]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
MFV r353558: 10572 10579 Fix race in dnode_check_slots_free()
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/counter.h>
35 #include <sys/epoch.h>
36 #include <sys/gtaskqueue.h>
37 #include <sys/kernel.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/sx.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #ifdef EPOCH_TRACE
50 #include <machine/stdarg.h>
51 #include <sys/stack.h>
52 #include <sys/tree.h>
53 #endif
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_kern.h>
57 #include <vm/uma.h>
58
59 #include <ck_epoch.h>
60
61 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
62
63 #ifdef __amd64__
64 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
65 #else
66 #define EPOCH_ALIGN CACHE_LINE_SIZE
67 #endif
68
69 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
70 typedef struct epoch_record {
71         ck_epoch_record_t er_record;
72         struct epoch_context er_drain_ctx;
73         struct epoch *er_parent;
74         volatile struct epoch_tdlist er_tdlist;
75         volatile uint32_t er_gen;
76         uint32_t er_cpuid;
77 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
78
79 struct epoch {
80         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
81         epoch_record_t e_pcpu_record;
82         int     e_idx;
83         int     e_flags;
84         struct sx e_drain_sx;
85         struct mtx e_drain_mtx;
86         volatile int e_drain_count;
87         const char *e_name;
88 };
89
90 /* arbitrary --- needs benchmarking */
91 #define MAX_ADAPTIVE_SPIN 100
92 #define MAX_EPOCHS 64
93
94 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
95 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
96 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
97
98 /* Stats. */
99 static counter_u64_t block_count;
100
101 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
102     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
103 static counter_u64_t migrate_count;
104
105 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
106     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
107 static counter_u64_t turnstile_count;
108
109 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
110     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
111 static counter_u64_t switch_count;
112
113 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
114     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
115 static counter_u64_t epoch_call_count;
116
117 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
118     &epoch_call_count, "# of times a callback was deferred");
119 static counter_u64_t epoch_call_task_count;
120
121 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
122     &epoch_call_task_count, "# of times a callback task was run");
123
124 TAILQ_HEAD (threadlist, thread);
125
126 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
127     ck_epoch_entry_container)
128
129 epoch_t allepochs[MAX_EPOCHS];
130
131 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
132 DPCPU_DEFINE(int, epoch_cb_count);
133
134 static __read_mostly int inited;
135 static __read_mostly int epoch_count;
136 __read_mostly epoch_t global_epoch;
137 __read_mostly epoch_t global_epoch_preempt;
138
139 static void epoch_call_task(void *context __unused);
140 static  uma_zone_t pcpu_zone_record;
141
142 #ifdef EPOCH_TRACE
143 struct stackentry {
144         RB_ENTRY(stackentry) se_node;
145         struct stack se_stack;
146 };
147
148 static int
149 stackentry_compare(struct stackentry *a, struct stackentry *b)
150 {
151
152         if (a->se_stack.depth > b->se_stack.depth)
153                 return (1);
154         if (a->se_stack.depth < b->se_stack.depth)
155                 return (-1);
156         for (int i = 0; i < a->se_stack.depth; i++) {
157                 if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
158                         return (1);
159                 if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
160                         return (-1);
161         }
162
163         return (0);
164 }
165
166 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
167 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
168
169 static struct mtx epoch_stacks_lock;
170 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
171
172 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
173 static inline void
174 epoch_trace_report(const char *fmt, ...)
