]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
sys/{x86,amd64}: remove one of doubled ;s
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/counter.h>
36 #include <sys/epoch.h>
37 #include <sys/gtaskqueue.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/sx.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/turnstile.h>
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52 #include <vm/vm_kern.h>
53 #include <vm/uma.h>
54
55 #include <ck_epoch.h>
56
57 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
58
59 #ifdef __amd64__
60 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
61 #else
62 #define EPOCH_ALIGN CACHE_LINE_SIZE
63 #endif
64
65 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
66 typedef struct epoch_record {
67         ck_epoch_record_t er_record;
68         struct epoch_context er_drain_ctx;
69         struct epoch *er_parent;
70         volatile struct epoch_tdlist er_tdlist;
71         volatile uint32_t er_gen;
72         uint32_t er_cpuid;
73 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
74
75 struct epoch {
76         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
77         epoch_record_t e_pcpu_record;
78         int     e_idx;
79         int     e_flags;
80         struct sx e_drain_sx;
81         struct mtx e_drain_mtx;
82         volatile int e_drain_count;
83 };
84
85 /* arbitrary --- needs benchmarking */
86 #define MAX_ADAPTIVE_SPIN 100
87 #define MAX_EPOCHS 64
88
89 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
90 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
91 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
92
93 /* Stats. */
94 static counter_u64_t block_count;
95
96 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
97     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
98 static counter_u64_t migrate_count;
99
100 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
101     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
102 static counter_u64_t turnstile_count;
103
104 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
105     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
106 static counter_u64_t switch_count;
107
108 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
109     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
110 static counter_u64_t epoch_call_count;
111
112 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
113     &epoch_call_count, "# of times a callback was deferred");
114 static counter_u64_t epoch_call_task_count;
115
116 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
117     &epoch_call_task_count, "# of times a callback task was run");
118
119 TAILQ_HEAD (threadlist, thread);
120
121 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
122     ck_epoch_entry_container)
123
124 epoch_t allepochs[MAX_EPOCHS];
125
126 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
127 DPCPU_DEFINE(int, epoch_cb_count);
128
129 static __read_mostly int inited;
130 static __read_mostly int epoch_count;
131 __read_mostly epoch_t global_epoch;
132 __read_mostly epoch_t global_epoch_preempt;
133
134 static void epoch_call_task(void *context __unused);
135 static  uma_zone_t pcpu_zone_record;
136
137 static void
138 epoch_init(void *arg __unused)
139 {
140         int cpu;
141
142         block_count = counter_u64_alloc(M_WAITOK);
143         migrate_count = counter_u64_alloc(M_WAITOK);
144         turnstile_count = counter_u64_alloc(M_WAITOK);
145         switch_count = counter_u64_alloc(M_WAITOK);
146         epoch_call_count = counter_u64_alloc(M_WAITOK);
147         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
148
149         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
150             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
151             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
152         CPU_FOREACH(cpu) {
153                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
154                     epoch_call_task, NULL);
155                 taskqgroup_attach_cpu(qgroup_softirq,
156                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
157                     "epoch call task");
158         }
159         inited = 1;
160         global_epoch = epoch_alloc(0);
161         global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
162 }
163 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
164
165 #if !defined(EARLY_AP_STARTUP)
166 static void
167 epoch_init_smp(void *dummy __unused)
168 {
169         inited = 2;
170 }
171 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
172 #endif
173
174 static void
175 epoch_ctor(epoch_t epoch)
176 {
177         epoch_record_t er;
178         int cpu;
179
180         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
181         CPU_FOREACH(cpu) {
