]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
sysctl(9): Fix a few mandoc related issues
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/counter.h>
35 #include <sys/epoch.h>
36 #include <sys/gtaskqueue.h>
37 #include <sys/kernel.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/sx.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #ifdef EPOCH_TRACE
50 #include <machine/stdarg.h>
51 #include <sys/stack.h>
52 #include <sys/tree.h>
53 #endif
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_kern.h>
57 #include <vm/uma.h>
58
59 #include <ck_epoch.h>
60
61 #ifdef __amd64__
62 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
63 #else
64 #define EPOCH_ALIGN CACHE_LINE_SIZE
65 #endif
66
67 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
68 typedef struct epoch_record {
69         ck_epoch_record_t er_record;
70         struct epoch_context er_drain_ctx;
71         struct epoch *er_parent;
72         volatile struct epoch_tdlist er_tdlist;
73         volatile uint32_t er_gen;
74         uint32_t er_cpuid;
75 #ifdef INVARIANTS
76         /* Used to verify record ownership for non-preemptible epochs. */
77         struct thread *er_td;
78 #endif
79 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
80
81 struct epoch {
82         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
83         epoch_record_t e_pcpu_record;
84         int     e_in_use;
85         int     e_flags;
86         struct sx e_drain_sx;
87         struct mtx e_drain_mtx;
88         volatile int e_drain_count;
89         const char *e_name;
90 };
91
92 /* arbitrary --- needs benchmarking */
93 #define MAX_ADAPTIVE_SPIN 100
94 #define MAX_EPOCHS 64
95
96 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
97 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
98     "epoch information");
99 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
100     "epoch stats");
101
102 /* Stats. */
103 static counter_u64_t block_count;
104
105 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
106     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
107 static counter_u64_t migrate_count;
108
109 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
110     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
111 static counter_u64_t turnstile_count;
112
113 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
114     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
115 static counter_u64_t switch_count;
116
117 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
118     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
119 static counter_u64_t epoch_call_count;
120
121 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
122     &epoch_call_count, "# of times a callback was deferred");
123 static counter_u64_t epoch_call_task_count;
124
125 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
126     &epoch_call_task_count, "# of times a callback task was run");
127
128 TAILQ_HEAD (threadlist, thread);
129
130 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
131     ck_epoch_entry_container)
132
133 static struct epoch epoch_array[MAX_EPOCHS];
134
135 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
136 DPCPU_DEFINE(int, epoch_cb_count);
137
138 static __read_mostly int inited;
139 __read_mostly epoch_t global_epoch;
140 __read_mostly epoch_t global_epoch_preempt;
141
142 static void epoch_call_task(void *context __unused);
143 static  uma_zone_t pcpu_zone_record;
144
145 static struct sx epoch_sx;
146
147 #define EPOCH_LOCK() sx_xlock(&epoch_sx)
148 #define EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
149
150 #ifdef EPOCH_TRACE
151 struct stackentry {
152         RB_ENTRY(stackentry) se_node;
153         struct stack se_stack;
154 };
155
156 static int
157 stackentry_compare(struct stackentry *a, struct stackentry *b)
158 {
159
160         if (a->se_stack.depth > b->se_stack.depth)
161                 return (1);
162         if (a->se_stack.depth < b->se_stack.depth)
163                 return (-1);
164         for (int i = 0; i < a->se_stack.depth; i++) {
165                 if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
166                         return (1);
167                 if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
168                         return (-1);
169         }
170
171         return (0);
172 }
173
174 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
175 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
176
177 static struct mtx epoch_stacks_lock;
178 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
179
180 static bool epoch_trace_stack_print = true;
181 SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN,
182     &epoch_trace_stack_print, 0, "Print stack traces on epoch reports");
183
184 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
185 static inline void
186 epoch_trace_report(const char *fmt, ...)
