]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
ANSIfy sys/kern
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/counter.h>
36 #include <sys/epoch.h>
37 #include <sys/gtaskqueue.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/vm_kern.h>
52
53 #include <ck_epoch.h>
54
55 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
56
57 /* arbitrary --- needs benchmarking */
58 #define MAX_ADAPTIVE_SPIN 1000
59 #define MAX_EPOCHS 64
60
61 #ifdef __amd64__
62 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
63 #else
64 #define EPOCH_ALIGN CACHE_LINE_SIZE
65 #endif
66
67 CTASSERT(sizeof(epoch_section_t) == sizeof(ck_epoch_section_t));
68 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
69 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
70 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
71
72
73 /* Stats. */
74 static counter_u64_t block_count;
75
76 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
77     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
78 static counter_u64_t migrate_count;
79
80 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
81     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
82 static counter_u64_t turnstile_count;
83
84 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
85     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
86 static counter_u64_t switch_count;
87
88 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
89     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
90 static counter_u64_t epoch_call_count;
91
92 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
93     &epoch_call_count, "# of times a callback was deferred");
94 static counter_u64_t epoch_call_task_count;
95
96 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
97     &epoch_call_task_count, "# of times a callback task was run");
98
99 TAILQ_HEAD (threadlist, thread);
100
101 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
102     ck_epoch_entry_container)
103 typedef struct epoch_record {
104         ck_epoch_record_t er_record;
105         volatile struct threadlist er_tdlist;
106         volatile uint32_t er_gen;
107         uint32_t er_cpuid;
108 }      *epoch_record_t;
109
110 struct epoch_pcpu_state {
111         struct epoch_record eps_record;
112 }       __aligned(EPOCH_ALIGN);
113
114 struct epoch {
115         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
116         struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM] __aligned(EPOCH_ALIGN);
117         int     e_idx;
118         int     e_flags;
119         struct epoch_pcpu_state *e_pcpu[0];
120 };
121
122 epoch_t allepochs[MAX_EPOCHS];
123
124 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
125 DPCPU_DEFINE(int, epoch_cb_count);
126
127 static __read_mostly int domcount[MAXMEMDOM];
128 static __read_mostly int domoffsets[MAXMEMDOM];
129 static __read_mostly int inited;
130 static __read_mostly int epoch_count;
131 __read_mostly epoch_t global_epoch;
132 __read_mostly epoch_t global_epoch_preempt;
133
134 static void epoch_call_task(void *context __unused);
135
136 #if defined(__powerpc64__) || defined(__powerpc__) || !defined(NUMA)
137 static bool usedomains = false;
138 #else
139 static bool usedomains = true;
140 #endif
141 static void
142 epoch_init(void *arg __unused)
143 {
144         int domain, cpu;
145
146         block_count = counter_u64_alloc(M_WAITOK);
147         migrate_count = counter_u64_alloc(M_WAITOK);
148         turnstile_count = counter_u64_alloc(M_WAITOK);
149         switch_count = counter_u64_alloc(M_WAITOK);
150         epoch_call_count = counter_u64_alloc(M_WAITOK);
151         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
152         if (usedomains == false)
153                 goto done;
154         domain = 0;
155         domoffsets[0] = 0;
156         for (domain = 0; domain < vm_ndomains; domain++) {
157                 domcount[domain] = CPU_COUNT(&cpuset_domain[domain]);
158                 if (bootverbose)
159                         printf("domcount[%d] %d\n", domain, domcount[domain]);
160         }
161         for (domain = 1; domain < vm_ndomains; domain++)
162                 domoffsets[domain] = domoffsets[domain - 1] + domcount[domain - 1];
163
164         for (domain = 0; domain < vm_ndomains; domain++) {