182                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
183                 bzero(er, sizeof(*er));
184                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
185                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
186                 er->er_cpuid = cpu;
187                 er->er_parent = epoch;
188         }
189 }
190
191 static void
192 epoch_adjust_prio(struct thread *td, u_char prio)
193 {
194
195         thread_lock(td);
196         sched_prio(td, prio);
197         thread_unlock(td);
198 }
199
200 epoch_t
201 epoch_alloc(int flags)
202 {
203         epoch_t epoch;
204
205         if (__predict_false(!inited))
206                 panic("%s called too early in boot", __func__);
207         epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK);
208         ck_epoch_init(&epoch->e_epoch);
209         epoch_ctor(epoch);
210         MPASS(epoch_count < MAX_EPOCHS - 2);
211         epoch->e_flags = flags;
212         epoch->e_idx = epoch_count;
213         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
214         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
215         allepochs[epoch_count++] = epoch;
216         return (epoch);
217 }
218
219 void
220 epoch_free(epoch_t epoch)
221 {
222
223         epoch_drain_callbacks(epoch);
224         allepochs[epoch->e_idx] = NULL;
225         epoch_wait(global_epoch);
226         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
227         mtx_destroy(&epoch->e_drain_mtx);
228         sx_destroy(&epoch->e_drain_sx);
229         free(epoch, M_EPOCH);
230 }
231
232 static epoch_record_t
233 epoch_currecord(epoch_t epoch)
234 {
235
236         return (zpcpu_get_cpu(epoch->e_pcpu_record, curcpu));
237 }
238
239 #define INIT_CHECK(epoch)                                       \
240         do {                                                    \
241                 if (__predict_false((epoch) == NULL))           \
242                         return;                                 \
243         } while (0)
244
245 void
246 epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et)
247 {
248         struct epoch_record *er;
249         struct thread *td;
250
251         MPASS(cold || epoch != NULL);
252         INIT_CHECK(epoch);
253         MPASS(epoch->e_flags & EPOCH_PREEMPT);
254 #ifdef EPOCH_TRACKER_DEBUG
255         et->et_magic_pre = EPOCH_MAGIC0;
256         et->et_magic_post = EPOCH_MAGIC1;
257 #endif
258         td = curthread;
259         et->et_td = td;
260         td->td_epochnest++;
261         critical_enter();
262         sched_pin();
263
264         td->td_pre_epoch_prio = td->td_priority;
265         er = epoch_currecord(epoch);
266         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
267         ck_epoch_begin(&er->er_record, &et->et_section);
268         critical_exit();
269 }
270
271 void
272 epoch_enter(epoch_t epoch)
273 {
274         struct thread *td;
275         epoch_record_t er;
276
277         MPASS(cold || epoch != NULL);
278         INIT_CHECK(epoch);
279         td = curthread;
280
281         td->td_epochnest++;
282         critical_enter();
283         er = epoch_currecord(epoch);
284         ck_epoch_begin(&er->er_record, NULL);
285 }
286
287 void
288 epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et)
289 {
290         struct epoch_record *er;
291         struct thread *td;
292
293         INIT_CHECK(epoch);
294         td = curthread;
295         critical_enter();
296         sched_unpin();
297         MPASS(td->td_epochnest);
298         td->td_epochnest--;
299         er = epoch_currecord(epoch);
300         MPASS(epoch->e_flags & EPOCH_PREEMPT);
301         MPASS(et != NULL);
302         MPASS(et->et_td == td);
303 #ifdef EPOCH_TRACKER_DEBUG
304         MPASS(et->et_magic_pre == EPOCH_MAGIC0);
305         MPASS(et->et_magic_post == EPOCH_MAGIC1);
306         et->et_magic_pre = 0;
307         et->et_magic_post = 0;
308 #endif
309 #ifdef INVARIANTS
310         et->et_td = (void*)0xDEADBEEF;
311 #endif
312         ck_epoch_end(&er->er_record, &et->et_section);
313         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
314         er->er_gen++;
315         if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
316                 epoch_adjust_prio(td, td->td_pre_epoch_prio);
317         critical_exit();
318 }
319
320 void
321 epoch_exit(epoch_t epoch)
322 {
323         struct thread *td;
324         epoch_record_t er;
325
326         INIT_CHECK(epoch);
327         td = curthread;
328         MPASS(td->td_epochnest);
329         td->td_epochnest--;
330         er = epoch_currecord(epoch);
331         ck_epoch_end(&er->er_record, NULL);
332         critical_exit();
333 }
334
335 /*
336  * epoch_block_handler_preempt() is a callback from the CK code when another
337  * thread is currently in an epoch section.
