.tv_nsec >= 1000000000 || t32._timeout.tv_nsec < 0)
4193                 return (EINVAL);
4194         TS_CP(t32, *tp, _timeout);
4195         CP(t32, *tp, _flags);
4196         CP(t32, *tp, _clockid);
4197         return (0);
4198 }
4199
4200 static int
4201 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
4202     struct umtx_robust_lists_params *rbp)
4203 {
4204         struct umtx_robust_lists_params_compat32 rb32;
4205         int error;
4206
4207         if (size > sizeof(rb32))
4208                 return (EINVAL);
4209         bzero(&rb32, sizeof(rb32));
4210         error = copyin(uaddr, &rb32, size);
4211         if (error != 0)
4212                 return (error);
4213         CP(rb32, *rbp, robust_list_offset);
4214         CP(rb32, *rbp, robust_priv_list_offset);
4215         CP(rb32, *rbp, robust_inact_offset);
4216         return (0);
4217 }
4218
4219 static int
4220 umtx_copyout_timeout32(void *uaddr, size_t sz, struct timespec *tsp)
4221 {
4222         struct timespec32 remain32 = {
4223                 .tv_sec = tsp->tv_sec,
4224                 .tv_nsec = tsp->tv_nsec,
4225         };
4226
4227         /*
4228          * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4229          * and we're only called if sz >= sizeof(timespec) as supplied in the
4230          * copyops.
4231          */
4232         KASSERT(sz >= sizeof(remain32),
4233             ("umtx_copyops specifies incorrect sizes"));
4234
4235         return (copyout(&remain32, uaddr, sizeof(remain32)));
4236 }
4237 #endif /* COMPAT_FREEBSD32 */
4238
4239 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
4240     const struct umtx_copyops *umtx_ops);
4241
4242 static const _umtx_op_func op_table[] = {
4243         [UMTX_OP_RESERVED0]     = __umtx_op_unimpl,
4244         [UMTX_OP_RESERVED1]     = __umtx_op_unimpl,
4245         [UMTX_OP_WAIT]          = __umtx_op_wait,
4246         [UMTX_OP_WAKE]          = __umtx_op_wake,
4247         [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
4248         [UMTX_OP_MUTEX_LOCK]    = __umtx_op_lock_umutex,
4249         [UMTX_OP_MUTEX_UNLOCK]  = __umtx_op_unlock_umutex,
4250         [UMTX_OP_SET_CEILING]   = __umtx_op_set_ceiling,
4251         [UMTX_OP_CV_WAIT]       = __umtx_op_cv_wait,
4252         [UMTX_OP_CV_SIGNAL]     = __umtx_op_cv_signal,
4253         [UMTX_OP_CV_BROADCAST]  = __umtx_op_cv_broadcast,
4254         [UMTX_OP_WAIT_UINT]     = __umtx_op_wait_uint,
4255         [UMTX_OP_RW_RDLOCK]     = __umtx_op_rw_rdlock,
4256         [UMTX_OP_RW_WRLOCK]     = __umtx_op_rw_wrlock,
4257         [UMTX_OP_RW_UNLOCK]     = __umtx_op_rw_unlock,
4258         [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4259         [UMTX_OP_WAKE_PRIVATE]  = __umtx_op_wake_private,
4260         [UMTX_OP_MUTEX_WAIT]    = __umtx_op_wait_umutex,
4261         [UMTX_OP_MUTEX_WAKE]    = __umtx_op_wake_umutex,
4262 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4263         [UMTX_OP_SEM_WAIT]      = __umtx_op_sem_wait,
4264         [UMTX_OP_SEM_WAKE]      = __umtx_op_sem_wake,
4265 #else
4266         [UMTX_OP_SEM_WAIT]      = __umtx_op_unimpl,
4267         [UMTX_OP_SEM_WAKE]      = __umtx_op_unimpl,
4268 #endif
4269         [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
4270         [UMTX_OP_MUTEX_WAKE2]   = __umtx_op_wake2_umutex,
4271         [UMTX_OP_SEM2_WAIT]     = __umtx_op_sem2_wait,
4272         [UMTX_OP_SEM2_WAKE]     = __umtx_op_sem2_wake,
4273         [UMTX_OP_SHM]           = __umtx_op_shm,
4274         [UMTX_OP_ROBUST_LISTS]  = __umtx_op_robust_lists,
4275 };
4276
