]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
libpcap: Update to 1.10.4
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/counter.h>
35 #include <sys/epoch.h>
36 #include <sys/gtaskqueue.h>
37 #include <sys/kernel.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/sx.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #ifdef EPOCH_TRACE
50 #include <machine/stdarg.h>
51 #include <sys/stack.h>
52 #include <sys/tree.h>
53 #endif
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_kern.h>
57 #include <vm/uma.h>
58
59 #include <machine/stack.h>
60
61 #include <ck_epoch.h>
62
63 #ifdef __amd64__
64 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
65 #else
66 #define EPOCH_ALIGN CACHE_LINE_SIZE
67 #endif
68
69 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
70 typedef struct epoch_record {
71         ck_epoch_record_t er_record;
72         struct epoch_context er_drain_ctx;
73         struct epoch *er_parent;
74         volatile struct epoch_tdlist er_tdlist;
75         volatile uint32_t er_gen;
76         uint32_t er_cpuid;
77 #ifdef INVARIANTS
78         /* Used to verify record ownership for non-preemptible epochs. */
79         struct thread *er_td;
80 #endif
81 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
82
83 struct epoch {
84         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
85         epoch_record_t e_pcpu_record;
86         int     e_in_use;
87         int     e_flags;
88         struct sx e_drain_sx;
89         struct mtx e_drain_mtx;
90         volatile int e_drain_count;
91         const char *e_name;
92 };
93
94 /* arbitrary --- needs benchmarking */
95 #define MAX_ADAPTIVE_SPIN 100
96 #define MAX_EPOCHS 64
97
98 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
99 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
100     "epoch information");
101 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102     "epoch stats");
103
104 /* Stats. */
105 static counter_u64_t block_count;
106
107 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
108     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
109 static counter_u64_t migrate_count;
110
111 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
112     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
113 static counter_u64_t turnstile_count;
114
115 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
116     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
117 static counter_u64_t switch_count;
118
119 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
120     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
121 static counter_u64_t epoch_call_count;
122
123 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
124     &epoch_call_count, "# of times a callback was deferred");
125 static counter_u64_t epoch_call_task_count;
126
127 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
128     &epoch_call_task_count, "# of times a callback task was run");
129
130 TAILQ_HEAD (threadlist, thread);
131
132 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
133     ck_epoch_entry_container)
134
135 static struct epoch epoch_array[MAX_EPOCHS];
136
137 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
138 DPCPU_DEFINE(int, epoch_cb_count);
139
140 static __read_mostly int inited;
141 __read_mostly epoch_t global_epoch;
142 __read_mostly epoch_t global_epoch_preempt;
143
144 static void epoch_call_task(void *context __unused);
145 static  uma_zone_t pcpu_zone_record;
146
147 static struct sx epoch_sx;
148
149 #define EPOCH_LOCK() sx_xlock(&epoch_sx)
150 #define EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
151
152 static epoch_record_t
153 epoch_currecord(epoch_t epoch)
154 {
155
156         return (zpcpu_get(epoch->e_pcpu_record));
157 }
158
159 #ifdef EPOCH_TRACE
160 struct stackentry {
161         RB_ENTRY(stackentry) se_node;
162         struct stack se_stack;
163 };
164
165 static int
166 stackentry_compare(struct stackentry *a, struct stackentry *b)
167 {
168
169         if (a->se_stack.depth > b->se_stack.depth)
170                 return (1);
171         if (a->se_stack.depth < b->se_stack.depth)
172                 return (-1);
173         for (int i = 0; i < a->se_stack.depth; i++) {
174                 if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
175                         return (1);
176                 if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
177                         return (-1);
178         }
179
180         return (0);
181 }
182
183 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
184 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
185
186 static struct mtx epoch_stacks_lock;
187 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
188
189 static bool epoch_trace_stack_print = true;
190 SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN,
191     &epoch_trace_stack_print, 0, "Print stack traces on epoch reports");
192
193 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
194 static inline void
195 epoch_trace_report(const char *fmt, ...)