338  */
339 static void
340 epoch_block_handler_preempt(struct ck_epoch *global __unused,
341     ck_epoch_record_t *cr, void *arg __unused)
342 {
343         epoch_record_t record;
344         struct thread *td, *owner, *curwaittd;
345         struct epoch_tracker *tdwait;
346         struct turnstile *ts;
347         struct lock_object *lock;
348         int spincount, gen;
349         int locksheld __unused;
350
351         record = __containerof(cr, struct epoch_record, er_record);
352         td = curthread;
353         locksheld = td->td_locks;
354         spincount = 0;
355         counter_u64_add(block_count, 1);
356         /*
357          * We lost a race and there's no longer any threads
358          * on the CPU in an epoch section.
359          */
360         if (TAILQ_EMPTY(&record->er_tdlist))
361                 return;
362
363         if (record->er_cpuid != curcpu) {
364                 /*
365                  * If the head of the list is running, we can wait for it
366                  * to remove itself from the list and thus save us the
367                  * overhead of a migration
368                  */
369                 gen = record->er_gen;
370                 thread_unlock(td);
371                 /*
372                  * We can't actually check if the waiting thread is running
373                  * so we simply poll for it to exit before giving up and
374                  * migrating.
375                  */
376                 do {
377                         cpu_spinwait();
378                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
379                                  gen == record->er_gen &&
380                                  spincount++ < MAX_ADAPTIVE_SPIN);
381                 thread_lock(td);
382                 /*
383                  * If the generation has changed we can poll again
384                  * otherwise we need to migrate.
385                  */
386                 if (gen != record->er_gen)
387                         return;
388                 /*
389                  * Being on the same CPU as that of the record on which
390                  * we need to wait allows us access to the thread
391                  * list associated with that CPU. We can then examine the
392                  * oldest thread in the queue and wait on its turnstile
393                  * until it resumes and so on until a grace period
394                  * elapses.
395                  *
396                  */
397                 counter_u64_add(migrate_count, 1);
398                 sched_bind(td, record->er_cpuid);
399                 /*
400                  * At this point we need to return to the ck code
401                  * to scan to see if a grace period has elapsed.
402                  * We can't move on to check the thread list, because
403                  * in the meantime new threads may have arrived that
404                  * in fact belong to a different epoch.
405                  */
406                 return;
407         }
408         /*
409          * Try to find a thread in an epoch section on this CPU
410          * waiting on a turnstile. Otherwise find the lowest
411          * priority thread (highest prio value) and drop our priority
412          * to match to allow it to run.
413          */
414         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
415                 /*
416                  * Propagate our priority to any other waiters to prevent us
417                  * from starving them. They will have their original priority
418                  * restore on exit from epoch_wait().
419                  */
420                 curwaittd = tdwait->et_td;
421                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
422                         critical_enter();
423                         thread_unlock(td);
424                         thread_lock(curwaittd);
425                         sched_prio(curwaittd, td->td_priority);
426                         thread_unlock(curwaittd);
427                         thread_lock(td);
428                         critical_exit();
429                 }
430                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
431                     ((ts = curwaittd->td_blocked) != NULL)) {
432                         /*
433                          * We unlock td to allow turnstile_wait to reacquire
434                          * the thread lock. Before unlocking it we enter a
435                          * critical section to prevent preemption after we
436                          * reenable interrupts by dropping the thread lock in
437                          * order to prevent curwaittd from getting to run.
438                          */
439                         critical_enter();
440                         thread_unlock(td);
441
442                         if (turnstile_lock(ts, &lock, &owner)) {
443                                 if (ts == curwaittd->td_blocked) {
444                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
445                                             TD_ON_LOCK(curwaittd));
446                                         critical_exit();
447                                         turnstile_wait(ts, owner,
448                                             curwaittd->td_tsqueue);
449                                         counter_u64_add(turnstile_count, 1);
450                                         thread_lock(td);
451                                         return;
452                                 }
453                                 turnstile_unlock(ts, lock);
454                         }
455                         thread_lock(td);
456                         critical_exit();
457                         KASSERT(td->td_locks == locksheld,
458                             ("%d extra locks held", td->td_locks - locksheld));
459                 }
460         }
461         /*
462          * We didn't find any threads actually blocked on a lock
463          * so we have nothing to do except context switch away.