187 {
188         va_list ap;
189         struct stackentry se, *new;
190
191         stack_zero(&se.se_stack);       /* XXX: is it really needed? */
192         stack_save(&se.se_stack);
193
194         /* Tree is never reduced - go lockless. */
195         if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
196                 return;
197
198         new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
199         if (new != NULL) {
200                 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
201
202                 mtx_lock(&epoch_stacks_lock);
203                 new = RB_INSERT(stacktree, &epoch_stacks, new);
204                 mtx_unlock(&epoch_stacks_lock);
205                 if (new != NULL)
206                         free(new, M_STACK);
207         }
208
209         va_start(ap, fmt);
210         (void)vprintf(fmt, ap);
211         va_end(ap);
212         if (epoch_trace_stack_print)
213                 stack_print_ddb(&se.se_stack);
214 }
215
216 static inline void
217 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
218     const char *file, int line)
219 {
220         epoch_tracker_t iet;
221
222         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
223                 if (iet->et_epoch == epoch)
224                         epoch_trace_report("Recursively entering epoch %s "
225                             "at %s:%d, previously entered at %s:%d\n",
226                             epoch->e_name, file, line,
227                             iet->et_file, iet->et_line);
228         et->et_epoch = epoch;
229         et->et_file = file;
230         et->et_line = line;
231         SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
232 }
233
234 static inline void
235 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
236     const char *file, int line)
237 {
238
239         if (SLIST_FIRST(&td->td_epochs) != et) {
240                 epoch_trace_report("Exiting epoch %s in a not nested order "
241                     "at %s:%d. Most recently entered %s at %s:%d\n",
242                     epoch->e_name,
243                     file, line,
244                     SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
245                     SLIST_FIRST(&td->td_epochs)->et_file,
246                     SLIST_FIRST(&td->td_epochs)->et_line);
247                 /* This will panic if et is not anywhere on td_epochs. */
248                 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
249         } else
250                 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
251 }
252
253 /* Used by assertions that check thread state before going to sleep. */
254 void
255 epoch_trace_list(struct thread *td)
256 {
257         epoch_tracker_t iet;
258
259         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
260                 printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
261                     iet->et_file, iet->et_line);
262 }
263 #endif /* EPOCH_TRACE */
264
265 static void
266 epoch_init(void *arg __unused)
267 {
268         int cpu;
269
270         block_count = counter_u64_alloc(M_WAITOK);
271         migrate_count = counter_u64_alloc(M_WAITOK);
272         turnstile_count = counter_u64_alloc(M_WAITOK);
273         switch_count = counter_u64_alloc(M_WAITOK);
274         epoch_call_count = counter_u64_alloc(M_WAITOK);
275         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
276
277         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
278             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
279             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
280         CPU_FOREACH(cpu) {
281                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
282                     epoch_call_task, NULL);
283                 taskqgroup_attach_cpu(qgroup_softirq,
284                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
285                     "epoch call task");
286         }
287 #ifdef EPOCH_TRACE
288         SLIST_INIT(&thread0.td_epochs);
289 #endif
290         sx_init(&epoch_sx, "epoch-sx");
291         inited = 1;
292         global_epoch = epoch_alloc("Global", 0);
293         global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
294 }
295 SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
296
297 #if !defined(EARLY_AP_STARTUP)
298 static void
299 epoch_init_smp(void *dummy __unused)
300 {
301         inited = 2;
302 }
303 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
304 #endif
305
306 static void
307 epoch_ctor(epoch_t epoch)
308 {
309         epoch_record_t er;
310         int cpu;
311
312         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
313         CPU_FOREACH(cpu) {
314                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
315                 bzero(er, sizeof(*er));
316                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
317                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
318                 er->er_cpuid = cpu;
319                 er->er_parent = epoch;
320         }
321 }
322
323 static void
324 epoch_adjust_prio(struct thread *td, u_char prio)
325 {
326
327         thread_lock(td);
328         sched_prio(td, prio);
329         thread_unlock(td);
330 }
331
332 epoch_t
333 epoch_alloc(const char *name, int flags)
334 {
335         epoch_t epoch;
336         int i;
337
338         MPASS(name != NULL);
339
340         if (__predict_false(!inited))
341                 panic("%s called too early in boot", __func__);
342
343         EPOCH_LOCK();
344
345         /*
346          * Find a free index in the epoch array. If no free index is
347          * found, try to use the index after the last one.
