]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
hv_kbd: Fix build with EVDEV_SUPPORT kernel option disabled.
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/counter.h>
33 #include <sys/epoch.h>
34 #include <sys/gtaskqueue.h>
35 #include <sys/kernel.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/pcpu.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/sx.h>
44 #include <sys/smp.h>
45 #include <sys/sysctl.h>
46 #include <sys/turnstile.h>
47 #ifdef EPOCH_TRACE
48 #include <machine/stdarg.h>
49 #include <sys/stack.h>
50 #include <sys/tree.h>
51 #endif
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_kern.h>
55 #include <vm/uma.h>
56
57 #include <ck_epoch.h>
58
59 #ifdef __amd64__
60 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
61 #else
62 #define EPOCH_ALIGN CACHE_LINE_SIZE
63 #endif
64
65 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
66 typedef struct epoch_record {
67         ck_epoch_record_t er_record;
68         struct epoch_context er_drain_ctx;
69         struct epoch *er_parent;
70         volatile struct epoch_tdlist er_tdlist;
71         volatile uint32_t er_gen;
72         uint32_t er_cpuid;
73 #ifdef INVARIANTS
74         /* Used to verify record ownership for non-preemptible epochs. */
75         struct thread *er_td;
76 #endif
77 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
78
79 struct epoch {
80         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
81         epoch_record_t e_pcpu_record;
82         int     e_in_use;
83         int     e_flags;
84         struct sx e_drain_sx;
85         struct mtx e_drain_mtx;
86         volatile int e_drain_count;
87         const char *e_name;
88 };
89
90 /* arbitrary --- needs benchmarking */
91 #define MAX_ADAPTIVE_SPIN 100
92 #define MAX_EPOCHS 64
93
94 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
95 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
96     "epoch information");
97 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
98     "epoch stats");
99
100 /* Stats. */
101 static counter_u64_t block_count;
102
103 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
104     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
105 static counter_u64_t migrate_count;
106
107 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
108     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
109 static counter_u64_t turnstile_count;
110
111 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
112     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
113 static counter_u64_t switch_count;
114
115 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
116     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
117 static counter_u64_t epoch_call_count;
118
119 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
120     &epoch_call_count, "# of times a callback was deferred");
121 static counter_u64_t epoch_call_task_count;
122
123 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
124     &epoch_call_task_count, "# of times a callback task was run");
125
126 TAILQ_HEAD (threadlist, thread);
127
128 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
129     ck_epoch_entry_container)
130
131 static struct epoch epoch_array[MAX_EPOCHS];
132
133 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
134 DPCPU_DEFINE(int, epoch_cb_count);
135
136 static __read_mostly int inited;
137 __read_mostly epoch_t global_epoch;
138 __read_mostly epoch_t global_epoch_preempt;
139
140 static void epoch_call_task(void *context __unused);
141 static  uma_zone_t pcpu_zone_record;
142
143 static struct sx epoch_sx;
144
145 #define EPOCH_LOCK() sx_xlock(&epoch_sx)
146 #define EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
147
148 #ifdef EPOCH_TRACE
149 struct stackentry {
150         RB_ENTRY(stackentry) se_node;
151         struct stack se_stack;
152 };
153
154 static int
155 stackentry_compare(struct stackentry *a, struct stackentry *b)
156 {
157
158         if (a->se_stack.depth > b->se_stack.depth)
159                 return (1);
160         if (a->se_stack.depth < b->se_stack.depth)
161                 return (-1);
162         for (int i = 0; i < a->se_stack.depth; i++) {
163                 if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
164                         return (1);
165                 if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
166                         return (-1);
167         }
168
169         return (0);
170 }
171
172 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
173 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
174
175 static struct mtx epoch_stacks_lock;
176 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
177
178 static bool epoch_trace_stack_print = true;
179 SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN,
180     &epoch_trace_stack_print, 0, "Print stack traces on epoch reports");
181
182 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
183 static inline void
184 epoch_trace_report(const char *fmt, ...)