464          */
465         counter_u64_add(switch_count, 1);
466         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
467
468         /*
469          * Release the thread lock while yielding to
470          * allow other threads to acquire the lock
471          * pointed to by TDQ_LOCKPTR(td). Else a
472          * deadlock like situation might happen. (HPS)
473          */
474         thread_unlock(td);
475         thread_lock(td);
476 }
477
478 void
479 epoch_wait_preempt(epoch_t epoch)
480 {
481         struct thread *td;
482         int was_bound;
483         int old_cpu;
484         int old_pinned;
485         u_char old_prio;
486         int locks __unused;
487
488         MPASS(cold || epoch != NULL);
489         INIT_CHECK(epoch);
490         td = curthread;
491 #ifdef INVARIANTS
492         locks = curthread->td_locks;
493         MPASS(epoch->e_flags & EPOCH_PREEMPT);
494         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
495                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
496                     "epoch_wait() can be long running");
497         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
498             "of an epoch section of the same epoch"));
499 #endif
500         thread_lock(td);
501         DROP_GIANT();
502
503         old_cpu = PCPU_GET(cpuid);
504         old_pinned = td->td_pinned;
505         old_prio = td->td_priority;
506         was_bound = sched_is_bound(td);
507         sched_unbind(td);
508         td->td_pinned = 0;
509         sched_bind(td, old_cpu);
510
511         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
512             NULL);
513
514         /* restore CPU binding, if any */
515         if (was_bound != 0) {
516                 sched_bind(td, old_cpu);
517         } else {
518                 /* get thread back to initial CPU, if any */
519                 if (old_pinned != 0)
520                         sched_bind(td, old_cpu);
521                 sched_unbind(td);
522         }
523         /* restore pinned after bind */
524         td->td_pinned = old_pinned;
525
526         /* restore thread priority */
527         sched_prio(td, old_prio);
528         thread_unlock(td);
529         PICKUP_GIANT();
530         KASSERT(td->td_locks == locks,
531             ("%d residual locks held", td->td_locks - locks));
532 }
533
534 static void
535 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
536     void *arg __unused)
537 {
538         cpu_spinwait();
539 }
540
541 void
542 epoch_wait(epoch_t epoch)
543 {
544
545         MPASS(cold || epoch != NULL);
546         INIT_CHECK(epoch);
547         MPASS(epoch->e_flags == 0);
548         critical_enter();
549         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
550         critical_exit();
551 }
552
553 void
554 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
555 {
556         epoch_record_t er;
557         ck_epoch_entry_t *cb;
558
559         cb = (void *)ctx;
560
561         MPASS(callback);
562         /* too early in boot to have epoch set up */
563         if (__predict_false(epoch == NULL))
564                 goto boottime;
565 #if !defined(EARLY_AP_STARTUP)
566         if (__predict_false(inited < 2))
567                 goto boottime;
568 #endif
569
570         critical_enter();
571         *DPCPU_PTR(epoch_cb_count) += 1;
572         er = epoch_currecord(epoch);
573         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
574         critical_exit();
575         return;
576 boottime:
577         callback(ctx);
578 }
579
580 static void
581 epoch_call_task(void *arg __unused)
582 {
583         ck_stack_entry_t *cursor, *head, *next;
584         ck_epoch_record_t *record;
585         epoch_record_t er;
586         epoch_t epoch;
587         ck_stack_t cb_stack;
588         int i, npending, total;
589
590         ck_stack_init(&cb_stack);
591         critical_enter();
592         epoch_enter(global_epoch);
593         for (total = i = 0; i < epoch_count; i++) {
594                 if (__predict_false((epoch = allepochs[i]) == NULL))
595                         continue;
596                 er = epoch_currecord(epoch);
597                 record = &er->er_record;
598                 if ((npending = record->n_pending) == 0)
599                         continue;
600                 ck_epoch_poll_deferred(record, &cb_stack);
601                 total += npending - record->n_pending;
602         }