165                 if (domcount[domain] == 0) {
166                         usedomains = false;
167                         break;
168                 }
169         }
170 done:
171         CPU_FOREACH(cpu) {
172                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, epoch_call_task, NULL);
173                 taskqgroup_attach_cpu(qgroup_softirq, DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1, "epoch call task");
174         }
175         inited = 1;
176         global_epoch = epoch_alloc(0);
177         global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
178 }
179
180 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
181
182 static void
183 epoch_init_numa(epoch_t epoch)
184 {
185         int domain, cpu_offset;
186         struct epoch_pcpu_state *eps;
187         epoch_record_t er;
188
189         for (domain = 0; domain < vm_ndomains; domain++) {
190                 eps = malloc_domain(sizeof(*eps) * domcount[domain], M_EPOCH,
191                     domain, M_ZERO | M_WAITOK);
192                 epoch->e_pcpu_dom[domain] = eps;
193                 cpu_offset = domoffsets[domain];
194                 for (int i = 0; i < domcount[domain]; i++, eps++) {
195                         epoch->e_pcpu[cpu_offset + i] = eps;
196                         er = &eps->eps_record;
197                         ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
198                         TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
199                         er->er_cpuid = cpu_offset + i;
200                 }
201         }
202 }
203
204 static void
205 epoch_init_legacy(epoch_t epoch)
206 {
207         struct epoch_pcpu_state *eps;
208         epoch_record_t er;
209
210         eps = malloc(sizeof(*eps) * mp_ncpus, M_EPOCH, M_ZERO | M_WAITOK);
211         epoch->e_pcpu_dom[0] = eps;
212         for (int i = 0; i < mp_ncpus; i++, eps++) {
213                 epoch->e_pcpu[i] = eps;
214                 er = &eps->eps_record;
215                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
216                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
217                 er->er_cpuid = i;
218         }
219 }
220
221 epoch_t
222 epoch_alloc(int flags)
223 {
224         epoch_t epoch;
225
226         if (__predict_false(!inited))
227                 panic("%s called too early in boot", __func__);
228         epoch = malloc(sizeof(struct epoch) + mp_ncpus * sizeof(void *),
229             M_EPOCH, M_ZERO | M_WAITOK);
230         ck_epoch_init(&epoch->e_epoch);
231         if (usedomains)
232                 epoch_init_numa(epoch);
233         else
234                 epoch_init_legacy(epoch);
235         MPASS(epoch_count < MAX_EPOCHS - 2);
236         epoch->e_flags = flags;
237         epoch->e_idx = epoch_count;
238         allepochs[epoch_count++] = epoch;
239         return (epoch);
240 }
241
242 void
243 epoch_free(epoch_t epoch)
244 {
245         int domain;
246 #ifdef INVARIANTS
247         struct epoch_pcpu_state *eps;
248         int cpu;
249
250         CPU_FOREACH(cpu) {
251                 eps = epoch->e_pcpu[cpu];
252                 MPASS(TAILQ_EMPTY(&eps->eps_record.er_tdlist));
253         }
254 #endif
255         allepochs[epoch->e_idx] = NULL;
256         epoch_wait(global_epoch);
257         if (usedomains)
258                 for (domain = 0; domain < vm_ndomains; domain++)
259                         free_domain(epoch->e_pcpu_dom[domain], M_EPOCH);
260         else
261                 free(epoch->e_pcpu_dom[0], M_EPOCH);
262         free(epoch, M_EPOCH);
263 }
264
265 #define INIT_CHECK(epoch)                                                               \
266         do {                                                                                    \
267                 if (__predict_false((epoch) == NULL))           \
268                         return;                                                                 \
269         } while (0)
270
271 void
272 epoch_enter_preempt_internal(epoch_t epoch, struct thread *td)
273 {
274         struct epoch_pcpu_state *eps;
275
276         MPASS(cold || epoch != NULL);
277         INIT_CHECK(epoch);
278         MPASS(epoch->e_flags & EPOCH_PREEMPT);
279         critical_enter();
280         td->td_pre_epoch_prio = td->td_priority;