185 {
186         va_list ap;
187         struct stackentry se, *new;
188
189         stack_zero(&se.se_stack);       /* XXX: is it really needed? */
190         stack_save(&se.se_stack);
191
192         /* Tree is never reduced - go lockless. */
193         if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
194                 return;
195
196         new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
197         if (new != NULL) {
198                 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
199
200                 mtx_lock(&epoch_stacks_lock);
201                 new = RB_INSERT(stacktree, &epoch_stacks, new);
202                 mtx_unlock(&epoch_stacks_lock);
203                 if (new != NULL)
204                         free(new, M_STACK);
205         }
206
207         va_start(ap, fmt);
208         (void)vprintf(fmt, ap);
209         va_end(ap);
210         if (epoch_trace_stack_print)
211                 stack_print_ddb(&se.se_stack);
212 }
213
214 static inline void
215 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
216     const char *file, int line)
217 {
218         epoch_tracker_t iet;
219
220         SLIST_FOREACH(iet, &td->td_epochs, et_tlink) {
221                 if (iet->et_epoch != epoch)
222                         continue;
223                 epoch_trace_report("Recursively entering epoch %s "
224                     "at %s:%d, previously entered at %s:%d\n",
225                     epoch->e_name, file, line,
226                     iet->et_file, iet->et_line);
227         }
228         et->et_epoch = epoch;
229         et->et_file = file;
230         et->et_line = line;
231         SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
232 }
233
234 static inline void
235 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
236     const char *file, int line)
237 {
238
239         if (SLIST_FIRST(&td->td_epochs) != et) {
240                 epoch_trace_report("Exiting epoch %s in a not nested order "
241                     "at %s:%d. Most recently entered %s at %s:%d\n",
242                     epoch->e_name,
243                     file, line,
244                     SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
245                     SLIST_FIRST(&td->td_epochs)->et_file,
246                     SLIST_FIRST(&td->td_epochs)->et_line);
247                 /* This will panic if et is not anywhere on td_epochs. */
248                 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
249         } else
250                 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
251 }
252
253 /* Used by assertions that check thread state before going to sleep. */
254 void
255 epoch_trace_list(struct thread *td)
256 {
257         epoch_tracker_t iet;
258
259         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
260                 printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
261                     iet->et_file, iet->et_line);
262 }
263 #endif /* EPOCH_TRACE */
264
265 static void
266 epoch_init(void *arg __unused)
267 {
268         int cpu;
269
270         block_count = counter_u64_alloc(M_WAITOK);
271         migrate_count = counter_u64_alloc(M_WAITOK);
272         turnstile_count = counter_u64_alloc(M_WAITOK);
273         switch_count = counter_u64_alloc(M_WAITOK);
274         epoch_call_count = counter_u64_alloc(M_WAITOK);
275         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
276
277         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
278             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
279             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
280         CPU_FOREACH(cpu) {
281                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
282                     epoch_call_task, NULL);
283                 taskqgroup_attach_cpu(qgroup_softirq,
284                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
285                     "epoch call task");
286         }
287 #ifdef EPOCH_TRACE
288         SLIST_INIT(&thread0.td_epochs);
289 #endif
290         sx_init(&epoch_sx, "epoch-sx");
291         inited = 1;
292         global_epoch = epoch_alloc("Global", 0);
293         global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
294 }
295 SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
296
297 #if !defined(EARLY_AP_STARTUP)
298 static void
299 epoch_init_smp(void *dummy __unused)
300 {
301         inited = 2;
302 }
303 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
304 #endif
305
306 static void
307 epoch_ctor(epoch_t epoch)
308 {
309         epoch_record_t er;
310         int cpu;
311
312         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
313         CPU_FOREACH(cpu) {
314                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
315                 bzero(er, sizeof(*er));
316                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
317                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
318                 er->er_cpuid = cpu;
319                 er->er_parent = epoch;
320         }
321 }
322
323 static void
324 epoch_adjust_prio(struct thread *td, u_char prio)
325 {
326
327         thread_lock(td);
328         sched_prio(td, prio);
329         thread_unlock(td);
330 }
331
332 epoch_t
333 epoch_alloc(const char *name, int flags)
334 {
335         epoch_t epoch;
336         int i;
337
338         MPASS(name != NULL);
339
340         if (__predict_false(!inited))
341                 panic("%s called too early in boot", __func__);
342
343         EPOCH_LOCK();
344
345         /*
346          * Find a free index in the epoch array. If no free index is
347          * found, try to use the index after the last one.