348          */
349         for (i = 0;; i++) {
350                 /*
351                  * If too many epochs are currently allocated,
352                  * return NULL.
353                  */
354                 if (i == MAX_EPOCHS) {
355                         epoch = NULL;
356                         goto done;
357                 }
358                 if (epoch_array[i].e_in_use == 0)
359                         break;
360         }
361
362         epoch = epoch_array + i;
363         ck_epoch_init(&epoch->e_epoch);
364         epoch_ctor(epoch);
365         epoch->e_flags = flags;
366         epoch->e_name = name;
367         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
368         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
369
370         /*
371          * Set e_in_use last, because when this field is set the
372          * epoch_call_task() function will start scanning this epoch
373          * structure.
374          */
375         atomic_store_rel_int(&epoch->e_in_use, 1);
376 done:
377         EPOCH_UNLOCK();
378         return (epoch);
379 }
380
381 void
382 epoch_free(epoch_t epoch)
383 {
384 #ifdef INVARIANTS
385         int cpu;
386 #endif
387
388         EPOCH_LOCK();
389
390         MPASS(epoch->e_in_use != 0);
391
392         epoch_drain_callbacks(epoch);
393
394         atomic_store_rel_int(&epoch->e_in_use, 0);
395         /*
396          * Make sure the epoch_call_task() function see e_in_use equal
397          * to zero, by calling epoch_wait() on the global_epoch:
398          */
399         epoch_wait(global_epoch);
400 #ifdef INVARIANTS
401         CPU_FOREACH(cpu) {
402                 epoch_record_t er;
403
404                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
405
406                 /*
407                  * Sanity check: none of the records should be in use anymore.
408                  * We drained callbacks above and freeing the pcpu records is
409                  * imminent.
410                  */
411                 MPASS(er->er_td == NULL);
412                 MPASS(TAILQ_EMPTY(&er->er_tdlist));
413         }
414 #endif
415         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
416         mtx_destroy(&epoch->e_drain_mtx);
417         sx_destroy(&epoch->e_drain_sx);
418         memset(epoch, 0, sizeof(*epoch));
419
420         EPOCH_UNLOCK();
421 }
422
423 static epoch_record_t
424 epoch_currecord(epoch_t epoch)
425 {
426
427         return (zpcpu_get(epoch->e_pcpu_record));
428 }
429
430 #define INIT_CHECK(epoch)                                       \
431         do {                                                    \
432                 if (__predict_false((epoch) == NULL))           \
433                         return;                                 \
434         } while (0)
435
436 void
437 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
438 {
439         struct epoch_record *er;
440         struct thread *td;
441
442         MPASS(cold || epoch != NULL);
443         MPASS(epoch->e_flags & EPOCH_PREEMPT);
444         td = curthread;
445         MPASS((vm_offset_t)et >= td->td_kstack &&
446             (vm_offset_t)et + sizeof(struct epoch_tracker) <=
447             td->td_kstack + td->td_kstack_pages * PAGE_SIZE);
448
449         INIT_CHECK(epoch);
450 #ifdef EPOCH_TRACE
451         epoch_trace_enter(td, epoch, et, file, line);
452 #endif
453         et->et_td = td;
454         THREAD_NO_SLEEPING();
455         critical_enter();
456         sched_pin();
457         td->td_pre_epoch_prio = td->td_priority;
458         er = epoch_currecord(epoch);
459         /* Record-level tracking is reserved for non-preemptible epochs. */
460         MPASS(er->er_td == NULL);
461         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
462         ck_epoch_begin(&er->er_record, &et->et_section);
463         critical_exit();
464 }
465
466 void
467 epoch_enter(epoch_t epoch)
468 {
469         epoch_record_t er;
470
471         MPASS(cold || epoch != NULL);
472         INIT_CHECK(epoch);
473         critical_enter();
474         er = epoch_currecord(epoch);
475 #ifdef INVARIANTS
476         if (er->er_record.active == 0) {
477                 MPASS(er->er_td == NULL);
478                 er->er_td = curthread;