281         eps = epoch->e_pcpu[curcpu];
282 #ifdef INVARIANTS
283         MPASS(td->td_epochnest < UCHAR_MAX - 2);
284         if (td->td_epochnest > 1) {
285                 struct thread *curtd;
286                 int found = 0;
287
288                 TAILQ_FOREACH(curtd, &eps->eps_record.er_tdlist, td_epochq)
289                     if (curtd == td)
290                         found = 1;
291                 KASSERT(found, ("recursing on a second epoch"));
292                 critical_exit();
293                 return;
294         }
295 #endif
296         TAILQ_INSERT_TAIL(&eps->eps_record.er_tdlist, td, td_epochq);
297         sched_pin();
298         ck_epoch_begin(&eps->eps_record.er_record, (ck_epoch_section_t *)&td->td_epoch_section);
299         critical_exit();
300 }
301
302
303 void
304 epoch_enter(epoch_t epoch)
305 {
306         ck_epoch_record_t *record;
307         struct thread *td;
308
309         MPASS(cold || epoch != NULL);
310         td = curthread;
311
312         critical_enter();
313         td->td_epochnest++;
314         record = &epoch->e_pcpu[curcpu]->eps_record.er_record;
315         ck_epoch_begin(record, NULL);
316 }
317
318 void
319 epoch_exit_preempt_internal(epoch_t epoch, struct thread *td)
320 {
321         struct epoch_pcpu_state *eps;
322
323         MPASS(td->td_epochnest == 0);
324         INIT_CHECK(epoch);
325         critical_enter();
326         eps = epoch->e_pcpu[curcpu];
327
328         MPASS(epoch->e_flags & EPOCH_PREEMPT);
329         ck_epoch_end(&eps->eps_record.er_record, (ck_epoch_section_t *)&td->td_epoch_section);
330         TAILQ_REMOVE(&eps->eps_record.er_tdlist, td, td_epochq);
331         eps->eps_record.er_gen++;
332         sched_unpin();
333         if (__predict_false(td->td_pre_epoch_prio != td->td_priority)) {
334                 thread_lock(td);
335                 sched_prio(td, td->td_pre_epoch_prio);
336                 thread_unlock(td);
337         }
338         critical_exit();
339 }
340
341 void
342 epoch_exit(epoch_t epoch)
343 {
344         ck_epoch_record_t *record;
345         struct thread *td;
346
347         td = curthread;
348         td->td_epochnest--;
349         record = &epoch->e_pcpu[curcpu]->eps_record.er_record;
350         ck_epoch_end(record, NULL);
351         critical_exit();
352 }
353
354 /*
355  * epoch_block_handler_preempt is a callback from the ck code when another thread is
356  * currently in an epoch section.
357  */
358 static void
359 epoch_block_handler_preempt(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
360     void *arg __unused)
361 {
362         epoch_record_t record;
363         struct thread *td, *tdwait, *owner;
364         struct turnstile *ts;
365         struct lock_object *lock;
366         int spincount, gen;
367
368         record = __containerof(cr, struct epoch_record, er_record);
369         td = curthread;
370         spincount = 0;
371         counter_u64_add(block_count, 1);
372         if (record->er_cpuid != curcpu) {
373                 /*
374                  * If the head of the list is running, we can wait for it
375                  * to remove itself from the list and thus save us the
376                  * overhead of a migration
377                  */
378                 if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL &&
379                     TD_IS_RUNNING(tdwait)) {
380                         gen = record->er_gen;
381                         thread_unlock(td);
382                         do {
383                                 cpu_spinwait();
384                         } while (tdwait == TAILQ_FIRST(&record->er_tdlist) &&
385                             gen == record->er_gen && TD_IS_RUNNING(tdwait) &&
386                             spincount++ < MAX_ADAPTIVE_SPIN);
387                         thread_lock(td);
388                         return;
389                 }
390                 /*
391                  * Being on the same CPU as that of the record on which
392                  * we need to wait allows us access to the thread
393                  * list associated with that CPU. We can then examine the
394                  * oldest thread in the queue and wait on its turnstile
395                  * until it resumes and so on until a grace period
396                  * elapses.