348          */
349         for (i = 0;; i++) {
350                 /*
351                  * If too many epochs are currently allocated,
352                  * return NULL.
353                  */
354                 if (i == MAX_EPOCHS) {
355                         epoch = NULL;
356                         goto done;
357                 }
358                 if (epoch_array[i].e_in_use == 0)
359                         break;
360         }
361
362         epoch = epoch_array + i;
363         ck_epoch_init(&epoch->e_epoch);
364         epoch_ctor(epoch);
365         epoch->e_flags = flags;
366         epoch->e_name = name;
367         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
368         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
369
370         /*
371          * Set e_in_use last, because when this field is set the
372          * epoch_call_task() function will start scanning this epoch
373          * structure.
374          */
375         atomic_store_rel_int(&epoch->e_in_use, 1);
376 done:
377         EPOCH_UNLOCK();
378         return (epoch);
379 }
380
381 void
382 epoch_free(epoch_t epoch)
383 {
384 #ifdef INVARIANTS
385         int cpu;
386 #endif
387
388         EPOCH_LOCK();
389
390         MPASS(epoch->e_in_use != 0);
391
392         epoch_drain_callbacks(epoch);
393
394         atomic_store_rel_int(&epoch->e_in_use, 0);
395         /*
396          * Make sure the epoch_call_task() function see e_in_use equal
397          * to zero, by calling epoch_wait() on the global_epoch:
398          */
399         epoch_wait(global_epoch);
400 #ifdef INVARIANTS
401         CPU_FOREACH(cpu) {
402                 epoch_record_t er;
403
404                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
405
406                 /*
407                  * Sanity check: none of the records should be in use anymore.
408                  * We drained callbacks above and freeing the pcpu records is
409                  * imminent.
410                  */
411                 MPASS(er->er_td == NULL);
412                 MPASS(TAILQ_EMPTY(&er->er_tdlist));
413         }
414 #endif
415         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
416         mtx_destroy(&epoch->e_drain_mtx);
417         sx_destroy(&epoch->e_drain_sx);
418         memset(epoch, 0, sizeof(*epoch));
419
420         EPOCH_UNLOCK();
421 }
422
423 static epoch_record_t
424 epoch_currecord(epoch_t epoch)
425 {
426
427         return (zpcpu_get(epoch->e_pcpu_record));
428 }
429
430 #define INIT_CHECK(epoch)                                       \
431         do {                                                    \
432                 if (__predict_false((epoch) == NULL))           \
433                         return;                                 \
434         } while (0)
435
436 void
437 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
438 {
439         struct epoch_record *er;
440         struct thread *td;
441
442         MPASS(cold || epoch != NULL);
443         td = curthread;
444         MPASS(kstack_contains(td, (vm_offset_t)et, sizeof(*et)));
445
446         INIT_CHECK(epoch);
447         MPASS(epoch->e_flags & EPOCH_PREEMPT);
448
449 #ifdef EPOCH_TRACE
450         epoch_trace_enter(td, epoch, et, file, line);
451 #endif
452         et->et_td = td;
453         THREAD_NO_SLEEPING();
454         critical_enter();
455         sched_pin();
456         et->et_old_priority = td->td_priority;
457         er = epoch_currecord(epoch);
458         /* Record-level tracking is reserved for non-preemptible epochs. */
459         MPASS(er->er_td == NULL);
460         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
461         ck_epoch_begin(&er->er_record, &et->et_section);
462         critical_exit();
463 }
464
465 void
466 epoch_enter(epoch_t epoch)
467 {
468         epoch_record_t er;
469
470         MPASS(cold || epoch != NULL);
471         INIT_CHECK(epoch);
472         critical_enter();
473         er = epoch_currecord(epoch);
474 #ifdef INVARIANTS
475         if (er->er_record.active == 0) {
476                 MPASS(er->er_td == NULL);
477                 er->er_td = curthread;
478         } else {
479                 /* We've recursed, just make sure our accounting isn't wrong. */