479         } else {
480                 /* We've recursed, just make sure our accounting isn't wrong. */
481                 MPASS(er->er_td == curthread);
482         }
483 #endif
484         ck_epoch_begin(&er->er_record, NULL);
485 }
486
487 void
488 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
489 {
490         struct epoch_record *er;
491         struct thread *td;
492
493         INIT_CHECK(epoch);
494         td = curthread;
495         critical_enter();
496         sched_unpin();
497         THREAD_SLEEPING_OK();
498         er = epoch_currecord(epoch);
499         MPASS(epoch->e_flags & EPOCH_PREEMPT);
500         MPASS(et != NULL);
501         MPASS(et->et_td == td);
502 #ifdef INVARIANTS
503         et->et_td = (void*)0xDEADBEEF;
504         /* Record-level tracking is reserved for non-preemptible epochs. */
505         MPASS(er->er_td == NULL);
506 #endif
507         ck_epoch_end(&er->er_record, &et->et_section);
508         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
509         er->er_gen++;
510         if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
511                 epoch_adjust_prio(td, td->td_pre_epoch_prio);
512         critical_exit();
513 #ifdef EPOCH_TRACE
514         epoch_trace_exit(td, epoch, et, file, line);
515 #endif
516 }
517
518 void
519 epoch_exit(epoch_t epoch)
520 {
521         epoch_record_t er;
522
523         INIT_CHECK(epoch);
524         er = epoch_currecord(epoch);
525         ck_epoch_end(&er->er_record, NULL);
526 #ifdef INVARIANTS
527         MPASS(er->er_td == curthread);
528         if (er->er_record.active == 0)
529                 er->er_td = NULL;
530 #endif
531         critical_exit();
532 }
533
534 /*
535  * epoch_block_handler_preempt() is a callback from the CK code when another
536  * thread is currently in an epoch section.
537  */
538 static void
539 epoch_block_handler_preempt(struct ck_epoch *global __unused,
540     ck_epoch_record_t *cr, void *arg __unused)
541 {
542         epoch_record_t record;
543         struct thread *td, *owner, *curwaittd;
544         struct epoch_tracker *tdwait;
545         struct turnstile *ts;
546         struct lock_object *lock;
547         int spincount, gen;
548         int locksheld __unused;
549
550         record = __containerof(cr, struct epoch_record, er_record);
551         td = curthread;
552         locksheld = td->td_locks;
553         spincount = 0;
554         counter_u64_add(block_count, 1);
555         /*
556          * We lost a race and there's no longer any threads
557          * on the CPU in an epoch section.
558          */
559         if (TAILQ_EMPTY(&record->er_tdlist))
560                 return;
561
562         if (record->er_cpuid != curcpu) {
563                 /*
564                  * If the head of the list is running, we can wait for it
565                  * to remove itself from the list and thus save us the
566                  * overhead of a migration
567                  */
568                 gen = record->er_gen;
569                 thread_unlock(td);
570                 /*
571                  * We can't actually check if the waiting thread is running
572                  * so we simply poll for it to exit before giving up and
573                  * migrating.
574                  */
575                 do {
576                         cpu_spinwait();
577                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
578                                  gen == record->er_gen &&
579                                  spincount++ < MAX_ADAPTIVE_SPIN);
580                 thread_lock(td);
581                 /*
582                  * If the generation has changed we can poll again
583                  * otherwise we need to migrate.
584                  */
585                 if (gen != record->er_gen)
586                         return;
587                 /*
588                  * Being on the same CPU as that of the record on which
589                  * we need to wait allows us access to the thread
590                  * list associated with that CPU. We can then examine the
591                  * oldest thread in the queue and wait on its turnstile
592                  * until it resumes and so on until a grace period
593                  * elapses.