397                  *
398                  */
399                 counter_u64_add(migrate_count, 1);
400                 sched_bind(td, record->er_cpuid);
401                 /*
402                  * At this point we need to return to the ck code
403                  * to scan to see if a grace period has elapsed.
404                  * We can't move on to check the thread list, because
405                  * in the meantime new threads may have arrived that
406                  * in fact belong to a different epoch.
407                  */
408                 return;
409         }
410         /*
411          * Try to find a thread in an epoch section on this CPU
412          * waiting on a turnstile. Otherwise find the lowest
413          * priority thread (highest prio value) and drop our priority
414          * to match to allow it to run.
415          */
416         TAILQ_FOREACH(tdwait, &record->er_tdlist, td_epochq) {
417                 /*
418                  * Propagate our priority to any other waiters to prevent us
419                  * from starving them. They will have their original priority
420                  * restore on exit from epoch_wait().
421                  */
422                 if (!TD_IS_INHIBITED(tdwait) && tdwait->td_priority > td->td_priority) {
423                         critical_enter();
424                         thread_unlock(td);
425                         thread_lock(tdwait);
426                         sched_prio(tdwait, td->td_priority);
427                         thread_unlock(tdwait);
428                         thread_lock(td);
429                         critical_exit();
430                 }
431                 if (TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait) &&
432                     ((ts = tdwait->td_blocked) != NULL)) {
433                         /*
434                          * We unlock td to allow turnstile_wait to reacquire the
435                          * the thread lock. Before unlocking it we enter a critical
436                          * section to prevent preemption after we reenable interrupts
437                          * by dropping the thread lock in order to prevent tdwait
438                          * from getting to run.
439                          */
440                         critical_enter();
441                         thread_unlock(td);
442                         owner = turnstile_lock(ts, &lock);
443                         /*
444                          * The owner pointer indicates that the lock succeeded. Only
445                          * in case we hold the lock and the turnstile we locked is still
446                          * the one that tdwait is blocked on can we continue. Otherwise
447                          * The turnstile pointer has been changed out from underneath
448                          * us, as in the case where the lock holder has signalled tdwait,
449                          * and we need to continue.
450                          */
451                         if (owner != NULL && ts == tdwait->td_blocked) {
452                                 MPASS(TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait));
453                                 critical_exit();
454                                 turnstile_wait(ts, owner, tdwait->td_tsqueue);
455                                 counter_u64_add(turnstile_count, 1);
456                                 thread_lock(td);
457                                 return;
458                         } else if (owner != NULL)
459                                 turnstile_unlock(ts, lock);
460                         thread_lock(td);
461                         critical_exit();
462                         KASSERT(td->td_locks == 0,
463                             ("%d locks held", td->td_locks));
464                 }
465         }
466         /*
467          * We didn't find any threads actually blocked on a lock
468          * so we have nothing to do except context switch away.