196 {
197         va_list ap;
198         struct stackentry se, *new;
199
200         stack_save(&se.se_stack);
201
202         /* Tree is never reduced - go lockless. */
203         if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
204                 return;
205
206         new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
207         if (new != NULL) {
208                 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
209
210                 mtx_lock(&epoch_stacks_lock);
211                 new = RB_INSERT(stacktree, &epoch_stacks, new);
212                 mtx_unlock(&epoch_stacks_lock);
213                 if (new != NULL)
214                         free(new, M_STACK);
215         }
216
217         va_start(ap, fmt);
218         (void)vprintf(fmt, ap);
219         va_end(ap);
220         if (epoch_trace_stack_print)
221                 stack_print_ddb(&se.se_stack);
222 }
223
224 static inline void
225 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
226     const char *file, int line)
227 {
228         epoch_tracker_t iet;
229
230         SLIST_FOREACH(iet, &td->td_epochs, et_tlink) {
231                 if (iet->et_epoch != epoch)
232                         continue;
233                 epoch_trace_report("Recursively entering epoch %s "
234                     "at %s:%d, previously entered at %s:%d\n",
235                     epoch->e_name, file, line,
236                     iet->et_file, iet->et_line);
237         }
238         et->et_epoch = epoch;
239         et->et_file = file;
240         et->et_line = line;
241         et->et_flags = 0;
242         SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
243 }
244
245 static inline void
246 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
247     const char *file, int line)
248 {
249
250         if (SLIST_FIRST(&td->td_epochs) != et) {
251                 epoch_trace_report("Exiting epoch %s in a not nested order "
252                     "at %s:%d. Most recently entered %s at %s:%d\n",
253                     epoch->e_name,
254                     file, line,
255                     SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
256                     SLIST_FIRST(&td->td_epochs)->et_file,
257                     SLIST_FIRST(&td->td_epochs)->et_line);
258                 /* This will panic if et is not anywhere on td_epochs. */
259                 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
260         } else
261                 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
262         if (et->et_flags & ET_REPORT_EXIT)
263                 printf("Td %p exiting epoch %s at %s:%d\n", td, epoch->e_name,
264                     file, line);
265 }
266
267 /* Used by assertions that check thread state before going to sleep. */
268 void
269 epoch_trace_list(struct thread *td)
270 {
271         epoch_tracker_t iet;
272
273         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
274                 printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
275                     iet->et_file, iet->et_line);
276 }
277
278 void
279 epoch_where_report(epoch_t epoch)
280 {
281         epoch_record_t er;
282         struct epoch_tracker *tdwait;
283
284         MPASS(epoch != NULL);
285         MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
286         MPASS(!THREAD_CAN_SLEEP());
287         critical_enter();
288         er = epoch_currecord(epoch);
289         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
290                 if (tdwait->et_td == curthread)
291                         break;
292         critical_exit();
293         if (tdwait != NULL) {
294                 tdwait->et_flags |= ET_REPORT_EXIT;
295                 printf("Td %p entered epoch %s at %s:%d\n", curthread,
296                     epoch->e_name, tdwait->et_file, tdwait->et_line);
297         }
298 }
299 #endif /* EPOCH_TRACE */
300
301 static void
302 epoch_init(void *arg __unused)
303 {
304         int cpu;
305
306         block_count = counter_u64_alloc(M_WAITOK);
307         migrate_count = counter_u64_alloc(M_WAITOK);
308         turnstile_count = counter_u64_alloc(M_WAITOK);
309         switch_count = counter_u64_alloc(M_WAITOK);
310         epoch_call_count = counter_u64_alloc(M_WAITOK);
311         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
312
313         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
314             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
315             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
316         CPU_FOREACH(cpu) {
317                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
318                     epoch_call_task, NULL);
319                 taskqgroup_attach_cpu(qgroup_softirq,
320                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
321                     "epoch call task");
322         }
323 #ifdef EPOCH_TRACE
324         SLIST_INIT(&thread0.td_epochs);
325 #endif
326         sx_init(&epoch_sx, "epoch-sx");
327         inited = 1;
328         global_epoch = epoch_alloc("Global", 0);
329         global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
330 }
331 SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
332
333 #if !defined(EARLY_AP_STARTUP)
334 static void
335 epoch_init_smp(void *dummy __unused)
336 {
337         inited = 2;
338 }
339 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
340 #endif
341
342 static void
343 epoch_ctor(epoch_t epoch)
344 {
345         epoch_record_t er;
346         int cpu;
347
348         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
349         CPU_FOREACH(cpu) {
350                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
351                 bzero(er, sizeof(*er));
352                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
353                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
354                 er->er_cpuid = cpu;
355                 er->er_parent = epoch;
356         }
357 }
358
359 static void
360 epoch_adjust_prio(struct thread *td, u_char prio)
361 {
362
363         thread_lock(td);
364         sched_prio(td, prio);
365         thread_unlock(td);
366 }
367
368 epoch_t
369 epoch_alloc(const char *name, int flags)
370 {
371         epoch_t epoch;
372         int i;
373
374         MPASS(name != NULL);
375
376         if (__predict_false(!inited))
377                 panic("%s called too early in boot", __func__);
378
379         EPOCH_LOCK();
380
381         /*
382          * Find a free index in the epoch array. If no free index is
383          * found, try to use the index after the last one.