480                 MPASS(er->er_td == curthread);
481         }
482 #endif
483         ck_epoch_begin(&er->er_record, NULL);
484 }
485
486 void
487 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
488 {
489         struct epoch_record *er;
490         struct thread *td;
491
492         INIT_CHECK(epoch);
493         td = curthread;
494         critical_enter();
495         sched_unpin();
496         THREAD_SLEEPING_OK();
497         er = epoch_currecord(epoch);
498         MPASS(epoch->e_flags & EPOCH_PREEMPT);
499         MPASS(et != NULL);
500         MPASS(et->et_td == td);
501 #ifdef INVARIANTS
502         et->et_td = (void*)0xDEADBEEF;
503         /* Record-level tracking is reserved for non-preemptible epochs. */
504         MPASS(er->er_td == NULL);
505 #endif
506         ck_epoch_end(&er->er_record, &et->et_section);
507         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
508         er->er_gen++;
509         if (__predict_false(et->et_old_priority != td->td_priority))
510                 epoch_adjust_prio(td, et->et_old_priority);
511         critical_exit();
512 #ifdef EPOCH_TRACE
513         epoch_trace_exit(td, epoch, et, file, line);
514 #endif
515 }
516
517 void
518 epoch_exit(epoch_t epoch)
519 {
520         epoch_record_t er;
521
522         INIT_CHECK(epoch);
523         er = epoch_currecord(epoch);
524         ck_epoch_end(&er->er_record, NULL);
525 #ifdef INVARIANTS
526         MPASS(er->er_td == curthread);
527         if (er->er_record.active == 0)
528                 er->er_td = NULL;
529 #endif
530         critical_exit();
531 }
532
533 /*
534  * epoch_block_handler_preempt() is a callback from the CK code when another
535  * thread is currently in an epoch section.
536  */
537 static void
538 epoch_block_handler_preempt(struct ck_epoch *global __unused,
539     ck_epoch_record_t *cr, void *arg __unused)
540 {
541         epoch_record_t record;
542         struct thread *td, *owner, *curwaittd;
543         struct epoch_tracker *tdwait;
544         struct turnstile *ts;
545         struct lock_object *lock;
546         int spincount, gen;
547         int locksheld __unused;
548
549         record = __containerof(cr, struct epoch_record, er_record);
550         td = curthread;
551         locksheld = td->td_locks;
552         spincount = 0;
553         counter_u64_add(block_count, 1);
554         /*
555          * We lost a race and there's no longer any threads
556          * on the CPU in an epoch section.
557          */
558         if (TAILQ_EMPTY(&record->er_tdlist))
559                 return;
560
561         if (record->er_cpuid != curcpu) {
562                 /*
563                  * If the head of the list is running, we can wait for it
564                  * to remove itself from the list and thus save us the
565                  * overhead of a migration
566                  */
567                 gen = record->er_gen;
568                 thread_unlock(td);
569                 /*
570                  * We can't actually check if the waiting thread is running
571                  * so we simply poll for it to exit before giving up and
572                  * migrating.
573                  */
574                 do {
575                         cpu_spinwait();
576                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
577                                  gen == record->er_gen &&
578                                  spincount++ < MAX_ADAPTIVE_SPIN);
579                 thread_lock(td);
580                 /*
581                  * If the generation has changed we can poll again
582                  * otherwise we need to migrate.
583                  */
584                 if (gen != record->er_gen)
585                         return;
586                 /*
587                  * Being on the same CPU as that of the record on which
588                  * we need to wait allows us access to the thread
589                  * list associated with that CPU. We can then examine the
590                  * oldest thread in the queue and wait on its turnstile
591                  * until it resumes and so on until a grace period
592                  * elapses.
