]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
MFV r336800: libarchive: Cherry-pick upstream 2c8c83b9
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/counter.h>
36 #include <sys/epoch.h>
37 #include <sys/gtaskqueue.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/vm_kern.h>
52 #include <vm/uma.h>
53
54 #include <ck_epoch.h>
55
56 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
57
58 /* arbitrary --- needs benchmarking */
59 #define MAX_ADAPTIVE_SPIN 1000
60 #define MAX_EPOCHS 64
61
62 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
63 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
64 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
65
66 /* Stats. */
67 static counter_u64_t block_count;
68
69 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
70     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
71 static counter_u64_t migrate_count;
72
73 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
74     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
75 static counter_u64_t turnstile_count;
76
77 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
78     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
79 static counter_u64_t switch_count;
80
81 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
82     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
83 static counter_u64_t epoch_call_count;
84
85 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
86     &epoch_call_count, "# of times a callback was deferred");
87 static counter_u64_t epoch_call_task_count;
88
89 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
90     &epoch_call_task_count, "# of times a callback task was run");
91
92 TAILQ_HEAD (threadlist, thread);
93
94 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
95     ck_epoch_entry_container)
96
97 epoch_t allepochs[MAX_EPOCHS];
98
99 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
100 DPCPU_DEFINE(int, epoch_cb_count);
101
102 static __read_mostly int inited;
103 static __read_mostly int epoch_count;
104 __read_mostly epoch_t global_epoch;
105 __read_mostly epoch_t global_epoch_preempt;
106
107 static void epoch_call_task(void *context __unused);
108 static  uma_zone_t pcpu_zone_record;
109
110 static void
111 epoch_init(void *arg __unused)
112 {
113         int cpu;
114
115         block_count = counter_u64_alloc(M_WAITOK);
116         migrate_count = counter_u64_alloc(M_WAITOK);
117         turnstile_count = counter_u64_alloc(M_WAITOK);
118         switch_count = counter_u64_alloc(M_WAITOK);
119         epoch_call_count = counter_u64_alloc(M_WAITOK);
120         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
121
122         pcpu_zone_record = uma_zcreate("epoch_record pcpu", sizeof(struct epoch_record),
123             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU);
124         CPU_FOREACH(cpu) {
125                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, epoch_call_task, NULL);
126                 taskqgroup_attach_cpu(qgroup_softirq, DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1, "epoch call task");
127         }
128         inited = 1;
129         global_epoch = epoch_alloc(0);
130         global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
131 }
132 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
133
134 #if !defined(EARLY_AP_STARTUP)
135 static void
136 epoch_init_smp(void *dummy __unused)
137 {
138         inited = 2;
139 }
140 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
141 #endif
142
143 static void
144 epoch_ctor(epoch_t epoch)
145 {
146         epoch_record_t er;
147         int cpu;
148
149         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
150         CPU_FOREACH(cpu) {
151                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
152                 bzero(er, sizeof(*er));
153                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
154                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
155                 er->er_cpuid = cpu;
156         }
157 }
158
159 epoch_t
160 epoch_alloc(int flags)
161 {
162         epoch_t epoch;
163
164         if (__predict_false(!inited))
165                 panic("%s called too early in boot", __func__);
166         epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK);
167         ck_epoch_init(&epoch->e_epoch);
168         epoch_ctor(epoch);
169         MPASS(epoch_count < MAX_EPOCHS - 2);
170         epoch->e_flags = flags;
171         epoch->e_idx = epoch_count;
172         allepochs[epoch_count++] = epoch;
173         return (epoch);
174 }
175
176 void
177 epoch_free(epoch_t epoch)
178 {
179 #ifdef INVARIANTS
180         struct epoch_record *er;
181         int cpu;
182
183         CPU_FOREACH(cpu) {
184                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
185                 MPASS(TAILQ_EMPTY(&er->er_tdlist));
186         }
187 #endif
188         allepochs[epoch->e_idx] = NULL;
189         epoch_wait(global_epoch);
190         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
191         free(epoch, M_EPOCH);
192 }
193
194 void
195 epoch_enter_preempt_KBI(epoch_t epoch, epoch_tracker_t et)
196 {
197
198         epoch_enter_preempt(epoch, et);
199 }
200
201 void
202 epoch_exit_preempt_KBI(epoch_t epoch, epoch_tracker_t et)
203 {
204
205         epoch_exit_preempt(epoch, et);
206 }
207
208 void
209 epoch_enter_KBI(epoch_t epoch)
210 {
211
212         epoch_enter(epoch);
213 }
214
215 void
216 epoch_exit_KBI(epoch_t epoch)
217 {
218
219         epoch_exit(epoch);
220 }
221
222 /*
223  * epoch_block_handler_preempt is a callback from the ck code when another thread is
224  * currently in an epoch section.