469          */
470         counter_u64_add(switch_count, 1);
471         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
472
473         /*
474          * Release the thread lock while yielding to
475          * allow other threads to acquire the lock
476          * pointed to by TDQ_LOCKPTR(td). Else a
477          * deadlock like situation might happen. (HPS)
478          */
479         thread_unlock(td);
480         thread_lock(td);
481 }
482
483 void
484 epoch_wait_preempt(epoch_t epoch)
485 {
486         struct thread *td;
487         int was_bound;
488         int old_cpu;
489         int old_pinned;
490         u_char old_prio;
491 #ifdef INVARIANTS
492         int locks;
493
494         locks = curthread->td_locks;
495 #endif
496
497         MPASS(cold || epoch != NULL);
498         INIT_CHECK(epoch);
499
500         MPASS(epoch->e_flags & EPOCH_PREEMPT);
501         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
502             "epoch_wait() can sleep");
503
504         td = curthread;
505         KASSERT(td->td_epochnest == 0, ("epoch_wait() in the middle of an epoch section"));
506         thread_lock(td);
507
508         DROP_GIANT();
509
510         old_cpu = PCPU_GET(cpuid);
511         old_pinned = td->td_pinned;
512         old_prio = td->td_priority;
513         was_bound = sched_is_bound(td);
514         sched_unbind(td);
515         td->td_pinned = 0;
516         sched_bind(td, old_cpu);
517
518         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt, NULL);
519
520         /* restore CPU binding, if any */
521         if (was_bound != 0) {
522                 sched_bind(td, old_cpu);
523         } else {
524                 /* get thread back to initial CPU, if any */
525                 if (old_pinned != 0)
526                         sched_bind(td, old_cpu);
527                 sched_unbind(td);
528         }
529         /* restore pinned after bind */
530         td->td_pinned = old_pinned;
531
532         /* restore thread priority */
533         sched_prio(td, old_prio);
534         thread_unlock(td);
535         PICKUP_GIANT();
536         KASSERT(td->td_locks == locks,
537             ("%d residual locks held", td->td_locks - locks));
538 }
539
540 static void
541 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
542     void *arg __unused)
543 {
544         cpu_spinwait();
545 }
546
547 void
548 epoch_wait(epoch_t epoch)
549 {
550
551         MPASS(cold || epoch != NULL);
552         INIT_CHECK(epoch);
553         MPASS(epoch->e_flags == 0);
554         critical_enter();
555         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
556         critical_exit();
557 }
558
559 void
560 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
561 {
562         struct epoch_pcpu_state *eps;
563         ck_epoch_entry_t *cb;
564
565         cb = (void *)ctx;
566
567         MPASS(callback);
568         /* too early in boot to have epoch set up */
569         if (__predict_false(epoch == NULL))
570                 goto boottime;
571
572         critical_enter();
573         *DPCPU_PTR(epoch_cb_count) += 1;
574         eps = epoch->e_pcpu[curcpu];
575         ck_epoch_call(&eps->eps_record.er_record, cb, (ck_epoch_cb_t *)callback);
576         critical_exit();
577         return;
578 boottime:
579         callback(ctx);
580 }
581
582 static void
583 epoch_call_task(void *arg __unused)
584 {
585         ck_stack_entry_t *cursor, *head, *next;
586         ck_epoch_record_t *record;
587         epoch_t epoch;
588         ck_stack_t cb_stack;
589         int i, npending, total;
590
591         ck_stack_init(&cb_stack);
592         critical_enter();
593         epoch_enter(global_epoch);
594         for (total = i = 0; i < epoch_count; i++) {
595                 if (__predict_false((epoch = allepochs[i]) == NULL))
596                         continue;
597                 record = &epoch->e_pcpu[curcpu]->eps_record.er_record;
598                 if ((npending = record->n_pending) == 0)
599                         continue;
600                 ck_epoch_poll_deferred(record, &cb_stack);
601                 total += npending - record->n_pending;
602         }
603         epoch_exit(global_epoch);
604         *DPCPU_PTR(epoch_cb_count) -= total;
605         critical_exit();
606
607         counter_u64_add(epoch_call_count, total);
608         counter_u64_add(epoch_call_task_count, 1);
609
610         head = ck_stack_batch_pop_npsc(&cb_stack);
611         for (cursor = head; cursor != NULL; cursor = next) {
612                 struct ck_epoch_entry *entry =
613                 ck_epoch_entry_container(cursor);
614
615                 next = CK_STACK_NEXT(cursor);
616                 entry->function(entry);
617         }
618 }
619
620 int
621 in_epoch(void)
622 {
623         return (curthread->td_epochnest != 0);
624 }