593                  *
594                  */
595                 counter_u64_add(migrate_count, 1);
596                 sched_bind(td, record->er_cpuid);
597                 /*
598                  * At this point we need to return to the ck code
599                  * to scan to see if a grace period has elapsed.
600                  * We can't move on to check the thread list, because
601                  * in the meantime new threads may have arrived that
602                  * in fact belong to a different epoch.
603                  */
604                 return;
605         }
606         /*
607          * Try to find a thread in an epoch section on this CPU
608          * waiting on a turnstile. Otherwise find the lowest
609          * priority thread (highest prio value) and drop our priority
610          * to match to allow it to run.
611          */
612         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
613                 /*
614                  * Propagate our priority to any other waiters to prevent us
615                  * from starving them. They will have their original priority
616                  * restore on exit from epoch_wait().
617                  */
618                 curwaittd = tdwait->et_td;
619                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
620                         critical_enter();
621                         thread_unlock(td);
622                         thread_lock(curwaittd);
623                         sched_prio(curwaittd, td->td_priority);
624                         thread_unlock(curwaittd);
625                         thread_lock(td);
626                         critical_exit();
627                 }
628                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
629                     ((ts = curwaittd->td_blocked) != NULL)) {
630                         /*
631                          * We unlock td to allow turnstile_wait to reacquire
632                          * the thread lock. Before unlocking it we enter a
633                          * critical section to prevent preemption after we
634                          * reenable interrupts by dropping the thread lock in
635                          * order to prevent curwaittd from getting to run.
636                          */
637                         critical_enter();
638                         thread_unlock(td);
639
640                         if (turnstile_lock(ts, &lock, &owner)) {
641                                 if (ts == curwaittd->td_blocked) {
642                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
643                                             TD_ON_LOCK(curwaittd));
644                                         critical_exit();
645                                         turnstile_wait(ts, owner,
646                                             curwaittd->td_tsqueue);
647                                         counter_u64_add(turnstile_count, 1);
648                                         thread_lock(td);
649                                         return;
650                                 }
651                                 turnstile_unlock(ts, lock);
652                         }
653                         thread_lock(td);
654                         critical_exit();
655                         KASSERT(td->td_locks == locksheld,
656                             ("%d extra locks held", td->td_locks - locksheld));
657                 }
658         }
659         /*
660          * We didn't find any threads actually blocked on a lock
661          * so we have nothing to do except context switch away.
662          */
663         counter_u64_add(switch_count, 1);
664         mi_switch(SW_VOL | SWT_RELINQUISH);
665         /*
666          * It is important the thread lock is dropped while yielding
667          * to allow other threads to acquire the lock pointed to by
668          * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the
669          * thread lock before returning. Else a deadlock like
670          * situation might happen.
671          */
672         thread_lock(td);
673 }
674
675 void
676 epoch_wait_preempt(epoch_t epoch)
677 {
678         struct thread *td;
679         int was_bound;
680         int old_cpu;
681         int old_pinned;
682         u_char old_prio;
683         int locks __unused;
684
685         MPASS(cold || epoch != NULL);
686         INIT_CHECK(epoch);
687         td = curthread;
688 #ifdef INVARIANTS
689         locks = curthread->td_locks;
690         MPASS(epoch->e_flags & EPOCH_PREEMPT);
691         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
692                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
693                     "epoch_wait() can be long running");
694         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
695             "of an epoch section of the same epoch"));
696 #endif
697         DROP_GIANT();
698         thread_lock(td);
699
700         old_cpu = PCPU_GET(cpuid);
701         old_pinned = td->td_pinned;
702         old_prio = td->td_priority;
703         was_bound = sched_is_bound(td);
704         sched_unbind(td);
705         td->td_pinned = 0;
706         sched_bind(td, old_cpu);
707
708         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
709             NULL);
710
711         /* restore CPU binding, if any */
712         if (was_bound != 0) {
713                 sched_bind(td, old_cpu);
714         } else {
715                 /* get thread back to initial CPU, if any */
716                 if (old_pinned != 0)