175 {
176         va_list ap;
177         struct stackentry se, *new;
178
179         stack_zero(&se.se_stack);       /* XXX: is it really needed? */
180         stack_save(&se.se_stack);
181
182         /* Tree is never reduced - go lockless. */
183         if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
184                 return;
185
186         new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
187         if (new != NULL) {
188                 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
189
190                 mtx_lock(&epoch_stacks_lock);
191                 new = RB_INSERT(stacktree, &epoch_stacks, new);
192                 mtx_unlock(&epoch_stacks_lock);
193                 if (new != NULL)
194                         free(new, M_STACK);
195         }
196
197         va_start(ap, fmt);
198         (void)vprintf(fmt, ap);
199         va_end(ap);
200         stack_print_ddb(&se.se_stack);
201 }
202
203 static inline void
204 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
205     const char *file, int line)
206 {
207         epoch_tracker_t iet;
208
209         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
210                 if (iet->et_epoch == epoch)
211                         epoch_trace_report("Recursively entering epoch %s "
212                             "previously entered at %s:%d\n",
213                             epoch->e_name, iet->et_file, iet->et_line);
214         et->et_epoch = epoch;
215         et->et_file = file;
216         et->et_line = line;
217         SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
218 }
219
220 static inline void
221 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
222     const char *file, int line)
223 {
224
225         if (SLIST_FIRST(&td->td_epochs) != et) {
226                 epoch_trace_report("Exiting epoch %s in a not nested order. "
227                     "Most recently entered %s at %s:%d\n",
228                     epoch->e_name,
229                     SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
230                     SLIST_FIRST(&td->td_epochs)->et_file,
231                     SLIST_FIRST(&td->td_epochs)->et_line);
232                 /* This will panic if et is not anywhere on td_epochs. */
233                 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
234         } else
235                 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
236 }
237 #endif /* EPOCH_TRACE */
238
239 static void
240 epoch_init(void *arg __unused)
241 {
242         int cpu;
243
244         block_count = counter_u64_alloc(M_WAITOK);
245         migrate_count = counter_u64_alloc(M_WAITOK);
246         turnstile_count = counter_u64_alloc(M_WAITOK);
247         switch_count = counter_u64_alloc(M_WAITOK);
248         epoch_call_count = counter_u64_alloc(M_WAITOK);
249         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
250
251         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
252             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
253             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
254         CPU_FOREACH(cpu) {
255                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
256                     epoch_call_task, NULL);
257                 taskqgroup_attach_cpu(qgroup_softirq,
258                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
259                     "epoch call task");
260         }
261 #ifdef EPOCH_TRACE
262         SLIST_INIT(&thread0.td_epochs);
263 #endif
264         inited = 1;
265         global_epoch = epoch_alloc("Global", 0);
266         global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
267 }
268 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
269
270 #if !defined(EARLY_AP_STARTUP)
271 static void
272 epoch_init_smp(void *dummy __unused)
273 {
274         inited = 2;
275 }
276 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
277 #endif
278
279 static void
280 epoch_ctor(epoch_t epoch)
281 {
282         epoch_record_t er;
283         int cpu;
284
285         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
286         CPU_FOREACH(cpu) {
287                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
288                 bzero(er, sizeof(*er));
289                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
290                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
291                 er->er_cpuid = cpu;
292                 er->er_parent = epoch;
293         }
294 }
295
296 static void
297 epoch_adjust_prio(struct thread *td, u_char prio)
298 {
299
300         thread_lock(td);
301         sched_prio(td, prio);
302         thread_unlock(td);
303 }
304
305 epoch_t
306 epoch_alloc(const char *name, int flags)
307 {
308         epoch_t epoch;
309