594                  *
595                  */
596                 counter_u64_add(migrate_count, 1);
597                 sched_bind(td, record->er_cpuid);
598                 /*
599                  * At this point we need to return to the ck code
600                  * to scan to see if a grace period has elapsed.
601                  * We can't move on to check the thread list, because
602                  * in the meantime new threads may have arrived that
603                  * in fact belong to a different epoch.
604                  */
605                 return;
606         }
607         /*
608          * Try to find a thread in an epoch section on this CPU
609          * waiting on a turnstile. Otherwise find the lowest
610          * priority thread (highest prio value) and drop our priority
611          * to match to allow it to run.
612          */
613         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
614                 /*
615                  * Propagate our priority to any other waiters to prevent us
616                  * from starving them. They will have their original priority
617                  * restore on exit from epoch_wait().
618                  */
619                 curwaittd = tdwait->et_td;
620                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
621                         critical_enter();
622                         thread_unlock(td);
623                         thread_lock(curwaittd);
624                         sched_prio(curwaittd, td->td_priority);
625                         thread_unlock(curwaittd);
626                         thread_lock(td);
627                         critical_exit();
628                 }
629                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
630                     ((ts = curwaittd->td_blocked) != NULL)) {
631                         /*
632                          * We unlock td to allow turnstile_wait to reacquire
633                          * the thread lock. Before unlocking it we enter a
634                          * critical section to prevent preemption after we
635                          * reenable interrupts by dropping the thread lock in
636                          * order to prevent curwaittd from getting to run.
637                          */
638                         critical_enter();
639                         thread_unlock(td);
640
641                         if (turnstile_lock(ts, &lock, &owner)) {
642                                 if (ts == curwaittd->td_blocked) {
643                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
644                                             TD_ON_LOCK(curwaittd));
645                                         critical_exit();
646                                         turnstile_wait(ts, owner,
647                                             curwaittd->td_tsqueue);
648                                         counter_u64_add(turnstile_count, 1);
649                                         thread_lock(td);
650                                         return;
651                                 }
652                                 turnstile_unlock(ts, lock);
653                         }
654                         thread_lock(td);
655                         critical_exit();
656                         KASSERT(td->td_locks == locksheld,
657                             ("%d extra locks held", td->td_locks - locksheld));
658                 }
659         }
660         /*
661          * We didn't find any threads actually blocked on a lock
662          * so we have nothing to do except context switch away.
663          */
664         counter_u64_add(switch_count, 1);
665         mi_switch(SW_VOL | SWT_RELINQUISH);
666         /*
667          * It is important the thread lock is dropped while yielding
668          * to allow other threads to acquire the lock pointed to by
669          * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the
670          * thread lock before returning. Else a deadlock like
671          * situation might happen.
672          */
673         thread_lock(td);
674 }
675
676 void
677 epoch_wait_preempt(epoch_t epoch)
678 {
679         struct thread *td;
680         int was_bound;
681         int old_cpu;
682         int old_pinned;
683         u_char old_prio;
684         int locks __unused;
685
686         MPASS(cold || epoch != NULL);
687         INIT_CHECK(epoch);
688         td = curthread;
689 #ifdef INVARIANTS
690         locks = curthread->td_locks;
691         MPASS(epoch->e_flags & EPOCH_PREEMPT);
692         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
693                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
694                     "epoch_wait() can be long running");
695         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
696             "of an epoch section of the same epoch"));
697 #endif
698         DROP_GIANT();
699         thread_lock(td);
700
701         old_cpu = PCPU_GET(cpuid);
702         old_pinned = td->td_pinned;
703         old_prio = td->td_priority;
704         was_bound = sched_is_bound(td);
705         sched_unbind(td);
706         td->td_pinned = 0;
707         sched_bind(td, old_cpu);
708
709         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
710             NULL);
711
712         /* restore CPU binding, if any */
713         if (was_bound != 0) {
714                 sched_bind(td, old_cpu);
715         } else {
716                 /* get thread back to initial CPU, if any */
