]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
Avoid fixing the tty_info() buffer size in tty.h.
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/counter.h>
36 #include <sys/epoch.h>
37 #include <sys/gtaskqueue.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/vm_kern.h>
52 #include <vm/uma.h>
53
54 #include <ck_epoch.h>
55
56 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
57
58 /* arbitrary --- needs benchmarking */
59 #define MAX_ADAPTIVE_SPIN 100
60 #define MAX_EPOCHS 64
61
62 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
63 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
64 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
65
66 /* Stats. */
67 static counter_u64_t block_count;
68
69 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
70     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
71 static counter_u64_t migrate_count;
72
73 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
74     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
75 static counter_u64_t turnstile_count;
76
77 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
78     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
79 static counter_u64_t switch_count;
80
81 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
82     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
83 static counter_u64_t epoch_call_count;
84
85 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
86     &epoch_call_count, "# of times a callback was deferred");
87 static counter_u64_t epoch_call_task_count;
88
89 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
90     &epoch_call_task_count, "# of times a callback task was run");
91
92 TAILQ_HEAD (threadlist, thread);
93
94 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
95     ck_epoch_entry_container)
96
97 epoch_t allepochs[MAX_EPOCHS];
98
99 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
100 DPCPU_DEFINE(int, epoch_cb_count);
101
102 static __read_mostly int inited;
103 static __read_mostly int epoch_count;
104 __read_mostly epoch_t global_epoch;
105 __read_mostly epoch_t global_epoch_preempt;
106
107 static void epoch_call_task(void *context __unused);
108 static  uma_zone_t pcpu_zone_record;
109
110 static void
111 epoch_init(void *arg __unused)
112 {
113         int cpu;
114
115         block_count = counter_u64_alloc(M_WAITOK);
116         migrate_count = counter_u64_alloc(M_WAITOK);
117         turnstile_count = counter_u64_alloc(M_WAITOK);
118         switch_count = counter_u64_alloc(M_WAITOK);
119         epoch_call_count = counter_u64_alloc(M_WAITOK);
120         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
121
122         pcpu_zone_record = uma_zcreate("epoch_record pcpu", sizeof(struct epoch_record),
123             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU);
124         CPU_FOREACH(cpu) {
125                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, epoch_call_task, NULL);
126                 taskqgroup_attach_cpu(qgroup_softirq, DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1, "epoch call task");
127         }
128         inited = 1;
129         global_epoch = epoch_alloc(0);
130         global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
131 }
132 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
133
134 #if !defined(EARLY_AP_STARTUP)
135 static void
136 epoch_init_smp(void *dummy __unused)
137 {
138         inited = 2;
139 }
140 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
141 #endif
142
143 static void
144 epoch_ctor(epoch_t epoch)
145 {
146         epoch_record_t er;
147         int cpu;
148
149         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
150         CPU_FOREACH(cpu) {
151                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
152                 bzero(er, sizeof(*er));
153                 ck_epoch_register(&epoch->e_epoch, &er->er_read_record, NULL);
154                 ck_epoch_register(&epoch->e_epoch, &er->er_write_record, NULL);
155                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
156                 er->er_cpuid = cpu;
157         }
158 }
159
160 epoch_t
161 epoch_alloc(int flags)
162 {
163         epoch_t epoch;
164
165         if (__predict_false(!inited))
166                 panic("%s called too early in boot", __func__);
167         epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK);
168         ck_epoch_init(&epoch->e_epoch);
169         epoch_ctor(epoch);
170         MPASS(epoch_count < MAX_EPOCHS - 2);
171         epoch->e_flags = flags;
172         epoch->e_idx = epoch_count;
173         allepochs[epoch_count++] = epoch;
174         return (epoch);
175 }
176
177 void
178 epoch_free(epoch_t epoch)
179 {
180 #ifdef INVARIANTS
181         struct epoch_record *er;
182         int cpu;
183
184         CPU_FOREACH(cpu) {
185                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
186                 MPASS(TAILQ_EMPTY(&er->er_tdlist));
187         }
188 #endif
189         allepochs[epoch->e_idx] = NULL;
190         epoch_wait(global_epoch);
191         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
192         free(epoch, M_EPOCH);
193 }
194
195 void
196 epoch_enter_preempt_KBI(epoch_t epoch, epoch_tracker_t et)
197 {
198
199         epoch_enter_preempt(epoch, et);
200 }
201
202 void
203 epoch_exit_preempt_KBI(epoch_t epoch, epoch_tracker_t et)
204 {
205
206         epoch_exit_preempt(epoch, et);
207 }
208
209 void
210 epoch_enter_KBI(epoch_t epoch)
211 {
212
213         epoch_enter(epoch);
214 }
215
216 void
217 epoch_exit_KBI(epoch_t epoch)
218 {
219
220         epoch_exit(epoch);
221 }
222
223 /*
224  * epoch_block_handler_preempt is a callback from the ck code when another thread is
225  * currently in an epoch section.