384          */
385         for (i = 0;; i++) {
386                 /*
387                  * If too many epochs are currently allocated,
388                  * return NULL.
389                  */
390                 if (i == MAX_EPOCHS) {
391                         epoch = NULL;
392                         goto done;
393                 }
394                 if (epoch_array[i].e_in_use == 0)
395                         break;
396         }
397
398         epoch = epoch_array + i;
399         ck_epoch_init(&epoch->e_epoch);
400         epoch_ctor(epoch);
401         epoch->e_flags = flags;
402         epoch->e_name = name;
403         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
404         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
405
406         /*
407          * Set e_in_use last, because when this field is set the
408          * epoch_call_task() function will start scanning this epoch
409          * structure.
410          */
411         atomic_store_rel_int(&epoch->e_in_use, 1);
412 done:
413         EPOCH_UNLOCK();
414         return (epoch);
415 }
416
417 void
418 epoch_free(epoch_t epoch)
419 {
420 #ifdef INVARIANTS
421         int cpu;
422 #endif
423
424         EPOCH_LOCK();
425
426         MPASS(epoch->e_in_use != 0);
427
428         epoch_drain_callbacks(epoch);
429
430         atomic_store_rel_int(&epoch->e_in_use, 0);
431         /*
432          * Make sure the epoch_call_task() function see e_in_use equal
433          * to zero, by calling epoch_wait() on the global_epoch:
434          */
435         epoch_wait(global_epoch);
436 #ifdef INVARIANTS
437         CPU_FOREACH(cpu) {
438                 epoch_record_t er;
439
440                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
441
442                 /*
443                  * Sanity check: none of the records should be in use anymore.
444                  * We drained callbacks above and freeing the pcpu records is
445                  * imminent.
446                  */
447                 MPASS(er->er_td == NULL);
448                 MPASS(TAILQ_EMPTY(&er->er_tdlist));
449         }
450 #endif
451         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
452         mtx_destroy(&epoch->e_drain_mtx);
453         sx_destroy(&epoch->e_drain_sx);
454         memset(epoch, 0, sizeof(*epoch));
455
456         EPOCH_UNLOCK();
457 }
458
459 #define INIT_CHECK(epoch)                                       \
460         do {                                                    \
461                 if (__predict_false((epoch) == NULL))           \
462                         return;                                 \
463         } while (0)
464
465 void
466 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
467 {
468         struct epoch_record *er;
469         struct thread *td;
470
471         MPASS(cold || epoch != NULL);
472         td = curthread;
473         MPASS(kstack_contains(td, (vm_offset_t)et, sizeof(*et)));
474
475         INIT_CHECK(epoch);
476         MPASS(epoch->e_flags & EPOCH_PREEMPT);
477
478 #ifdef EPOCH_TRACE
479         epoch_trace_enter(td, epoch, et, file, line);
480 #endif
481         et->et_td = td;
482         THREAD_NO_SLEEPING();
483         critical_enter();
484         sched_pin();
485         et->et_old_priority = td->td_priority;
486         er = epoch_currecord(epoch);
487         /* Record-level tracking is reserved for non-preemptible epochs. */
488         MPASS(er->er_td == NULL);
489         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
490         ck_epoch_begin(&er->er_record, &et->et_section);
491         critical_exit();
492 }
493
494 void
495 epoch_enter(epoch_t epoch)
496 {
497         epoch_record_t er;
498
499         MPASS(cold || epoch != NULL);
500         INIT_CHECK(epoch);
501         critical_enter();
502         er = epoch_currecord(epoch);
503 #ifdef INVARIANTS