225  */
226 static void
227 epoch_block_handler_preempt(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
228     void *arg __unused)
229 {
230         epoch_record_t record;
231         struct thread *td, *owner, *curwaittd;
232         struct epoch_thread *tdwait;
233         struct turnstile *ts;
234         struct lock_object *lock;
235         int spincount, gen;
236         int locksheld __unused;
237
238         record = __containerof(cr, struct epoch_record, er_record);
239         td = curthread;
240         locksheld = td->td_locks;
241         spincount = 0;
242         counter_u64_add(block_count, 1);
243         if (record->er_cpuid != curcpu) {
244                 /*
245                  * If the head of the list is running, we can wait for it
246                  * to remove itself from the list and thus save us the
247                  * overhead of a migration
248                  */
249                 if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL &&
250                     TD_IS_RUNNING(tdwait->et_td)) {
251                         gen = record->er_gen;
252                         thread_unlock(td);
253                         do {
254                                 cpu_spinwait();
255                         } while (tdwait == TAILQ_FIRST(&record->er_tdlist) &&
256                             gen == record->er_gen && TD_IS_RUNNING(tdwait->et_td) &&
257                             spincount++ < MAX_ADAPTIVE_SPIN);
258                         thread_lock(td);
259                         return;
260                 }
261                 /*
262                  * Being on the same CPU as that of the record on which
263                  * we need to wait allows us access to the thread
264                  * list associated with that CPU. We can then examine the
265                  * oldest thread in the queue and wait on its turnstile
266                  * until it resumes and so on until a grace period
267                  * elapses.
268                  *
269                  */
270                 counter_u64_add(migrate_count, 1);
271                 sched_bind(td, record->er_cpuid);
272                 /*
273                  * At this point we need to return to the ck code
274                  * to scan to see if a grace period has elapsed.
275                  * We can't move on to check the thread list, because
276                  * in the meantime new threads may have arrived that
277                  * in fact belong to a different epoch.
278                  */
279                 return;
280         }
281         /*
282          * Try to find a thread in an epoch section on this CPU
283          * waiting on a turnstile. Otherwise find the lowest
284          * priority thread (highest prio value) and drop our priority
285          * to match to allow it to run.
286          */
287         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
288                 /*
289                  * Propagate our priority to any other waiters to prevent us
290                  * from starving them. They will have their original priority
291                  * restore on exit from epoch_wait().
292                  */
293                 curwaittd = tdwait->et_td;
294                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
295                         critical_enter();
296                         thread_unlock(td);
297                         thread_lock(curwaittd);
298                         sched_prio(curwaittd, td->td_priority);
299                         thread_unlock(curwaittd);
300                         thread_lock(td);
301                         critical_exit();
302                 }
303                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
304                     ((ts = curwaittd->td_blocked) != NULL)) {
305                         /*
306                          * We unlock td to allow turnstile_wait to reacquire the
307                          * the thread lock. Before unlocking it we enter a critical
308                          * section to prevent preemption after we reenable interrupts
309                          * by dropping the thread lock in order to prevent curwaittd
310                          * from getting to run.
311                          */
312                         critical_enter();
313                         thread_unlock(td);
314                         owner = turnstile_lock(ts, &lock);
315                         /*
316                          * The owner pointer indicates that the lock succeeded. Only
317                          * in case we hold the lock and the turnstile we locked is still
318                          * the one that curwaittd is blocked on can we continue. Otherwise
319                          * The turnstile pointer has been changed out from underneath
320                          * us, as in the case where the lock holder has signalled curwaittd,
321                          * and we need to continue.
322                          */
323                         if (owner != NULL && ts == curwaittd->td_blocked) {
324                                 MPASS(TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd));
325                                 critical_exit();
326                                 turnstile_wait(ts, owner, curwaittd->td_tsqueue);
327                                 counter_u64_add(turnstile_count, 1);
328                                 thread_lock(td);
329                                 return;
330                         } else if (owner != NULL)
331                                 turnstile_unlock(ts, lock);
332                         thread_lock(td);
333                         critical_exit();
334                         KASSERT(td->td_locks == locksheld,
335                             ("%d extra locks held", td->td_locks - locksheld));
336                 }
337         }
338         /*
339          * We didn't find any threads actually blocked on a lock
340          * so we have nothing to do except context switch away.