4277 static const struct umtx_copyops umtx_native_ops = {
4278         .copyin_timeout = umtx_copyin_timeout,
4279         .copyin_umtx_time = umtx_copyin_umtx_time,
4280         .copyin_robust_lists = umtx_copyin_robust_lists,
4281         .copyout_timeout = umtx_copyout_timeout,
4282         .timespec_sz = sizeof(struct timespec),
4283         .umtx_time_sz = sizeof(struct _umtx_time),
4284 };
4285
4286 #ifdef COMPAT_FREEBSD32
4287 const struct umtx_copyops umtx_native_ops32 = {
4288         .copyin_timeout = umtx_copyin_timeout32,
4289         .copyin_umtx_time = umtx_copyin_umtx_time32,
4290         .copyin_robust_lists = umtx_copyin_robust_lists32,
4291         .copyout_timeout = umtx_copyout_timeout32,
4292         .timespec_sz = sizeof(struct timespec32),
4293         .umtx_time_sz = sizeof(struct umtx_time32),
4294         .compat32 = true,
4295 };
4296 #endif
4297
4298 int
4299 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
4300     void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
4301 {
4302         struct _umtx_op_args uap = {
4303                 .obj = obj,
4304                 .op = op,
4305                 .val = val,
4306                 .uaddr1 = uaddr1,
4307                 .uaddr2 = uaddr2
4308         };
4309
4310         if ((uap.op >= nitems(op_table)))
4311                 return (EINVAL);
4312         return ((*op_table[uap.op])(td, &uap, ops));
4313 }
4314
4315 int
4316 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4317 {
4318
4319         return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4320             uap->uaddr2, &umtx_native_ops));
4321 }
4322
4323 void
4324 umtx_thread_init(struct thread *td)
4325 {
4326
4327         td->td_umtxq = umtxq_alloc();
4328         td->td_umtxq->uq_thread = td;
4329 }
4330
4331 void
4332 umtx_thread_fini(struct thread *td)
4333 {
4334
4335         umtxq_free(td->td_umtxq);
4336 }
4337
4338 /*
4339  * It will be called when new thread is created, e.g fork().
4340  */
4341 void
4342 umtx_thread_alloc(struct thread *td)
4343 {
4344         struct umtx_q *uq;
4345
4346         uq = td->td_umtxq;
4347         uq->uq_inherited_pri = PRI_MAX;
4348
4349         KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
4350         KASSERT(uq->uq_thread == td, ("uq_thread != td"));
4351         KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
4352         KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
4353 }
4354
4355 /*
4356  * exec() hook.
4357  *
4358  * Clear robust lists for all process' threads, not delaying the
4359  * cleanup to thread_exit hook, since the relevant address space is
4360  * destroyed right now.
4361  */
4362 static void
4363 umtx_exec_hook(void *arg __unused, struct proc *p,
4364     struct image_params *imgp __unused)
4365 {
4366         struct thread *td;
4367
4368         KASSERT(p == curproc, ("need curproc"));
4369         KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
4370             (p->p_flag & P_STOPPED_SINGLE) != 0,
4371             ("curproc must be single-threaded"));
4372         /*
4373          * There is no need to lock the list as only this thread can be
4374          * running.
4375          */
4376         FOREACH_THREAD_IN_PROC(p, td) {
4377                 KASSERT(td == curthread ||
4378                     ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
4379                     ("running thread %p %p", p, td));
4380                 umtx_thread_cleanup(td);
4381                 td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
4382         }
4383 }
4384
4385 /*
4386  * thread_exit() hook.