504         if (er->er_record.active == 0) {
505                 MPASS(er->er_td == NULL);
506                 er->er_td = curthread;
507         } else {
508                 /* We've recursed, just make sure our accounting isn't wrong. */
509                 MPASS(er->er_td == curthread);
510         }
511 #endif
512         ck_epoch_begin(&er->er_record, NULL);
513 }
514
515 void
516 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
517 {
518         struct epoch_record *er;
519         struct thread *td;
520
521         INIT_CHECK(epoch);
522         td = curthread;
523         critical_enter();
524         sched_unpin();
525         THREAD_SLEEPING_OK();
526         er = epoch_currecord(epoch);
527         MPASS(epoch->e_flags & EPOCH_PREEMPT);
528         MPASS(et != NULL);
529         MPASS(et->et_td == td);
530 #ifdef INVARIANTS
531         et->et_td = (void*)0xDEADBEEF;
532         /* Record-level tracking is reserved for non-preemptible epochs. */
533         MPASS(er->er_td == NULL);
534 #endif
535         ck_epoch_end(&er->er_record, &et->et_section);
536         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
537         er->er_gen++;
538         if (__predict_false(et->et_old_priority != td->td_priority))
539                 epoch_adjust_prio(td, et->et_old_priority);
540         critical_exit();
541 #ifdef EPOCH_TRACE
542         epoch_trace_exit(td, epoch, et, file, line);
543 #endif
544 }
545
546 void
547 epoch_exit(epoch_t epoch)
548 {
549         epoch_record_t er;
550
551         INIT_CHECK(epoch);
552         er = epoch_currecord(epoch);
553         ck_epoch_end(&er->er_record, NULL);
554 #ifdef INVARIANTS
555         MPASS(er->er_td == curthread);
556         if (er->er_record.active == 0)
557                 er->er_td = NULL;
558 #endif
559         critical_exit();
560 }
561
562 /*
563  * epoch_block_handler_preempt() is a callback from the CK code when another
564  * thread is currently in an epoch section.
565  */
566 static void
567 epoch_block_handler_preempt(struct ck_epoch *global __unused,
568     ck_epoch_record_t *cr, void *arg __unused)
569 {
570         epoch_record_t record;
571         struct thread *td, *owner, *curwaittd;
572         struct epoch_tracker *tdwait;
573         struct turnstile *ts;
574         struct lock_object *lock;
575         int spincount, gen;
576         int locksheld __unused;
577
578         record = __containerof(cr, struct epoch_record, er_record);
579         td = curthread;
580         locksheld = td->td_locks;
581         spincount = 0;
582         counter_u64_add(block_count, 1);
583         /*
584          * We lost a race and there's no longer any threads
585          * on the CPU in an epoch section.
586          */
587         if (TAILQ_EMPTY(&record->er_tdlist))
588                 return;
589
590         if (record->er_cpuid != curcpu) {
591                 /*
592                  * If the head of the list is running, we can wait for it
593                  * to remove itself from the list and thus save us the
594                  * overhead of a migration
595                  */
596                 gen = record->er_gen;
597                 thread_unlock(td);
598                 /*
599                  * We can't actually check if the waiting thread is running
600                  * so we simply poll for it to exit before giving up and
601                  * migrating.
602                  */
603                 do {
604                         cpu_spinwait();
605                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
606                                  gen == record->er_gen &&
607                                  spincount++ < MAX_ADAPTIVE_SPIN);
608                 thread_lock(td);
609                 /*
610                  * If the generation has changed we can poll again
611                  * otherwise we need to migrate.