310         if (__predict_false(!inited))
311                 panic("%s called too early in boot", __func__);
312         epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK);
313         ck_epoch_init(&epoch->e_epoch);
314         epoch_ctor(epoch);
315         MPASS(epoch_count < MAX_EPOCHS - 2);
316         epoch->e_flags = flags;
317         epoch->e_idx = epoch_count;
318         epoch->e_name = name;
319         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
320         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
321         allepochs[epoch_count++] = epoch;
322         return (epoch);
323 }
324
325 void
326 epoch_free(epoch_t epoch)
327 {
328
329         epoch_drain_callbacks(epoch);
330         allepochs[epoch->e_idx] = NULL;
331         epoch_wait(global_epoch);
332         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
333         mtx_destroy(&epoch->e_drain_mtx);
334         sx_destroy(&epoch->e_drain_sx);
335         free(epoch, M_EPOCH);
336 }
337
338 static epoch_record_t
339 epoch_currecord(epoch_t epoch)
340 {
341
342         return (zpcpu_get_cpu(epoch->e_pcpu_record, curcpu));
343 }
344
345 #define INIT_CHECK(epoch)                                       \
346         do {                                                    \
347                 if (__predict_false((epoch) == NULL))           \
348                         return;                                 \
349         } while (0)
350
351 void
352 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
353 {
354         struct epoch_record *er;
355         struct thread *td;
356
357         MPASS(cold || epoch != NULL);
358         INIT_CHECK(epoch);
359         MPASS(epoch->e_flags & EPOCH_PREEMPT);
360         td = curthread;
361 #ifdef EPOCH_TRACE
362         epoch_trace_enter(td, epoch, et, file, line);
363 #endif
364         et->et_td = td;
365         td->td_epochnest++;
366         critical_enter();
367         sched_pin();
368         td->td_pre_epoch_prio = td->td_priority;
369         er = epoch_currecord(epoch);
370         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
371         ck_epoch_begin(&er->er_record, &et->et_section);
372         critical_exit();
373 }
374
375 void
376 epoch_enter(epoch_t epoch)
377 {
378         struct thread *td;
379         epoch_record_t er;
380
381         MPASS(cold || epoch != NULL);
382         INIT_CHECK(epoch);
383         td = curthread;
384         td->td_epochnest++;
385         critical_enter();
386         er = epoch_currecord(epoch);
387         ck_epoch_begin(&er->er_record, NULL);
388 }
389
390 void
391 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
392 {
393         struct epoch_record *er;
394         struct thread *td;
395
396         INIT_CHECK(epoch);
397         td = curthread;
398         critical_enter();
399         sched_unpin();
400         MPASS(td->td_epochnest);
401         td->td_epochnest--;
402         er = epoch_currecord(epoch);
403         MPASS(epoch->e_flags & EPOCH_PREEMPT);
404         MPASS(et != NULL);
405         MPASS(et->et_td == td);
406 #ifdef INVARIANTS
407         et->et_td = (void*)0xDEADBEEF;
408 #endif
409         ck_epoch_end(&er->er_record, &et->et_section);
410         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
411         er->er_gen++;
412         if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
413                 epoch_adjust_prio(td, td->td_pre_epoch_prio);
414         critical_exit();
415 #ifdef EPOCH_TRACE
416         epoch_trace_exit(td, epoch, et, file, line);
417 #endif
418 }
419
420 void
421 epoch_exit(epoch_t epoch)
422 {
423         struct thread *td;
424         epoch_record_t er;
425
426         INIT_CHECK(epoch);
427         td = curthread;
428         MPASS(td->td_epochnest);
429         td->td_epochnest--;
430         er = epoch_currecord(epoch);
431         ck_epoch_end(&er->er_record, NULL);
432         critical_exit();
433 }
434
435 /*
436  * epoch_block_handler_preempt() is a callback from the CK code when another
437  * thread is currently in an epoch section.
438  */
439 static void
440 epoch_block_handler_preempt(struct ck_epoch *global __unused,
441     ck_epoch_record_t *cr, void *arg __unused)
442 {
443         epoch_record_t record;
444         struct thread *td, *owner, *curwaittd;
445         struct epoch_tracker *tdwait;
446         struct turnstile *ts;
447         struct lock_object *lock;
448         int spincount, gen;
449         int locksheld __unused;
450
451         record = __containerof(cr, struct epoch_record, er_record);
452         td = curthread;
453         locksheld = td->td_locks;
454         spincount = 0;
455         counter_u64_add(block_count, 1);
456         /*
457          * We lost a race and there's no longer any threads
458          * on the CPU in an epoch section.