717                 if (old_pinned != 0)
718                         sched_bind(td, old_cpu);
719                 sched_unbind(td);
720         }
721         /* restore pinned after bind */
722         td->td_pinned = old_pinned;
723
724         /* restore thread priority */
725         sched_prio(td, old_prio);
726         thread_unlock(td);
727         PICKUP_GIANT();
728         KASSERT(td->td_locks == locks,
729             ("%d residual locks held", td->td_locks - locks));
730 }
731
732 static void
733 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
734     void *arg __unused)
735 {
736         cpu_spinwait();
737 }
738
739 void
740 epoch_wait(epoch_t epoch)
741 {
742
743         MPASS(cold || epoch != NULL);
744         INIT_CHECK(epoch);
745         MPASS(epoch->e_flags == 0);
746         critical_enter();
747         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
748         critical_exit();
749 }
750
751 void
752 epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
753 {
754         epoch_record_t er;
755         ck_epoch_entry_t *cb;
756
757         cb = (void *)ctx;
758
759         MPASS(callback);
760         /* too early in boot to have epoch set up */
761         if (__predict_false(epoch == NULL))
762                 goto boottime;
763 #if !defined(EARLY_AP_STARTUP)
764         if (__predict_false(inited < 2))
765                 goto boottime;
766 #endif
767
768         critical_enter();
769         *DPCPU_PTR(epoch_cb_count) += 1;
770         er = epoch_currecord(epoch);
771         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
772         critical_exit();
773         return;
774 boottime:
775         callback(ctx);
776 }
777
778 static void
779 epoch_call_task(void *arg __unused)
780 {
781         ck_stack_entry_t *cursor, *head, *next;
782         ck_epoch_record_t *record;
783         epoch_record_t er;
784         epoch_t epoch;
785         ck_stack_t cb_stack;
786         int i, npending, total;
787
788         ck_stack_init(&cb_stack);
789         critical_enter();
790         epoch_enter(global_epoch);
791         for (total = i = 0; i != MAX_EPOCHS; i++) {
792                 epoch = epoch_array + i;
793                 if (__predict_false(
794                     atomic_load_acq_int(&epoch->e_in_use) == 0))
795                         continue;
796                 er = epoch_currecord(epoch);
797                 record = &er->er_record;
798                 if ((npending = record->n_pending) == 0)
799                         continue;
800                 ck_epoch_poll_deferred(record, &cb_stack);
801                 total += npending - record->n_pending;
802         }
803         epoch_exit(global_epoch);
804         *DPCPU_PTR(epoch_cb_count) -= total;
805         critical_exit();
806
807         counter_u64_add(epoch_call_count, total);
808         counter_u64_add(epoch_call_task_count, 1);
809
810         head = ck_stack_batch_pop_npsc(&cb_stack);
811         for (cursor = head; cursor != NULL; cursor = next) {
812                 struct ck_epoch_entry *entry =
813                     ck_epoch_entry_container(cursor);
814
815                 next = CK_STACK_NEXT(cursor);
816                 entry->function(entry);
817         }
818 }
819
820 static int
821 in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail)
822 {
823         epoch_record_t er;
824         struct epoch_tracker *tdwait;
825         struct thread *td;
826
827         MPASS(epoch != NULL);
828         MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
829         td = curthread;
830         if (THREAD_CAN_SLEEP())
831                 return (0);
832         critical_enter();
833         er = epoch_currecord(epoch);
834         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
835                 if (tdwait->et_td == td) {
836                         critical_exit();
837                         return (1);
838                 }
839 #ifdef INVARIANTS
840         if (dump_onfail) {
841                 MPASS(td->td_pinned);
842                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
843                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
844                         printf("td_tid: %d ", tdwait->et_td->td_tid);
845                 printf("\n");
846         }
847 #endif
848         critical_exit();
849         return (0);
850 }
851
852 #ifdef INVARIANTS
853 static void
854 epoch_assert_nocpu(epoch_t epoch, struct thread *td)
855 {
856         epoch_record_t er;
857         int cpu;
858         bool crit;
859
860         crit = td->td_critnest > 0;
861
862         /* Check for a critical section mishap. */
863         CPU_FOREACH(cpu) {
864                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
865                 KASSERT(er->er_td != td,
866                     ("%s critical section in epoch '%s', from cpu %d",
867                     (crit ? "exited" : "re-entered"), epoch->e_name, cpu));
868         }
869 }
870 #else
871 #define epoch_assert_nocpu(e, td)
872 #endif
873
874 int
875 in_epoch_verbose(epoch_t epoch, int dump_onfail)
876 {
877         epoch_record_t er;
878         struct thread *td;
879
880         if (__predict_false((epoch) == NULL))
881                 return (0);
882         if ((epoch->e_flags & EPOCH_PREEMPT) != 0)
883                 return (in_epoch_verbose_preempt(epoch, dump_onfail));
884
885         /*
886          * The thread being in a critical section is a necessary
887          * condition to be correctly inside a non-preemptible epoch,
888          * so it's definitely not in this epoch.