612                  */
613                 if (gen != record->er_gen)
614                         return;
615                 /*
616                  * Being on the same CPU as that of the record on which
617                  * we need to wait allows us access to the thread
618                  * list associated with that CPU. We can then examine the
619                  * oldest thread in the queue and wait on its turnstile
620                  * until it resumes and so on until a grace period
621                  * elapses.
622                  *
623                  */
624                 counter_u64_add(migrate_count, 1);
625                 sched_bind(td, record->er_cpuid);
626                 /*
627                  * At this point we need to return to the ck code
628                  * to scan to see if a grace period has elapsed.
629                  * We can't move on to check the thread list, because
630                  * in the meantime new threads may have arrived that
631                  * in fact belong to a different epoch.
632                  */
633                 return;
634         }
635         /*
636          * Try to find a thread in an epoch section on this CPU
637          * waiting on a turnstile. Otherwise find the lowest
638          * priority thread (highest prio value) and drop our priority
639          * to match to allow it to run.
640          */
641         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
642                 /*
643                  * Propagate our priority to any other waiters to prevent us
644                  * from starving them. They will have their original priority
645                  * restore on exit from epoch_wait().
646                  */
647                 curwaittd = tdwait->et_td;
648                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
649                         critical_enter();
650                         thread_unlock(td);
651                         thread_lock(curwaittd);
652                         sched_prio(curwaittd, td->td_priority);
653                         thread_unlock(curwaittd);
654                         thread_lock(td);
655                         critical_exit();
656                 }
657                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
658                     ((ts = curwaittd->td_blocked) != NULL)) {
659                         /*
660                          * We unlock td to allow turnstile_wait to reacquire
661                          * the thread lock. Before unlocking it we enter a
662                          * critical section to prevent preemption after we
663                          * reenable interrupts by dropping the thread lock in
664                          * order to prevent curwaittd from getting to run.
665                          */
666                         critical_enter();
667                         thread_unlock(td);
668
669                         if (turnstile_lock(ts, &lock, &owner)) {
670                                 if (ts == curwaittd->td_blocked) {
671                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
672                                             TD_ON_LOCK(curwaittd));
673                                         critical_exit();
674                                         turnstile_wait(ts, owner,
675                                             curwaittd->td_tsqueue);
676                                         counter_u64_add(turnstile_count, 1);
677                                         thread_lock(td);
678                                         return;
679                                 }
680                                 turnstile_unlock(ts, lock);
681                         }
682                         thread_lock(td);
683                         critical_exit();
684                         KASSERT(td->td_locks == locksheld,
685                             ("%d extra locks held", td->td_locks - locksheld));
686                 }
687         }
688         /*
689          * We didn't find any threads actually blocked on a lock
690          * so we have nothing to do except context switch away.
691          */
692         counter_u64_add(switch_count, 1);
693         mi_switch(SW_VOL | SWT_RELINQUISH);
694         /*
695          * It is important the thread lock is dropped while yielding
696          * to allow other threads to acquire the lock pointed to by
697          * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the
698          * thread lock before returning. Else a deadlock like
699          * situation might happen.