459          */
460         if (TAILQ_EMPTY(&record->er_tdlist))
461                 return;
462
463         if (record->er_cpuid != curcpu) {
464                 /*
465                  * If the head of the list is running, we can wait for it
466                  * to remove itself from the list and thus save us the
467                  * overhead of a migration
468                  */
469                 gen = record->er_gen;
470                 thread_unlock(td);
471                 /*
472                  * We can't actually check if the waiting thread is running
473                  * so we simply poll for it to exit before giving up and
474                  * migrating.
475                  */
476                 do {
477                         cpu_spinwait();
478                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
479                                  gen == record->er_gen &&
480                                  spincount++ < MAX_ADAPTIVE_SPIN);
481                 thread_lock(td);
482                 /*
483                  * If the generation has changed we can poll again
484                  * otherwise we need to migrate.
485                  */
486                 if (gen != record->er_gen)
487                         return;
488                 /*
489                  * Being on the same CPU as that of the record on which
490                  * we need to wait allows us access to the thread
491                  * list associated with that CPU. We can then examine the
492                  * oldest thread in the queue and wait on its turnstile
493                  * until it resumes and so on until a grace period
494                  * elapses.
495                  *
496                  */
497                 counter_u64_add(migrate_count, 1);
498                 sched_bind(td, record->er_cpuid);
499                 /*
500                  * At this point we need to return to the ck code
501                  * to scan to see if a grace period has elapsed.
502                  * We can't move on to check the thread list, because
503                  * in the meantime new threads may have arrived that
504                  * in fact belong to a different epoch.
505                  */
506                 return;
507         }
508         /*
509          * Try to find a thread in an epoch section on this CPU
510          * waiting on a turnstile. Otherwise find the lowest
511          * priority thread (highest prio value) and drop our priority
512          * to match to allow it to run.
513          */
514         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
515                 /*
516                  * Propagate our priority to any other waiters to prevent us
517                  * from starving them. They will have their original priority
518                  * restore on exit from epoch_wait().
519                  */
520                 curwaittd = tdwait->et_td;
521                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
522                         critical_enter();
523                         thread_unlock(td);
524                         thread_lock(curwaittd);
525                         sched_prio(curwaittd, td->td_priority);
526                         thread_unlock(curwaittd);
527                         thread_lock(td);
528                         critical_exit();
529                 }
530                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
531                     ((ts = curwaittd->td_blocked) != NULL)) {
532                         /*
533                          * We unlock td to allow turnstile_wait to reacquire
534                          * the thread lock. Before unlocking it we enter a
535                          * critical section to prevent preemption after we
536                          * reenable interrupts by dropping the thread lock in
537                          * order to prevent curwaittd from getting to run.
538                          */
539                         critical_enter();
540                         thread_unlock(td);
541
542                         if (turnstile_lock(ts, &lock, &owner)) {
543                                 if (ts == curwaittd->td_blocked) {
544                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
545                                             TD_ON_LOCK(curwaittd));
546                                         critical_exit();
547                                         turnstile_wait(ts, owner,
548                                             curwaittd->td_tsqueue);
549                                         counter_u64_add(turnstile_count, 1);
550                                         thread_lock(td);
551                                         return;
552                                 }
553                                 turnstile_unlock(ts, lock);
554                         }
555                         thread_lock(td);
556                         critical_exit();
557                         KASSERT(td->td_locks == locksheld,
558                             ("%d extra locks held", td->td_locks - locksheld));
559                 }
560         }
561         /*
562          * We didn't find any threads actually blocked on a lock
563          * so we have nothing to do except context switch away.
