]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
cdn-patch: offer option to mount /etc/keys before attaching geli devices
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/counter.h>
36 #include <sys/epoch.h>
37 #include <sys/gtaskqueue.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/sx.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/turnstile.h>
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52 #include <vm/vm_kern.h>
53 #include <vm/uma.h>
54
55 #include <ck_epoch.h>
56
57 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
58
59 #ifdef __amd64__
60 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
61 #else
62 #define EPOCH_ALIGN CACHE_LINE_SIZE
63 #endif
64
65 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
66 typedef struct epoch_record {
67         ck_epoch_record_t er_record;
68         volatile struct epoch_tdlist er_tdlist;
69         volatile uint32_t er_gen;
70         uint32_t er_cpuid;
71         /* fields above are part of KBI and cannot be modified */
72         struct epoch_context er_drain_ctx;
73         struct epoch *er_parent;
74 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
75
76 struct epoch {
77         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
78         epoch_record_t e_pcpu_record;
79         int     e_idx;
80         int     e_flags;
81         /* fields above are part of KBI and cannot be modified */
82         struct sx e_drain_sx;
83         struct mtx e_drain_mtx;
84         volatile int e_drain_count;
85 };
86
87 /* arbitrary --- needs benchmarking */
88 #define MAX_ADAPTIVE_SPIN 100
89 #define MAX_EPOCHS 64
90
91 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
92 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
93 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
94
95 /* Stats. */
96 static counter_u64_t block_count;
97
98 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
99     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
100 static counter_u64_t migrate_count;
101
102 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
103     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
104 static counter_u64_t turnstile_count;
105
106 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
107     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
108 static counter_u64_t switch_count;
109
110 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
111     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
112 static counter_u64_t epoch_call_count;
113
114 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
115     &epoch_call_count, "# of times a callback was deferred");
116 static counter_u64_t epoch_call_task_count;
117
118 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
119     &epoch_call_task_count, "# of times a callback task was run");
120
121 TAILQ_HEAD (threadlist, thread);
122
123 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
124     ck_epoch_entry_container)
125
126 epoch_t allepochs[MAX_EPOCHS];
127
128 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
129 DPCPU_DEFINE(int, epoch_cb_count);
130
131 static __read_mostly int inited;
132 static __read_mostly int epoch_count;
133 __read_mostly epoch_t global_epoch;
134 __read_mostly epoch_t global_epoch_preempt;
135
136 static void epoch_call_task(void *context __unused);
137 static  uma_zone_t pcpu_zone_record;
138
139 static void
140 epoch_init(void *arg __unused)
141 {
142         int cpu;
143
144         block_count = counter_u64_alloc(M_WAITOK);
145         migrate_count = counter_u64_alloc(M_WAITOK);
146         turnstile_count = counter_u64_alloc(M_WAITOK);
147         switch_count = counter_u64_alloc(M_WAITOK);
148         epoch_call_count = counter_u64_alloc(M_WAITOK);
149         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
150
151         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
152             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
153             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
154         CPU_FOREACH(cpu) {
155                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
156                     epoch_call_task, NULL);
157                 taskqgroup_attach_cpu(qgroup_softirq,
158                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1,
159                     "epoch call task");
160         }
161         inited = 1;
162         global_epoch = epoch_alloc(0);
163         global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
164 }
165 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
166
167 #if !defined(EARLY_AP_STARTUP)
168 static void
169 epoch_init_smp(void *dummy __unused)
170 {
171         inited = 2;
172 }
173 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
174 #endif
175
176 static void
177 epoch_ctor(epoch_t epoch)
178 {
179         epoch_record_t er;
180         int cpu;
181
182         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