889          */
890         td = curthread;
891         if (td->td_critnest == 0) {
892                 epoch_assert_nocpu(epoch, td);
893                 return (0);
894         }
895
896         /*
897          * The current cpu is in a critical section, so the epoch record will be
898          * stable for the rest of this function.  Knowing that the record is not
899          * active is sufficient for knowing whether we're in this epoch or not,
900          * since it's a pcpu record.
901          */
902         er = epoch_currecord(epoch);
903         if (er->er_record.active == 0) {
904                 epoch_assert_nocpu(epoch, td);
905                 return (0);
906         }
907
908         MPASS(er->er_td == td);
909         return (1);
910 }
911
912 int
913 in_epoch(epoch_t epoch)
914 {
915         return (in_epoch_verbose(epoch, 0));
916 }
917
918 static void
919 epoch_drain_cb(struct epoch_context *ctx)
920 {
921         struct epoch *epoch =
922             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
923
924         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
925                 mtx_lock(&epoch->e_drain_mtx);
926                 wakeup(epoch);
927                 mtx_unlock(&epoch->e_drain_mtx);
928         }
929 }
930
931 void
932 epoch_drain_callbacks(epoch_t epoch)
933 {
934         epoch_record_t er;
935         struct thread *td;
936         int was_bound;
937         int old_pinned;
938         int old_cpu;
939         int cpu;
940
941         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
942             "epoch_drain_callbacks() may sleep!");
943
944         /* too early in boot to have epoch set up */
945         if (__predict_false(epoch == NULL))
946                 return;
947 #if !defined(EARLY_AP_STARTUP)
948         if (__predict_false(inited < 2))
949                 return;
950 #endif
951         DROP_GIANT();
952
953         sx_xlock(&epoch->e_drain_sx);
954         mtx_lock(&epoch->e_drain_mtx);
955
956         td = curthread;
957         thread_lock(td);
958         old_cpu = PCPU_GET(cpuid);
959         old_pinned = td->td_pinned;
960         was_bound = sched_is_bound(td);
961         sched_unbind(td);
962         td->td_pinned = 0;
963
964         CPU_FOREACH(cpu)
965                 epoch->e_drain_count++;
966         CPU_FOREACH(cpu) {
967                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
968                 sched_bind(td, cpu);
969                 epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx);
970         }
971
972         /* restore CPU binding, if any */
973         if (was_bound != 0) {
974                 sched_bind(td, old_cpu);
975         } else {
976                 /* get thread back to initial CPU, if any */
977                 if (old_pinned != 0)
978                         sched_bind(td, old_cpu);
979                 sched_unbind(td);
980         }
981         /* restore pinned after bind */
982         td->td_pinned = old_pinned;
983
984         thread_unlock(td);
985
986         while (epoch->e_drain_count != 0)
987                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
988
989         mtx_unlock(&epoch->e_drain_mtx);
990         sx_xunlock(&epoch->e_drain_sx);
991
992         PICKUP_GIANT();
993 }