564          */
565         counter_u64_add(switch_count, 1);
566         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
567
568         /*
569          * Release the thread lock while yielding to
570          * allow other threads to acquire the lock
571          * pointed to by TDQ_LOCKPTR(td). Else a
572          * deadlock like situation might happen. (HPS)
573          */
574         thread_unlock(td);
575         thread_lock(td);
576 }
577
578 void
579 epoch_wait_preempt(epoch_t epoch)
580 {
581         struct thread *td;
582         int was_bound;
583         int old_cpu;
584         int old_pinned;
585         u_char old_prio;
586         int locks __unused;
587
588         MPASS(cold || epoch != NULL);
589         INIT_CHECK(epoch);
590         td = curthread;
591 #ifdef INVARIANTS
592         locks = curthread->td_locks;
593         MPASS(epoch->e_flags & EPOCH_PREEMPT);
594         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
595                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
596                     "epoch_wait() can be long running");
597         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
598             "of an epoch section of the same epoch"));
599 #endif
600         thread_lock(td);
601         DROP_GIANT();
602
603         old_cpu = PCPU_GET(cpuid);
604         old_pinned = td->td_pinned;
605         old_prio = td->td_priority;
606         was_bound = sched_is_bound(td);
607         sched_unbind(td);
608         td->td_pinned = 0;
609         sched_bind(td, old_cpu);
610
611         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
612             NULL);
613
614         /* restore CPU binding, if any */
615         if (was_bound != 0) {
616                 sched_bind(td, old_cpu);
617         } else {
618                 /* get thread back to initial CPU, if any */
619                 if (old_pinned != 0)
620                         sched_bind(td, old_cpu);
621                 sched_unbind(td);
622         }
623         /* restore pinned after bind */
624         td->td_pinned = old_pinned;
625
626         /* restore thread priority */
627         sched_prio(td, old_prio);
628         thread_unlock(td);
629         PICKUP_GIANT();
630         KASSERT(td->td_locks == locks,
631             ("%d residual locks held", td->td_locks - locks));
632 }
633
634 static void
635 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
636     void *arg __unused)
637 {
638         cpu_spinwait();
639 }
640
641 void
642 epoch_wait(epoch_t epoch)
643 {
644
645         MPASS(cold || epoch != NULL);
646         INIT_CHECK(epoch);
647         MPASS(epoch->e_flags == 0);
648         critical_enter();
649         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
650         critical_exit();
651 }
652
653 void
654 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
655 {
656         epoch_record_t er;
657         ck_epoch_entry_t *cb;
658
659         cb = (void *)ctx;
660
661         MPASS(callback);
662         /* too early in boot to have epoch set up */
663         if (__predict_false(epoch == NULL))
664                 goto boottime;
665 #if !defined(EARLY_AP_STARTUP)
666         if (__predict_false(inited < 2))
667                 goto boottime;
668 #endif
669
670         critical_enter();
671         *DPCPU_PTR(epoch_cb_count) += 1;
672         er = epoch_currecord(epoch);
673         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
674         critical_exit();
675         return;
676 boottime:
677         callback(ctx);
678 }
679
680 static void
681 epoch_call_task(void *arg __unused)
682 {
683         ck_stack_entry_t *cursor, *head, *next;
684         ck_epoch_record_t *record;
685         epoch_record_t er;
686         epoch_t epoch;
687         ck_stack_t cb_stack;
688         int i, npending, total;
689
690         ck_stack_init(&cb_stack);
691         critical_enter();
692         epoch_enter(global_epoch);
693         for (total = i = 0; i < epoch_count; i++) {
694                 if (__predict_false((epoch = allepochs[i]) == NULL))
695                         continue;
696                 er = epoch_currecord(epoch);
697                 record = &er->er_record;
698                 if ((npending = record->n_pending) == 0)
699                         continue;
700                 ck_epoch_poll_deferred(record, &cb_stack);
701                 total += npending - record->n_pending;
702         }