183         CPU_FOREACH(cpu) {
184                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
185                 bzero(er, sizeof(*er));
186                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
187                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
188                 er->er_cpuid = cpu;
189                 er->er_parent = epoch;
190         }
191 }
192
193 static void
194 epoch_adjust_prio(struct thread *td, u_char prio)
195 {
196
197         thread_lock(td);
198         sched_prio(td, prio);
199         thread_unlock(td);
200 }
201
202 epoch_t
203 epoch_alloc(int flags)
204 {
205         epoch_t epoch;
206
207         if (__predict_false(!inited))
208                 panic("%s called too early in boot", __func__);
209         epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK);
210         ck_epoch_init(&epoch->e_epoch);
211         epoch_ctor(epoch);
212         MPASS(epoch_count < MAX_EPOCHS - 2);
213         epoch->e_flags = flags;
214         epoch->e_idx = epoch_count;
215         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
216         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
217         allepochs[epoch_count++] = epoch;
218         return (epoch);
219 }
220
221 void
222 epoch_free(epoch_t epoch)
223 {
224
225         epoch_drain_callbacks(epoch);
226         allepochs[epoch->e_idx] = NULL;
227         epoch_wait(global_epoch);
228         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
229         mtx_destroy(&epoch->e_drain_mtx);
230         sx_destroy(&epoch->e_drain_sx);
231         free(epoch, M_EPOCH);
232 }
233
234 static epoch_record_t
235 epoch_currecord(epoch_t epoch)
236 {
237
238         return (zpcpu_get_cpu(epoch->e_pcpu_record, curcpu));
239 }
240
241 #define INIT_CHECK(epoch)                                       \
242         do {                                                    \
243                 if (__predict_false((epoch) == NULL))           \
244                         return;                                 \
245         } while (0)
246
247 void
248 epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et)
249 {
250         struct epoch_record *er;
251         struct thread *td;
252
253         MPASS(cold || epoch != NULL);
254         INIT_CHECK(epoch);
255         MPASS(epoch->e_flags & EPOCH_PREEMPT);
256 #ifdef EPOCH_TRACKER_DEBUG
257         et->et_magic_pre = EPOCH_MAGIC0;
258         et->et_magic_post = EPOCH_MAGIC1;
259 #endif
260         td = curthread;
261         et->et_td = td;
262         td->td_epochnest++;
263         critical_enter();
264         sched_pin();
265
266         td->td_pre_epoch_prio = td->td_priority;
267         er = epoch_currecord(epoch);
268         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
269         ck_epoch_begin(&er->er_record, &et->et_section);
270         critical_exit();
271 }
272
273 void
274 epoch_enter(epoch_t epoch)
275 {
276         struct thread *td;
277         epoch_record_t er;
278
279         MPASS(cold || epoch != NULL);
280         INIT_CHECK(epoch);
281         td = curthread;
282
283         td->td_epochnest++;
284         critical_enter();
285         er = epoch_currecord(epoch);
286         ck_epoch_begin(&er->er_record, NULL);
287 }
288
289 void
290 epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et)
291 {
292         struct epoch_record *er;
293         struct thread *td;
294
295         INIT_CHECK(epoch);
296         td = curthread;
297         critical_enter();
298         sched_unpin();
299         MPASS(td->td_epochnest);
300         td->td_epochnest--;
301         er = epoch_currecord(epoch);
302         MPASS(epoch->e_flags & EPOCH_PREEMPT);
303         MPASS(et != NULL);
304         MPASS(et->et_td == td);
305 #ifdef EPOCH_TRACKER_DEBUG
306         MPASS(et->et_magic_pre == EPOCH_MAGIC0);
307         MPASS(et->et_magic_post == EPOCH_MAGIC1);
308         et->et_magic_pre = 0;
309         et->et_magic_post = 0;
310 #endif
311 #ifdef INVARIANTS
312         et->et_td = (void*)0xDEADBEEF;
313 #endif
314         ck_epoch_end(&er->er_record, &et->et_section);
315         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
316         er->er_gen++;
317         if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
318                 epoch_adjust_prio(td, td->td_pre_epoch_prio);
319         critical_exit();
320 }
321
322 void
323 epoch_exit(epoch_t epoch)
324 {
325         struct thread *td;
326         epoch_record_t er;
327
328         INIT_CHECK(epoch);
329         td = curthread;
330         MPASS(td->td_epochnest);
331         td->td_epochnest--;
332         er = epoch_currecord(epoch);
333         ck_epoch_end(&er->er_record, NULL);
334         critical_exit();
335 }
336
337 /*
338  * epoch_block_handler_preempt() is a callback from the CK code when another
339  * thread is currently in an epoch section.