226  */
227 static void
228 epoch_block_handler_preempt(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
229     void *arg __unused)
230 {
231         epoch_record_t record;
232         struct thread *td, *owner, *curwaittd;
233         struct epoch_thread *tdwait;
234         struct turnstile *ts;
235         struct lock_object *lock;
236         int spincount, gen;
237         int locksheld __unused;
238
239         record = __containerof(cr, struct epoch_record, er_read_record);
240         td = curthread;
241         locksheld = td->td_locks;
242         spincount = 0;
243         counter_u64_add(block_count, 1);
244         /*
245          * We lost a race and there's no longer any threads
246          * on the CPU in an epoch section.
247          */
248         if (TAILQ_EMPTY(&record->er_tdlist))
249                 return;
250
251         if (record->er_cpuid != curcpu) {
252                 /*
253                  * If the head of the list is running, we can wait for it
254                  * to remove itself from the list and thus save us the
255                  * overhead of a migration
256                  */
257                 gen = record->er_gen;
258                 thread_unlock(td);
259                 /*
260                  * We can't actually check if the waiting thread is running
261                  * so we simply poll for it to exit before giving up and
262                  * migrating.
263                  */
264                 do {
265                         cpu_spinwait();
266                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
267                                  gen == record->er_gen &&
268                                  spincount++ < MAX_ADAPTIVE_SPIN);
269                 thread_lock(td);
270                 /*
271                  * If the generation has changed we can poll again
272                  * otherwise we need to migrate.
273                  */
274                 if (gen != record->er_gen)
275                         return;
276                 /*
277                  * Being on the same CPU as that of the record on which
278                  * we need to wait allows us access to the thread
279                  * list associated with that CPU. We can then examine the
280                  * oldest thread in the queue and wait on its turnstile
281                  * until it resumes and so on until a grace period
282                  * elapses.
283                  *
284                  */
285                 counter_u64_add(migrate_count, 1);
286                 sched_bind(td, record->er_cpuid);
287                 /*
288                  * At this point we need to return to the ck code
289                  * to scan to see if a grace period has elapsed.
290                  * We can't move on to check the thread list, because
291                  * in the meantime new threads may have arrived that
292                  * in fact belong to a different epoch.
293                  */
294                 return;
295         }
296         /*
297          * Try to find a thread in an epoch section on this CPU
298          * waiting on a turnstile. Otherwise find the lowest
299          * priority thread (highest prio value) and drop our priority
300          * to match to allow it to run.
301          */
302         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
303                 /*
304                  * Propagate our priority to any other waiters to prevent us
305                  * from starving them. They will have their original priority
306                  * restore on exit from epoch_wait().
307                  */
308                 curwaittd = tdwait->et_td;
309                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
310                         critical_enter();
311                         thread_unlock(td);
312                         thread_lock(curwaittd);
313                         sched_prio(curwaittd, td->td_priority);
314                         thread_unlock(curwaittd);
315                         thread_lock(td);
316                         critical_exit();
317                 }
318                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
319                     ((ts = curwaittd->td_blocked) != NULL)) {
320                         /*
321                          * We unlock td to allow turnstile_wait to reacquire the
322                          * the thread lock. Before unlocking it we enter a critical
323                          * section to prevent preemption after we reenable interrupts
324                          * by dropping the thread lock in order to prevent curwaittd
325                          * from getting to run.
326                          */
327                         critical_enter();
328                         thread_unlock(td);
329                         owner = turnstile_lock(ts, &lock);
330                         /*
331                          * The owner pointer indicates that the lock succeeded. Only
332                          * in case we hold the lock and the turnstile we locked is still
333                          * the one that curwaittd is blocked on can we continue. Otherwise
334                          * The turnstile pointer has been changed out from underneath
335                          * us, as in the case where the lock holder has signalled curwaittd,
336                          * and we need to continue.
337                          */
338                         if (owner != NULL && ts == curwaittd->td_blocked) {
339                                 MPASS(TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd));
340                                 critical_exit();
341                                 turnstile_wait(ts, owner, curwaittd->td_tsqueue);
342                                 counter_u64_add(turnstile_count, 1);
343                                 thread_lock(td);
344                                 return;
345                         } else if (owner != NULL)
346                                 turnstile_unlock(ts, lock);
347                         thread_lock(td);
348                         critical_exit();
349                         KASSERT(td->td_locks == locksheld,
350                             ("%d extra locks held", td->td_locks - locksheld));
351                 }
352         }
353         /*
354          * We didn't find any threads actually blocked on a lock
355          * so we have nothing to do except context switch away.