700          */
701         thread_lock(td);
702 }
703
704 void
705 epoch_wait_preempt(epoch_t epoch)
706 {
707         struct thread *td;
708         int was_bound;
709         int old_cpu;
710         int old_pinned;
711         u_char old_prio;
712         int locks __unused;
713
714         MPASS(cold || epoch != NULL);
715         INIT_CHECK(epoch);
716         td = curthread;
717 #ifdef INVARIANTS
718         locks = curthread->td_locks;
719         MPASS(epoch->e_flags & EPOCH_PREEMPT);
720         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
721                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
722                     "epoch_wait() can be long running");
723         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
724             "of an epoch section of the same epoch"));
725 #endif
726         DROP_GIANT();
727         thread_lock(td);
728
729         old_cpu = PCPU_GET(cpuid);
730         old_pinned = td->td_pinned;
731         old_prio = td->td_priority;
732         was_bound = sched_is_bound(td);
733         sched_unbind(td);
734         td->td_pinned = 0;
735         sched_bind(td, old_cpu);
736
737         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
738             NULL);
739
740         /* restore CPU binding, if any */
741         if (was_bound != 0) {
742                 sched_bind(td, old_cpu);
743         } else {
744                 /* get thread back to initial CPU, if any */
745                 if (old_pinned != 0)
746                         sched_bind(td, old_cpu);
747                 sched_unbind(td);
748         }
749         /* restore pinned after bind */
750         td->td_pinned = old_pinned;
751
752         /* restore thread priority */
753         sched_prio(td, old_prio);
754         thread_unlock(td);
755         PICKUP_GIANT();
756         KASSERT(td->td_locks == locks,
757             ("%d residual locks held", td->td_locks - locks));
758 }
759
760 static void
761 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
762     void *arg __unused)
763 {
764         cpu_spinwait();
765 }
766
767 void
768 epoch_wait(epoch_t epoch)
769 {
770
771         MPASS(cold || epoch != NULL);
772         INIT_CHECK(epoch);
773         MPASS(epoch->e_flags == 0);
774         critical_enter();
775         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
776         critical_exit();
777 }
778
779 void
780 epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
781 {
782         epoch_record_t er;
783         ck_epoch_entry_t *cb;
784
785         cb = (void *)ctx;
786
787         MPASS(callback);
788         /* too early in boot to have epoch set up */
789         if (__predict_false(epoch == NULL))
790                 goto boottime;
791 #if !defined(EARLY_AP_STARTUP)
792         if (__predict_false(inited < 2))
793                 goto boottime;
794 #endif
795
796         critical_enter();
797         *DPCPU_PTR(epoch_cb_count) += 1;
798         er = epoch_currecord(epoch);
799         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
800         critical_exit();
801         return;
802 boottime:
803         callback(ctx);
804 }
805
806 static void
807 epoch_call_task(void *arg __unused)
808 {
809         ck_stack_entry_t *cursor, *head, *next;
810         ck_epoch_record_t *record;
811         epoch_record_t er;
812         epoch_t epoch;
813         ck_stack_t cb_stack;
814         int i, npending, total;
815
816         ck_stack_init(&cb_stack);
817         critical_enter();
818         epoch_enter(global_epoch);
819         for (total = i = 0; i != MAX_EPOCHS; i++) {
820                 epoch = epoch_array + i;
821                 if (__predict_false(
822                     atomic_load_acq_int(&epoch->e_in_use) == 0))
823                         continue;
824                 er = epoch_currecord(epoch);
825                 record = &er->er_record;
826                 if ((npending = record->n_pending) == 0)
827                         continue;
828                 ck_epoch_poll_deferred(record, &cb_stack);
829                 total += npending - record->n_pending;
830         }
831         epoch_exit(global_epoch);
832         *DPCPU_PTR(epoch_cb_count) -= total;
833         critical_exit();
834
835         counter_u64_add(epoch_call_count, total);
836         counter_u64_add(epoch_call_task_count, 1);
837
838         head = ck_stack_batch_pop_npsc(&cb_stack);
839         for (cursor = head; cursor != NULL; cursor = next) {
840                 struct ck_epoch_entry *entry =
841                     ck_epoch_entry_container(cursor);
842
843                 next = CK_STACK_NEXT(cursor);
844                 entry->function(entry);
845         }
846 }
847
848 static int
849 in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail)
850 {
851         epoch_record_t er;
852         struct epoch_tracker *tdwait;
853         struct thread *td;
854
855         MPASS(epoch != NULL);
856         MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
857         td = curthread;
858         if (THREAD_CAN_SLEEP())
859                 return (0);
860         critical_enter();
861         er = epoch_currecord(epoch);
862         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
863                 if (tdwait->et_td == td) {
864                         critical_exit();
865                         return (1);
866                 }
867 #ifdef INVARIANTS
868         if (dump_onfail) {
869                 MPASS(td->td_pinned);
870                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
871                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
872                         printf("td_tid: %d ", tdwait->et_td->td_tid);
873                 printf("\n");
874         }
875 #endif
876         critical_exit();
877         return (0);
878 }
879
880 #ifdef INVARIANTS
881 static void
882 epoch_assert_nocpu(epoch_t epoch, struct thread *td)
883 {
884         epoch_record_t er;
885         int cpu;
886         bool crit;
887
888         crit = td->td_critnest > 0;
889
890         /* Check for a critical section mishap. */
891         CPU_FOREACH(cpu) {
892                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
893                 KASSERT(er->er_td != td,
894                     ("%s critical section in epoch '%s', from cpu %d",
895                     (crit ? "exited" : "re-entered"), epoch->e_name, cpu));
896         }
897 }
898 #else
899 #define epoch_assert_nocpu(e, td) do {} while (0)
900 #endif
901
902 int
903 in_epoch_verbose(epoch_t epoch, int dump_onfail)
904 {
905         epoch_record_t er;
906         struct thread *td;
907
908         if (__predict_false((epoch) == NULL))
909                 return (0);
910         if ((epoch->e_flags & EPOCH_PREEMPT) != 0)
911                 return (in_epoch_verbose_preempt(epoch, dump_onfail));
912
913         /*
914          * The thread being in a critical section is a necessary
915          * condition to be correctly inside a non-preemptible epoch,
916          * so it's definitely not in this epoch.