603         epoch_exit(global_epoch);
604         *DPCPU_PTR(epoch_cb_count) -= total;
605         critical_exit();
606
607         counter_u64_add(epoch_call_count, total);
608         counter_u64_add(epoch_call_task_count, 1);
609
610         head = ck_stack_batch_pop_npsc(&cb_stack);
611         for (cursor = head; cursor != NULL; cursor = next) {
612                 struct ck_epoch_entry *entry =
613                     ck_epoch_entry_container(cursor);
614
615                 next = CK_STACK_NEXT(cursor);
616                 entry->function(entry);
617         }
618 }
619
620 int
621 in_epoch_verbose(epoch_t epoch, int dump_onfail)
622 {
623         struct epoch_tracker *tdwait;
624         struct thread *td;
625         epoch_record_t er;
626
627         td = curthread;
628         if (td->td_epochnest == 0)
629                 return (0);
630         if (__predict_false((epoch) == NULL))
631                 return (0);
632         critical_enter();
633         er = epoch_currecord(epoch);
634         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
635                 if (tdwait->et_td == td) {
636                         critical_exit();
637                         return (1);
638                 }
639 #ifdef INVARIANTS
640         if (dump_onfail) {
641                 MPASS(td->td_pinned);
642                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
643                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
644                         printf("td_tid: %d ", tdwait->et_td->td_tid);
645                 printf("\n");
646         }
647 #endif
648         critical_exit();
649         return (0);
650 }
651
652 int
653 in_epoch(epoch_t epoch)
654 {
655         return (in_epoch_verbose(epoch, 0));
656 }
657
658 static void
659 epoch_drain_cb(struct epoch_context *ctx)
660 {
661         struct epoch *epoch =
662             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
663
664         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
665                 mtx_lock(&epoch->e_drain_mtx);
666                 wakeup(epoch);
667                 mtx_unlock(&epoch->e_drain_mtx);
668         }
669 }
670
671 void
672 epoch_drain_callbacks(epoch_t epoch)
673 {
674         epoch_record_t er;
675         struct thread *td;
676         int was_bound;
677         int old_pinned;
678         int old_cpu;
679         int cpu;
680
681         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
682             "epoch_drain_callbacks() may sleep!");
683
684         /* too early in boot to have epoch set up */
685         if (__predict_false(epoch == NULL))
686                 return;
687 #if !defined(EARLY_AP_STARTUP)
688         if (__predict_false(inited < 2))
689                 return;
690 #endif
691         DROP_GIANT();
692
693         sx_xlock(&epoch->e_drain_sx);
694         mtx_lock(&epoch->e_drain_mtx);
695
696         td = curthread;
697         thread_lock(td);
698         old_cpu = PCPU_GET(cpuid);
699         old_pinned = td->td_pinned;
700         was_bound = sched_is_bound(td);
701         sched_unbind(td);
702         td->td_pinned = 0;
703
704         CPU_FOREACH(cpu)
705                 epoch->e_drain_count++;
706         CPU_FOREACH(cpu) {
707                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
708                 sched_bind(td, cpu);
709                 epoch_call(epoch, &er->er_drain_ctx, &epoch_drain_cb);
710         }
711
712         /* restore CPU binding, if any */
713         if (was_bound != 0) {
714                 sched_bind(td, old_cpu);
715         } else {
716                 /* get thread back to initial CPU, if any */
717                 if (old_pinned != 0)
718                         sched_bind(td, old_cpu);
719                 sched_unbind(td);
720         }
721         /* restore pinned after bind */
722         td->td_pinned = old_pinned;
723
724         thread_unlock(td);
725
726         while (epoch->e_drain_count != 0)
727                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
728
729         mtx_unlock(&epoch->e_drain_mtx);
730         sx_xunlock(&epoch->e_drain_sx);
731
732         PICKUP_GIANT();
733 }
734
735 void
736 epoch_thread_init(struct thread *td)
737 {
738
739         td->td_et = malloc(sizeof(struct epoch_tracker), M_EPOCH, M_WAITOK);
740 }
741
742 void
743 epoch_thread_fini(struct thread *td)
744 {
745
746         free(td->td_et, M_EPOCH);
747 }