340  */
341 static void
342 epoch_block_handler_preempt(struct ck_epoch *global __unused,
343     ck_epoch_record_t *cr, void *arg __unused)
344 {
345         epoch_record_t record;
346         struct thread *td, *owner, *curwaittd;
347         struct epoch_tracker *tdwait;
348         struct turnstile *ts;
349         struct lock_object *lock;
350         int spincount, gen;
351         int locksheld __unused;
352
353         record = __containerof(cr, struct epoch_record, er_record);
354         td = curthread;
355         locksheld = td->td_locks;
356         spincount = 0;
357         counter_u64_add(block_count, 1);
358         /*
359          * We lost a race and there's no longer any threads
360          * on the CPU in an epoch section.
361          */
362         if (TAILQ_EMPTY(&record->er_tdlist))
363                 return;
364
365         if (record->er_cpuid != curcpu) {
366                 /*
367                  * If the head of the list is running, we can wait for it
368                  * to remove itself from the list and thus save us the
369                  * overhead of a migration
370                  */
371                 gen = record->er_gen;
372                 thread_unlock(td);
373                 /*
374                  * We can't actually check if the waiting thread is running
375                  * so we simply poll for it to exit before giving up and
376                  * migrating.
377                  */
378                 do {
379                         cpu_spinwait();
380                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
381                                  gen == record->er_gen &&
382                                  spincount++ < MAX_ADAPTIVE_SPIN);
383                 thread_lock(td);
384                 /*
385                  * If the generation has changed we can poll again
386                  * otherwise we need to migrate.
387                  */
388                 if (gen != record->er_gen)
389                         return;
390                 /*
391                  * Being on the same CPU as that of the record on which
392                  * we need to wait allows us access to the thread
393                  * list associated with that CPU. We can then examine the
394                  * oldest thread in the queue and wait on its turnstile
395                  * until it resumes and so on until a grace period
396                  * elapses.
397                  *
398                  */
399                 counter_u64_add(migrate_count, 1);
400                 sched_bind(td, record->er_cpuid);
401                 /*
402                  * At this point we need to return to the ck code
403                  * to scan to see if a grace period has elapsed.
404                  * We can't move on to check the thread list, because
405                  * in the meantime new threads may have arrived that
406                  * in fact belong to a different epoch.
407                  */
408                 return;
409         }
410         /*
411          * Try to find a thread in an epoch section on this CPU
412          * waiting on a turnstile. Otherwise find the lowest
413          * priority thread (highest prio value) and drop our priority
414          * to match to allow it to run.
415          */
416         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
417                 /*
418                  * Propagate our priority to any other waiters to prevent us
419                  * from starving them. They will have their original priority
420                  * restore on exit from epoch_wait().
421                  */
422                 curwaittd = tdwait->et_td;
423                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
424                         critical_enter();
425                         thread_unlock(td);
426                         thread_lock(curwaittd);
427                         sched_prio(curwaittd, td->td_priority);
428                         thread_unlock(curwaittd);
429                         thread_lock(td);
430                         critical_exit();
431                 }
432                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
433                     ((ts = curwaittd->td_blocked) != NULL)) {
434                         /*
435                          * We unlock td to allow turnstile_wait to reacquire
436                          * the thread lock. Before unlocking it we enter a
437                          * critical section to prevent preemption after we
438                          * reenable interrupts by dropping the thread lock in
439                          * order to prevent curwaittd from getting to run.
440                          */
441                         critical_enter();
442                         thread_unlock(td);
443
444                         if (turnstile_lock(ts, &lock, &owner)) {
445                                 if (ts == curwaittd->td_blocked) {
446                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
447                                             TD_ON_LOCK(curwaittd));
448                                         critical_exit();
449                                         turnstile_wait(ts, owner,
450                                             curwaittd->td_tsqueue);
451                                         counter_u64_add(turnstile_count, 1);
452                                         thread_lock(td);
453                                         return;
454                                 }
455                                 turnstile_unlock(ts, lock);
456                         }
457                         thread_lock(td);
458                         critical_exit();
459                         KASSERT(td->td_locks == locksheld,
460                             ("%d extra locks held", td->td_locks - locksheld));
461                 }
462         }
463         /*
464          * We didn't find any threads actually blocked on a lock
465          * so we have nothing to do except context switch away.