917          */
918         td = curthread;
919         if (td->td_critnest == 0) {
920                 epoch_assert_nocpu(epoch, td);
921                 return (0);
922         }
923
924         /*
925          * The current cpu is in a critical section, so the epoch record will be
926          * stable for the rest of this function.  Knowing that the record is not
927          * active is sufficient for knowing whether we're in this epoch or not,
928          * since it's a pcpu record.
929          */
930         er = epoch_currecord(epoch);
931         if (er->er_record.active == 0) {
932                 epoch_assert_nocpu(epoch, td);
933                 return (0);
934         }
935
936         MPASS(er->er_td == td);
937         return (1);
938 }
939
940 int
941 in_epoch(epoch_t epoch)
942 {
943         return (in_epoch_verbose(epoch, 0));
944 }
945
946 static void
947 epoch_drain_cb(struct epoch_context *ctx)
948 {
949         struct epoch *epoch =
950             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
951
952         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
953                 mtx_lock(&epoch->e_drain_mtx);
954                 wakeup(epoch);
955                 mtx_unlock(&epoch->e_drain_mtx);
956         }
957 }
958
959 void
960 epoch_drain_callbacks(epoch_t epoch)
961 {
962         epoch_record_t er;
963         struct thread *td;
964         int was_bound;
965         int old_pinned;
966         int old_cpu;
967         int cpu;
968
969         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
970             "epoch_drain_callbacks() may sleep!");
971
972         /* too early in boot to have epoch set up */
973         if (__predict_false(epoch == NULL))
974                 return;
975 #if !defined(EARLY_AP_STARTUP)
976         if (__predict_false(inited < 2))
977                 return;
978 #endif
979         DROP_GIANT();
980
981         sx_xlock(&epoch->e_drain_sx);
982         mtx_lock(&epoch->e_drain_mtx);
983
984         td = curthread;
985         thread_lock(td);
986         old_cpu = PCPU_GET(cpuid);
987         old_pinned = td->td_pinned;
988         was_bound = sched_is_bound(td);
989         sched_unbind(td);
990         td->td_pinned = 0;
991
992         CPU_FOREACH(cpu)
993                 epoch->e_drain_count++;
994         CPU_FOREACH(cpu) {
995                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
996                 sched_bind(td, cpu);
997                 epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx);
998         }
999
1000         /* restore CPU binding, if any */
1001         if (was_bound != 0) {
1002                 sched_bind(td, old_cpu);
1003         } else {
1004                 /* get thread back to initial CPU, if any */
1005                 if (old_pinned != 0)
1006                         sched_bind(td, old_cpu);
1007                 sched_unbind(td);
1008         }
1009         /* restore pinned after bind */
1010         td->td_pinned = old_pinned;
1011
1012         thread_unlock(td);
1013
1014         while (epoch->e_drain_count != 0)
1015                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
1016
1017         mtx_unlock(&epoch->e_drain_mtx);
1018         sx_xunlock(&epoch->e_drain_sx);
1019
1020         PICKUP_GIANT();
1021 }