717                         sched_bind(td, old_cpu);
718                 sched_unbind(td);
719         }
720         /* restore pinned after bind */
721         td->td_pinned = old_pinned;
722
723         /* restore thread priority */
724         sched_prio(td, old_prio);
725         thread_unlock(td);
726         PICKUP_GIANT();
727         KASSERT(td->td_locks == locks,
728             ("%d residual locks held", td->td_locks - locks));
729 }
730
731 static void
732 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
733     void *arg __unused)
734 {
735         cpu_spinwait();
736 }
737
738 void
739 epoch_wait(epoch_t epoch)
740 {
741
742         MPASS(cold || epoch != NULL);
743         INIT_CHECK(epoch);
744         MPASS(epoch->e_flags == 0);
745         critical_enter();
746         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
747         critical_exit();
748 }
749
750 void
751 epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
752 {
753         epoch_record_t er;
754         ck_epoch_entry_t *cb;
755
756         cb = (void *)ctx;
757
758         MPASS(callback);
759         /* too early in boot to have epoch set up */
760         if (__predict_false(epoch == NULL))
761                 goto boottime;
762 #if !defined(EARLY_AP_STARTUP)
763         if (__predict_false(inited < 2))
764                 goto boottime;
765 #endif
766
767         critical_enter();
768         *DPCPU_PTR(epoch_cb_count) += 1;
769         er = epoch_currecord(epoch);
770         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
771         critical_exit();
772         return;
773 boottime:
774         callback(ctx);
775 }
776
777 static void
778 epoch_call_task(void *arg __unused)
779 {
780         ck_stack_entry_t *cursor, *head, *next;
781         ck_epoch_record_t *record;
782         epoch_record_t er;
783         epoch_t epoch;
784         ck_stack_t cb_stack;
785         int i, npending, total;
786
787         ck_stack_init(&cb_stack);
788         critical_enter();
789         epoch_enter(global_epoch);
790         for (total = i = 0; i != MAX_EPOCHS; i++) {
791                 epoch = epoch_array + i;
792                 if (__predict_false(
793                     atomic_load_acq_int(&epoch->e_in_use) == 0))
794                         continue;
795                 er = epoch_currecord(epoch);
796                 record = &er->er_record;
797                 if ((npending = record->n_pending) == 0)
798                         continue;
799                 ck_epoch_poll_deferred(record, &cb_stack);
800                 total += npending - record->n_pending;
801         }
802         epoch_exit(global_epoch);
803         *DPCPU_PTR(epoch_cb_count) -= total;
804         critical_exit();
805
806         counter_u64_add(epoch_call_count, total);
807         counter_u64_add(epoch_call_task_count, 1);
808
809         head = ck_stack_batch_pop_npsc(&cb_stack);
810         for (cursor = head; cursor != NULL; cursor = next) {
811                 struct ck_epoch_entry *entry =
812                     ck_epoch_entry_container(cursor);
813
814                 next = CK_STACK_NEXT(cursor);
815                 entry->function(entry);
816         }
817 }
818
819 static int
820 in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail)
821 {
822         epoch_record_t er;
823         struct epoch_tracker *tdwait;
824         struct thread *td;
825
826         MPASS(epoch != NULL);
827         MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
828         td = curthread;
829         if (THREAD_CAN_SLEEP())
830                 return (0);
831         critical_enter();
832         er = epoch_currecord(epoch);
833         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
834                 if (tdwait->et_td == td) {
835                         critical_exit();
836                         return (1);
837                 }
838 #ifdef INVARIANTS
839         if (dump_onfail) {
840                 MPASS(td->td_pinned);
841                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
842                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
843                         printf("td_tid: %d ", tdwait->et_td->td_tid);
844                 printf("\n");
845         }
846 #endif
847         critical_exit();
848         return (0);
849 }
850
851 #ifdef INVARIANTS
852 static void
853 epoch_assert_nocpu(epoch_t epoch, struct thread *td)
854 {
855         epoch_record_t er;
856         int cpu;
857         bool crit;
858
859         crit = td->td_critnest > 0;
860
861         /* Check for a critical section mishap. */
862         CPU_FOREACH(cpu) {
863                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
864                 KASSERT(er->er_td != td,
865                     ("%s critical section in epoch '%s', from cpu %d",
866                     (crit ? "exited" : "re-entered"), epoch->e_name, cpu));
867         }
868 }
869 #else
870 #define epoch_assert_nocpu(e, td) do {} while (0)
871 #endif
872
873 int
874 in_epoch_verbose(epoch_t epoch, int dump_onfail)
875 {
876         epoch_record_t er;
877         struct thread *td;
878
879         if (__predict_false((epoch) == NULL))
880                 return (0);
881         if ((epoch->e_flags & EPOCH_PREEMPT) != 0)
882                 return (in_epoch_verbose_preempt(epoch, dump_onfail));
883
884         /*
885          * The thread being in a critical section is a necessary
886          * condition to be correctly inside a non-preemptible epoch,
887          * so it's definitely not in this epoch.