703         epoch_exit(global_epoch);
704         *DPCPU_PTR(epoch_cb_count) -= total;
705         critical_exit();
706
707         counter_u64_add(epoch_call_count, total);
708         counter_u64_add(epoch_call_task_count, 1);
709
710         head = ck_stack_batch_pop_npsc(&cb_stack);
711         for (cursor = head; cursor != NULL; cursor = next) {
712                 struct ck_epoch_entry *entry =
713                     ck_epoch_entry_container(cursor);
714
715                 next = CK_STACK_NEXT(cursor);
716                 entry->function(entry);
717         }
718 }
719
720 int
721 in_epoch_verbose(epoch_t epoch, int dump_onfail)
722 {
723         struct epoch_tracker *tdwait;
724         struct thread *td;
725         epoch_record_t er;
726
727         td = curthread;
728         if (td->td_epochnest == 0)
729                 return (0);
730         if (__predict_false((epoch) == NULL))
731                 return (0);
732         critical_enter();
733         er = epoch_currecord(epoch);
734         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
735                 if (tdwait->et_td == td) {
736                         critical_exit();
737                         return (1);
738                 }
739 #ifdef INVARIANTS
740         if (dump_onfail) {
741                 MPASS(td->td_pinned);
742                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
743                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
744                         printf("td_tid: %d ", tdwait->et_td->td_tid);
745                 printf("\n");
746         }
747 #endif
748         critical_exit();
749         return (0);
750 }
751
752 int
753 in_epoch(epoch_t epoch)
754 {
755         return (in_epoch_verbose(epoch, 0));
756 }
757
758 static void
759 epoch_drain_cb(struct epoch_context *ctx)
760 {
761         struct epoch *epoch =
762             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
763
764         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
765                 mtx_lock(&epoch->e_drain_mtx);
766                 wakeup(epoch);
767                 mtx_unlock(&epoch->e_drain_mtx);
768         }
769 }
770
771 void
772 epoch_drain_callbacks(epoch_t epoch)
773 {
774         epoch_record_t er;
775         struct thread *td;
776         int was_bound;
777         int old_pinned;
778         int old_cpu;
779         int cpu;
780
781         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
782             "epoch_drain_callbacks() may sleep!");
783
784         /* too early in boot to have epoch set up */
785         if (__predict_false(epoch == NULL))
786                 return;
787 #if !defined(EARLY_AP_STARTUP)
788         if (__predict_false(inited < 2))
789                 return;
790 #endif
791         DROP_GIANT();
792
793         sx_xlock(&epoch->e_drain_sx);
794         mtx_lock(&epoch->e_drain_mtx);
795
796         td = curthread;
797         thread_lock(td);
798         old_cpu = PCPU_GET(cpuid);
799         old_pinned = td->td_pinned;
800         was_bound = sched_is_bound(td);
801         sched_unbind(td);
802         td->td_pinned = 0;
803
804         CPU_FOREACH(cpu)
805                 epoch->e_drain_count++;
806         CPU_FOREACH(cpu) {
807                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
808                 sched_bind(td, cpu);
809                 epoch_call(epoch, &er->er_drain_ctx, &epoch_drain_cb);
810         }
811
812         /* restore CPU binding, if any */
813         if (was_bound != 0) {
814                 sched_bind(td, old_cpu);
815         } else {
816                 /* get thread back to initial CPU, if any */
817                 if (old_pinned != 0)
818                         sched_bind(td, old_cpu);
819                 sched_unbind(td);
820         }
821         /* restore pinned after bind */
822         td->td_pinned = old_pinned;
823
824         thread_unlock(td);
825
826         while (epoch->e_drain_count != 0)
827                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
828
829         mtx_unlock(&epoch->e_drain_mtx);
830         sx_xunlock(&epoch->e_drain_sx);
831
832         PICKUP_GIANT();
833 }
834
835 void
836 epoch_thread_init(struct thread *td)
837 {
838
839         td->td_et = malloc(sizeof(struct epoch_tracker), M_EPOCH, M_WAITOK);
840 }
841
842 void
843 epoch_thread_fini(struct thread *td)
844 {
845
846         free(td->td_et, M_EPOCH);
847 }