466          */
467         counter_u64_add(switch_count, 1);
468         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
469
470         /*
471          * Release the thread lock while yielding to
472          * allow other threads to acquire the lock
473          * pointed to by TDQ_LOCKPTR(td). Else a
474          * deadlock like situation might happen. (HPS)
475          */
476         thread_unlock(td);
477         thread_lock(td);
478 }
479
480 void
481 epoch_wait_preempt(epoch_t epoch)
482 {
483         struct thread *td;
484         int was_bound;
485         int old_cpu;
486         int old_pinned;
487         u_char old_prio;
488         int locks __unused;
489
490         MPASS(cold || epoch != NULL);
491         INIT_CHECK(epoch);
492         td = curthread;
493 #ifdef INVARIANTS
494         locks = curthread->td_locks;
495         MPASS(epoch->e_flags & EPOCH_PREEMPT);
496         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
497                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
498                     "epoch_wait() can be long running");
499         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
500             "of an epoch section of the same epoch"));
501 #endif
502         thread_lock(td);
503         DROP_GIANT();
504
505         old_cpu = PCPU_GET(cpuid);
506         old_pinned = td->td_pinned;
507         old_prio = td->td_priority;
508         was_bound = sched_is_bound(td);
509         sched_unbind(td);
510         td->td_pinned = 0;
511         sched_bind(td, old_cpu);
512
513         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
514             NULL);
515
516         /* restore CPU binding, if any */
517         if (was_bound != 0) {
518                 sched_bind(td, old_cpu);
519         } else {
520                 /* get thread back to initial CPU, if any */
521                 if (old_pinned != 0)
522                         sched_bind(td, old_cpu);
523                 sched_unbind(td);
524         }
525         /* restore pinned after bind */
526         td->td_pinned = old_pinned;
527
528         /* restore thread priority */
529         sched_prio(td, old_prio);
530         thread_unlock(td);
531         PICKUP_GIANT();
532         KASSERT(td->td_locks == locks,
533             ("%d residual locks held", td->td_locks - locks));
534 }
535
536 static void
537 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
538     void *arg __unused)
539 {
540         cpu_spinwait();
541 }
542
543 void
544 epoch_wait(epoch_t epoch)
545 {
546
547         MPASS(cold || epoch != NULL);
548         INIT_CHECK(epoch);
549         MPASS(epoch->e_flags == 0);
550         critical_enter();
551         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
552         critical_exit();
553 }
554
555 void
556 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
557 {
558         epoch_record_t er;
559         ck_epoch_entry_t *cb;
560
561         cb = (void *)ctx;
562
563         MPASS(callback);
564         /* too early in boot to have epoch set up */
565         if (__predict_false(epoch == NULL))
566                 goto boottime;
567 #if !defined(EARLY_AP_STARTUP)
568         if (__predict_false(inited < 2))
569                 goto boottime;
570 #endif
571
572         critical_enter();
573         *DPCPU_PTR(epoch_cb_count) += 1;
574         er = epoch_currecord(epoch);
575         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
576         critical_exit();
577         return;
578 boottime:
579         callback(ctx);
580 }
581
582 static void
583 epoch_call_task(void *arg __unused)
584 {
585         ck_stack_entry_t *cursor, *head, *next;
586         ck_epoch_record_t *record;
587         epoch_record_t er;
588         epoch_t epoch;
589         ck_stack_t cb_stack;
590         int i, npending, total;
591
592         ck_stack_init(&cb_stack);
593         critical_enter();
594         epoch_enter(global_epoch);
595         for (total = i = 0; i < epoch_count; i++) {
596                 if (__predict_false((epoch = allepochs[i]) == NULL))
597                         continue;
598                 er = epoch_currecord(epoch);
599                 record = &er->er_record;
600                 if ((npending = record->n_pending) == 0)
601                         continue;
602                 ck_epoch_poll_deferred(record, &cb_stack);
603                 total += npending - record->n_pending;
604         }
605         epoch_exit(global_epoch);
606         *DPCPU_PTR(epoch_cb_count) -= total;
607         critical_exit();
608
609         counter_u64_add(epoch_call_count, total);
610         counter_u64_add(epoch_call_task_count, 1);
611