341          */
342         counter_u64_add(switch_count, 1);
343         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
344
345         /*
346          * Release the thread lock while yielding to
347          * allow other threads to acquire the lock
348          * pointed to by TDQ_LOCKPTR(td). Else a
349          * deadlock like situation might happen. (HPS)
350          */
351         thread_unlock(td);
352         thread_lock(td);
353 }
354
355 void
356 epoch_wait_preempt(epoch_t epoch)
357 {
358         struct thread *td;
359         int was_bound;
360         int old_cpu;
361         int old_pinned;
362         u_char old_prio;
363         int locks __unused;
364
365         MPASS(cold || epoch != NULL);
366         INIT_CHECK(epoch);
367         td = curthread;
368 #ifdef INVARIANTS
369         locks = curthread->td_locks;
370         MPASS(epoch->e_flags & EPOCH_PREEMPT);
371         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
372                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
373                     "epoch_wait() can be long running");
374         KASSERT(!in_epoch(epoch),
375                         ("epoch_wait_preempt() called in the middle "
376                          "of an epoch section of the same epoch"));
377 #endif
378         thread_lock(td);
379         DROP_GIANT();
380
381         old_cpu = PCPU_GET(cpuid);
382         old_pinned = td->td_pinned;
383         old_prio = td->td_priority;
384         was_bound = sched_is_bound(td);
385         sched_unbind(td);
386         td->td_pinned = 0;
387         sched_bind(td, old_cpu);
388
389         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt, NULL);
390
391         /* restore CPU binding, if any */
392         if (was_bound != 0) {
393                 sched_bind(td, old_cpu);
394         } else {
395                 /* get thread back to initial CPU, if any */
396                 if (old_pinned != 0)
397                         sched_bind(td, old_cpu);
398                 sched_unbind(td);
399         }
400         /* restore pinned after bind */
401         td->td_pinned = old_pinned;
402
403         /* restore thread priority */
404         sched_prio(td, old_prio);
405         thread_unlock(td);
406         PICKUP_GIANT();
407         KASSERT(td->td_locks == locks,
408             ("%d residual locks held", td->td_locks - locks));
409 }
410
411 static void
412 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
413     void *arg __unused)
414 {
415         cpu_spinwait();
416 }
417
418 void
419 epoch_wait(epoch_t epoch)
420 {
421
422         MPASS(cold || epoch != NULL);
423         INIT_CHECK(epoch);
424         MPASS(epoch->e_flags == 0);
425         critical_enter();
426         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
427         critical_exit();
428 }
429
430 void
431 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
432 {
433         epoch_record_t er;
434         ck_epoch_entry_t *cb;
435
436         cb = (void *)ctx;
437
438         MPASS(callback);
439         /* too early in boot to have epoch set up */
440         if (__predict_false(epoch == NULL))
441                 goto boottime;
442 #if !defined(EARLY_AP_STARTUP)
443         if (__predict_false(inited < 2))
444                 goto boottime;
445 #endif
446
447         critical_enter();
448         *DPCPU_PTR(epoch_cb_count) += 1;
449         er = epoch_currecord(epoch);
450         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
451         critical_exit();
452         return;
453 boottime:
454         callback(ctx);
455 }
456
457 static void
458 epoch_call_task(void *arg __unused)
459 {
460         ck_stack_entry_t *cursor, *head, *next;
461         ck_epoch_record_t *record;
462         epoch_record_t er;
463         epoch_t epoch;
464         ck_stack_t cb_stack;
465         int i, npending, total;
466
467         ck_stack_init(&cb_stack);
468         critical_enter();
469         epoch_enter(global_epoch);
470         for (total = i = 0; i < epoch_count; i++) {
471                 if (__predict_false((epoch = allepochs[i]) == NULL))
472                         continue;
473                 er = epoch_currecord(epoch);
474                 record = &er->er_record;
475                 if ((npending = record->n_pending) == 0)
476                         continue;
477                 ck_epoch_poll_deferred(record, &cb_stack);
478                 total += npending - record->n_pending;
479         }
480         epoch_exit(global_epoch);
481         *DPCPU_PTR(epoch_cb_count) -= total;
482         critical_exit();
483
484         counter_u64_add(epoch_call_count, total);
485         counter_u64_add(epoch_call_task_count, 1);
486
487         head = ck_stack_batch_pop_npsc(&cb_stack);
488         for (cursor = head; cursor != NULL; cursor = next) {
489                 struct ck_epoch_entry *entry =
490                 ck_epoch_entry_container(cursor);
491
492                 next = CK_STACK_NEXT(cursor);
493                 entry->function(entry);
494         }
495 }
496
497 int
498 in_epoch_verbose(epoch_t epoch, int dump_onfail)
499 {
500         struct epoch_thread *tdwait;
501         struct thread *td;
502         epoch_record_t er;
503
504         td = curthread;
505         if (td->td_epochnest == 0)
506                 return (0);
507         if (__predict_false((epoch) == NULL))
508                 return (0);
509         critical_enter();
510         er = epoch_currecord(epoch);
511         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
512                 if (tdwait->et_td == td) {
513                         critical_exit();
514                         return (1);
515                 }
516 #ifdef INVARIANTS
517         if (dump_onfail) {
518                 MPASS(td->td_pinned);
519                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
520                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
521                         printf("td_tid: %d ", tdwait->et_td->td_tid);
522                 printf("\n");
523         }
524 #endif
525         critical_exit();
526         return (0);
527 }
528
529 int
530 in_epoch(epoch_t epoch)
531 {
532         return (in_epoch_verbose(epoch, 0));
533 }
534
535 void
536 epoch_adjust_prio(struct thread *td, u_char prio)
537 {
538         thread_lock(td);
539         sched_prio(td, prio);
540         thread_unlock(td);
541 }