888          */
889         td = curthread;
890         if (td->td_critnest == 0) {
891                 epoch_assert_nocpu(epoch, td);
892                 return (0);
893         }
894
895         /*
896          * The current cpu is in a critical section, so the epoch record will be
897          * stable for the rest of this function.  Knowing that the record is not
898          * active is sufficient for knowing whether we're in this epoch or not,
899          * since it's a pcpu record.
900          */
901         er = epoch_currecord(epoch);
902         if (er->er_record.active == 0) {
903                 epoch_assert_nocpu(epoch, td);
904                 return (0);
905         }
906
907         MPASS(er->er_td == td);
908         return (1);
909 }
910
911 int
912 in_epoch(epoch_t epoch)
913 {
914         return (in_epoch_verbose(epoch, 0));
915 }
916
917 static void
918 epoch_drain_cb(struct epoch_context *ctx)
919 {
920         struct epoch *epoch =
921             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
922
923         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
924                 mtx_lock(&epoch->e_drain_mtx);
925                 wakeup(epoch);
926                 mtx_unlock(&epoch->e_drain_mtx);
927         }
928 }
929
930 void
931 epoch_drain_callbacks(epoch_t epoch)
932 {
933         epoch_record_t er;
934         struct thread *td;
935         int was_bound;
936         int old_pinned;
937         int old_cpu;
938         int cpu;
939
940         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
941             "epoch_drain_callbacks() may sleep!");
942
943         /* too early in boot to have epoch set up */
944         if (__predict_false(epoch == NULL))
945                 return;
946 #if !defined(EARLY_AP_STARTUP)
947         if (__predict_false(inited < 2))
948                 return;
949 #endif
950         DROP_GIANT();
951
952         sx_xlock(&epoch->e_drain_sx);
953         mtx_lock(&epoch->e_drain_mtx);
954
955         td = curthread;
956         thread_lock(td);
957         old_cpu = PCPU_GET(cpuid);
958         old_pinned = td->td_pinned;
959         was_bound = sched_is_bound(td);
960         sched_unbind(td);
961         td->td_pinned = 0;
962
963         CPU_FOREACH(cpu)
964                 epoch->e_drain_count++;
965         CPU_FOREACH(cpu) {
966                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
967                 sched_bind(td, cpu);
968                 epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx);
969         }
970
971         /* restore CPU binding, if any */
972         if (was_bound != 0) {
973                 sched_bind(td, old_cpu);
974         } else {
975                 /* get thread back to initial CPU, if any */
976                 if (old_pinned != 0)
977                         sched_bind(td, old_cpu);
978                 sched_unbind(td);
979         }
980         /* restore pinned after bind */
981         td->td_pinned = old_pinned;
982
983         thread_unlock(td);
984
985         while (epoch->e_drain_count != 0)
986                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
987
988         mtx_unlock(&epoch->e_drain_mtx);
989         sx_xunlock(&epoch->e_drain_sx);
990
991         PICKUP_GIANT();
992 }