356          */
357         counter_u64_add(switch_count, 1);
358         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
359
360         /*
361          * Release the thread lock while yielding to
362          * allow other threads to acquire the lock
363          * pointed to by TDQ_LOCKPTR(td). Else a
364          * deadlock like situation might happen. (HPS)
365          */
366         thread_unlock(td);
367         thread_lock(td);
368 }
369
370 void
371 epoch_wait_preempt(epoch_t epoch)
372 {
373         struct thread *td;
374         int was_bound;
375         int old_cpu;
376         int old_pinned;
377         u_char old_prio;
378         int locks __unused;
379
380         MPASS(cold || epoch != NULL);
381         INIT_CHECK(epoch);
382         td = curthread;
383 #ifdef INVARIANTS
384         locks = curthread->td_locks;
385         MPASS(epoch->e_flags & EPOCH_PREEMPT);
386         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
387                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
388                     "epoch_wait() can be long running");
389         KASSERT(!in_epoch(epoch),
390                         ("epoch_wait_preempt() called in the middle "
391                          "of an epoch section of the same epoch"));
392 #endif
393         thread_lock(td);
394         DROP_GIANT();
395
396         old_cpu = PCPU_GET(cpuid);
397         old_pinned = td->td_pinned;
398         old_prio = td->td_priority;
399         was_bound = sched_is_bound(td);
400         sched_unbind(td);
401         td->td_pinned = 0;
402         sched_bind(td, old_cpu);
403
404         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt, NULL);
405
406         /* restore CPU binding, if any */
407         if (was_bound != 0) {
408                 sched_bind(td, old_cpu);
409         } else {
410                 /* get thread back to initial CPU, if any */
411                 if (old_pinned != 0)
412                         sched_bind(td, old_cpu);
413                 sched_unbind(td);
414         }
415         /* restore pinned after bind */
416         td->td_pinned = old_pinned;
417
418         /* restore thread priority */
419         sched_prio(td, old_prio);
420         thread_unlock(td);
421         PICKUP_GIANT();
422         KASSERT(td->td_locks == locks,
423             ("%d residual locks held", td->td_locks - locks));
424 }
425
426 static void
427 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
428     void *arg __unused)
429 {
430         cpu_spinwait();
431 }
432
433 void
434 epoch_wait(epoch_t epoch)
435 {
436
437         MPASS(cold || epoch != NULL);
438         INIT_CHECK(epoch);
439         MPASS(epoch->e_flags == 0);
440         critical_enter();
441         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
442         critical_exit();
443 }
444
445 void
446 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
447 {
448         epoch_record_t er;
449         ck_epoch_entry_t *cb;
450
451         cb = (void *)ctx;
452
453         MPASS(callback);
454         /* too early in boot to have epoch set up */
455         if (__predict_false(epoch == NULL))
456                 goto boottime;
457 #if !defined(EARLY_AP_STARTUP)
458         if (__predict_false(inited < 2))
459                 goto boottime;
460 #endif
461
462         critical_enter();
463         *DPCPU_PTR(epoch_cb_count) += 1;
464         er = epoch_currecord(epoch);
465         ck_epoch_call(&er->er_write_record, cb, (ck_epoch_cb_t *)callback);
466         critical_exit();
467         return;
468 boottime:
469         callback(ctx);
470 }
471
472 static void
473 epoch_call_task(void *arg __unused)
474 {
475         ck_stack_entry_t *cursor, *head, *next;
476         ck_epoch_record_t *record;
477         epoch_record_t er;
478         epoch_t epoch;
479         ck_stack_t cb_stack;
480         int i, npending, total;
481
482         ck_stack_init(&cb_stack);
483         critical_enter();
484         epoch_enter(global_epoch);
485         for (total = i = 0; i < epoch_count; i++) {
486                 if (__predict_false((epoch = allepochs[i]) == NULL))
487                         continue;
488                 er = epoch_currecord(epoch);
489                 record = &er->er_write_record;
490                 if ((npending = record->n_pending) == 0)
491                         continue;
492                 ck_epoch_poll_deferred(record, &cb_stack);
493                 total += npending - record->n_pending;
494         }
495         epoch_exit(global_epoch);
496         *DPCPU_PTR(epoch_cb_count) -= total;
497         critical_exit();
498
499         counter_u64_add(epoch_call_count, total);
500         counter_u64_add(epoch_call_task_count, 1);
501
502         head = ck_stack_batch_pop_npsc(&cb_stack);
503         for (cursor = head; cursor != NULL; cursor = next) {
504                 struct ck_epoch_entry *entry =
505                 ck_epoch_entry_container(cursor);
506
507                 next = CK_STACK_NEXT(cursor);
508                 entry->function(entry);
509         }
510 }
511
512 int
513 in_epoch_verbose(epoch_t epoch, int dump_onfail)
514 {
515         struct epoch_thread *tdwait;
516         struct thread *td;
517         epoch_record_t er;
518
519         td = curthread;
520         if (td->td_epochnest == 0)
521                 return (0);
522         if (__predict_false((epoch) == NULL))
523                 return (0);
524         critical_enter();
525         er = epoch_currecord(epoch);
526         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
527                 if (tdwait->et_td == td) {
528                         critical_exit();
529                         return (1);
530                 }
531 #ifdef INVARIANTS
532         if (dump_onfail) {
533                 MPASS(td->td_pinned);
534                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
535                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
536                         printf("td_tid: %d ", tdwait->et_td->td_tid);
537                 printf("\n");
538         }
539 #endif
540         critical_exit();
541         return (0);
542 }
543
544 int
545 in_epoch(epoch_t epoch)
546 {
547         return (in_epoch_verbose(epoch, 0));
548 }
549
550 void
551 epoch_adjust_prio(struct thread *td, u_char prio)
552 {
553         thread_lock(td);
554         sched_prio(td, prio);
555         thread_unlock(td);
556 }