612         head = ck_stack_batch_pop_npsc(&cb_stack);
613         for (cursor = head; cursor != NULL; cursor = next) {
614                 struct ck_epoch_entry *entry =
615                     ck_epoch_entry_container(cursor);
616
617                 next = CK_STACK_NEXT(cursor);
618                 entry->function(entry);
619         }
620 }
621
622 int
623 in_epoch_verbose(epoch_t epoch, int dump_onfail)
624 {
625         struct epoch_tracker *tdwait;
626         struct thread *td;
627         epoch_record_t er;
628
629         td = curthread;
630         if (td->td_epochnest == 0)
631                 return (0);
632         if (__predict_false((epoch) == NULL))
633                 return (0);
634         critical_enter();
635         er = epoch_currecord(epoch);
636         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
637                 if (tdwait->et_td == td) {
638                         critical_exit();
639                         return (1);
640                 }
641 #ifdef INVARIANTS
642         if (dump_onfail) {
643                 MPASS(td->td_pinned);
644                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
645                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
646                         printf("td_tid: %d ", tdwait->et_td->td_tid);
647                 printf("\n");
648         }
649 #endif
650         critical_exit();
651         return (0);
652 }
653
654 int
655 in_epoch(epoch_t epoch)
656 {
657         return (in_epoch_verbose(epoch, 0));
658 }
659
660 static void
661 epoch_drain_cb(struct epoch_context *ctx)
662 {
663         struct epoch *epoch =
664             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
665
666         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
667                 mtx_lock(&epoch->e_drain_mtx);
668                 wakeup(epoch);
669                 mtx_unlock(&epoch->e_drain_mtx);
670         }
671 }
672
673 void
674 epoch_drain_callbacks(epoch_t epoch)
675 {
676         epoch_record_t er;
677         struct thread *td;
678         int was_bound;
679         int old_pinned;
680         int old_cpu;
681         int cpu;
682
683         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
684             "epoch_drain_callbacks() may sleep!");
685
686         /* too early in boot to have epoch set up */
687         if (__predict_false(epoch == NULL))
688                 return;
689 #if !defined(EARLY_AP_STARTUP)
690         if (__predict_false(inited < 2))
691                 return;
692 #endif
693         DROP_GIANT();
694
695         sx_xlock(&epoch->e_drain_sx);
696         mtx_lock(&epoch->e_drain_mtx);
697
698         td = curthread;
699         thread_lock(td);
700         old_cpu = PCPU_GET(cpuid);
701         old_pinned = td->td_pinned;
702         was_bound = sched_is_bound(td);
703         sched_unbind(td);
704         td->td_pinned = 0;
705
706         CPU_FOREACH(cpu)
707                 epoch->e_drain_count++;
708         CPU_FOREACH(cpu) {
709                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
710                 sched_bind(td, cpu);
711                 epoch_call(epoch, &er->er_drain_ctx, &epoch_drain_cb);
712         }
713
714         /* restore CPU binding, if any */
715         if (was_bound != 0) {
716                 sched_bind(td, old_cpu);
717         } else {
718                 /* get thread back to initial CPU, if any */
719                 if (old_pinned != 0)
720                         sched_bind(td, old_cpu);
721                 sched_unbind(td);
722         }
723         /* restore pinned after bind */
724         td->td_pinned = old_pinned;
725
726         thread_unlock(td);
727
728         while (epoch->e_drain_count != 0)
729                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
730
731         mtx_unlock(&epoch->e_drain_mtx);
732         sx_xunlock(&epoch->e_drain_sx);
733
734         PICKUP_GIANT();
735 }
736
737 /* for binary compatibility */
738
739 struct epoch_tracker_KBI {
740         void *datap[3];
741 #ifdef EPOCH_TRACKER_DEBUG
742         int datai[5];
743 #else
744         int datai[1];
745 #endif
746 } __aligned(sizeof(void *));
747
748 CTASSERT(sizeof(struct epoch_tracker_KBI) >= sizeof(struct epoch_tracker));
749
750 void
751 epoch_enter_preempt_KBI(epoch_t epoch, epoch_tracker_t et)
752 {
753         epoch_enter_preempt(epoch, et);
754 }
755
756 void
757 epoch_exit_preempt_KBI(epoch_t epoch, epoch_tracker_t et)
758 {
759         epoch_exit_preempt(epoch, et);
760 }
761
762 void
763 epoch_enter_KBI(epoch_t epoch)
764 {
765         epoch_enter(epoch);
766 }
767
768 void
769 epoch_exit_KBI(epoch_t epoch)
770 {
771         epoch_exit(epoch);
772 }