4387  */
4388 void
4389 umtx_thread_exit(struct thread *td)
4390 {
4391
4392         umtx_thread_cleanup(td);
4393 }
4394
4395 static int
4396 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
4397 {
4398         u_long res1;
4399 #ifdef COMPAT_FREEBSD32
4400         uint32_t res32;
4401 #endif
4402         int error;
4403
4404 #ifdef COMPAT_FREEBSD32
4405         if (compat32) {
4406                 error = fueword32((void *)ptr, &res32);
4407                 if (error == 0)
4408                         res1 = res32;
4409         } else
4410 #endif
4411         {
4412                 error = fueword((void *)ptr, &res1);
4413         }
4414         if (error == 0)
4415                 *res = res1;
4416         else
4417                 error = EFAULT;
4418         return (error);
4419 }
4420
4421 static void
4422 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
4423     bool compat32)
4424 {
4425 #ifdef COMPAT_FREEBSD32
4426         struct umutex32 m32;
4427
4428         if (compat32) {
4429                 memcpy(&m32, m, sizeof(m32));
4430                 *rb_list = m32.m_rb_lnk;
4431         } else
4432 #endif
4433                 *rb_list = m->m_rb_lnk;
4434 }
4435
4436 static int
4437 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
4438     bool compat32)
4439 {
4440         struct umutex m;
4441         int error;
4442
4443         KASSERT(td->td_proc == curproc, ("need current vmspace"));
4444         error = copyin((void *)rbp, &m, sizeof(m));
4445         if (error != 0)
4446                 return (error);
4447         if (rb_list != NULL)
4448                 umtx_read_rb_list(td, &m, rb_list, compat32);
4449         if ((m.m_flags & UMUTEX_ROBUST) == 0)
4450                 return (EINVAL);
4451         if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
4452                 /* inact is cleared after unlock, allow the inconsistency */
4453                 return (inact ? 0 : EINVAL);
4454         return (do_unlock_umutex(td, (struct umutex *)rbp, true));
4455 }
4456
4457 static void
4458 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
4459     const char *name, bool compat32)
4460 {
4461         int error, i;
4462         uintptr_t rbp;
4463         bool inact;
4464
4465         if (rb_list == 0)
4466                 return;
4467         error = umtx_read_uptr(td, rb_list, &rbp, compat32);
4468         for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
4469                 if (rbp == *rb_inact) {
4470                         inact = true;
4471                         *rb_inact = 0;
4472                 } else
4473                         inact = false;
4474                 error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
4475         }
4476         if (i == umtx_max_rb && umtx_verbose_rb) {
4477                 uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
4478                     td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
4479         }
4480         if (error != 0 && umtx_verbose_rb) {
4481                 uprintf("comm %s pid %d: handling %srb error %d\n",
4482                     td->td_proc->p_comm, td->td_proc->p_pid, name, error);
4483         }
4484 }
4485
4486 /*
4487  * Clean up umtx data.
4488  */
4489 static void
4490 umtx_thread_cleanup(struct thread *td)
4491 {
4492         struct umtx_q *uq;
4493         struct umtx_pi *pi;
4494         uintptr_t rb_inact;
4495         bool compat32;
4496
4497         /*
4498          * Disown pi mutexes.
4499          */
4500         uq = td->td_umtxq;
4501         if (uq != NULL) {
4502                 if (uq->uq_inherited_pri != PRI_MAX ||
4503                     !TAILQ_EMPTY(&uq->uq_pi_contested)) {
4504                         mtx_lock(&umtx_lock);
4505                         uq->uq_inherited_pri = PRI_MAX;
4506                         while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
4507                                 pi->pi_owner = NULL;
4508                                 TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
4509                         }
4510                         mtx_unlock(&umtx_lock);
4511                 }
4512                 sched_lend_user_prio_cond(td, PRI_MAX);
4513         }
4514
4515         compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
4516         td->td_pflags2 &= ~TDP2_COMPAT32RB;
4517
4518         if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
4519                 return;
4520
4521         /*
4522          * Handle terminated robust mutexes.  Must be done after
4523          * robust pi disown, otherwise unlock could see unowned
4524          * entries.
4525          */
4526         rb_inact = td->td_rb_inact;
4527         if (rb_inact != 0)
4528                 (void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
4529         umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
4530         umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
4531         if (rb_inact != 0)
4532                 (void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
4533 }