]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
MFH
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/counter.h>
35 #include <sys/epoch.h>
36 #include <sys/gtaskqueue.h>
37 #include <sys/kernel.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/sx.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #ifdef EPOCH_TRACE
50 #include <machine/stdarg.h>
51 #include <sys/stack.h>
52 #include <sys/tree.h>
53 #endif
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_kern.h>
57 #include <vm/uma.h>
58
59 #include <ck_epoch.h>
60
61 #ifdef __amd64__
62 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
63 #else
64 #define EPOCH_ALIGN CACHE_LINE_SIZE
65 #endif
66
67 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
68 typedef struct epoch_record {
69         ck_epoch_record_t er_record;
70         struct epoch_context er_drain_ctx;
71         struct epoch *er_parent;
72         volatile struct epoch_tdlist er_tdlist;
73         volatile uint32_t er_gen;
74         uint32_t er_cpuid;
75 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
76
77 struct epoch {
78         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
79         epoch_record_t e_pcpu_record;
80         int     e_in_use;
81         int     e_flags;
82         struct sx e_drain_sx;
83         struct mtx e_drain_mtx;
84         volatile int e_drain_count;
85         const char *e_name;
86 };
87
88 /* arbitrary --- needs benchmarking */
89 #define MAX_ADAPTIVE_SPIN 100
90 #define MAX_EPOCHS 64
91
92 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
93 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
94     "epoch information");
95 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
96     "epoch stats");
97
98 /* Stats. */
99 static counter_u64_t block_count;
100
101 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
102     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
103 static counter_u64_t migrate_count;
104
105 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
106     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
107 static counter_u64_t turnstile_count;
108
109 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
110     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
111 static counter_u64_t switch_count;
112
113 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
114     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
115 static counter_u64_t epoch_call_count;
116
117 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
118     &epoch_call_count, "# of times a callback was deferred");
119 static counter_u64_t epoch_call_task_count;
120
121 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
122     &epoch_call_task_count, "# of times a callback task was run");
123
124 TAILQ_HEAD (threadlist, thread);
125
126 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
127     ck_epoch_entry_container)
128
129 static struct epoch epoch_array[MAX_EPOCHS];
130
131 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
132 DPCPU_DEFINE(int, epoch_cb_count);
133
134 static __read_mostly int inited;
135 __read_mostly epoch_t global_epoch;
136 __read_mostly epoch_t global_epoch_preempt;
137
138 static void epoch_call_task(void *context __unused);
139 static  uma_zone_t pcpu_zone_record;
140
141 static struct sx epoch_sx;
142
143 #define EPOCH_LOCK() sx_xlock(&epoch_sx)
144 #define EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
145
146 #ifdef EPOCH_TRACE
147 struct stackentry {
148         RB_ENTRY(stackentry) se_node;
149         struct stack se_stack;
150 };
151
152 static int
153 stackentry_compare(struct stackentry *a, struct stackentry *b)
154 {
155
156         if (a->se_stack.depth > b->se_stack.depth)
157                 return (1);
158         if (a->se_stack.depth < b->se_stack.depth)
159                 return (-1);
160         for (int i = 0; i < a->se_stack.depth; i++) {
161                 if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
162                         return (1);
163                 if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
164                         return (-1);
165         }
166
167         return (0);
168 }
169
170 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
171 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
172
173 static struct mtx epoch_stacks_lock;
174 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
175
176 static bool epoch_trace_stack_print = true;
177 SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN,
178     &epoch_trace_stack_print, 0, "Print stack traces on epoch reports");
179
180 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
181 static inline void
182 epoch_trace_report(const char *fmt, ...)
183 {
184         va_list ap;
185         struct stackentry se, *new;
186
187         stack_zero(&se.se_stack);       /* XXX: is it really needed? */
188         stack_save(&se.se_stack);
189
190         /* Tree is never reduced - go lockless. */
191         if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
192                 return;
193
194         new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
195         if (new != NULL) {
196                 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
197
198                 mtx_lock(&epoch_stacks_lock);
199                 new = RB_INSERT(stacktree, &epoch_stacks, new);
200                 mtx_unlock(&epoch_stacks_lock);
201                 if (new != NULL)
202                         free(new, M_STACK);
203         }
204
205         va_start(ap, fmt);
206         (void)vprintf(fmt, ap);
207         va_end(ap);
208         if (epoch_trace_stack_print)
209                 stack_print_ddb(&se.se_stack);
210 }
211
212 static inline void
213 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
214     const char *file, int line)
215 {
216         epoch_tracker_t iet;
217
218         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
219                 if (iet->et_epoch == epoch)
220                         epoch_trace_report("Recursively entering epoch %s "
221                             "at %s:%d, previously entered at %s:%d\n",
222                             epoch->e_name, file, line,
223                             iet->et_file, iet->et_line);
224         et->et_epoch = epoch;
225         et->et_file = file;
226         et->et_line = line;
227         SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
228 }
229
230 static inline void
231 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
232     const char *file, int line)
233 {
234
235         if (SLIST_FIRST(&td->td_epochs) != et) {
236                 epoch_trace_report("Exiting epoch %s in a not nested order "
237                     "at %s:%d. Most recently entered %s at %s:%d\n",
238                     epoch->e_name,
239                     file, line,
240                     SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
241                     SLIST_FIRST(&td->td_epochs)->et_file,
242                     SLIST_FIRST(&td->td_epochs)->et_line);
243                 /* This will panic if et is not anywhere on td_epochs. */
244                 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
245         } else
246                 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
247 }
248
249 /* Used by assertions that check thread state before going to sleep. */
250 void
251 epoch_trace_list(struct thread *td)
252 {
253         epoch_tracker_t iet;
254
255         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
256                 printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
257                     iet->et_file, iet->et_line);
258 }
259 #endif /* EPOCH_TRACE */
260
261 static void
262 epoch_init(void *arg __unused)
263 {
264         int cpu;
265
266         block_count = counter_u64_alloc(M_WAITOK);
267         migrate_count = counter_u64_alloc(M_WAITOK);
268         turnstile_count = counter_u64_alloc(M_WAITOK);
269         switch_count = counter_u64_alloc(M_WAITOK);
270         epoch_call_count = counter_u64_alloc(M_WAITOK);
271         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
272
273         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
274             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
275             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
276         CPU_FOREACH(cpu) {
277                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
278                     epoch_call_task, NULL);
279                 taskqgroup_attach_cpu(qgroup_softirq,
280                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
281                     "epoch call task");
282         }
283 #ifdef EPOCH_TRACE
284         SLIST_INIT(&thread0.td_epochs);
285 #endif
286         sx_init(&epoch_sx, "epoch-sx");
287         inited = 1;
288         global_epoch = epoch_alloc("Global", 0);
289         global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
290 }
291 SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
292
293 #if !defined(EARLY_AP_STARTUP)
294 static void
295 epoch_init_smp(void *dummy __unused)
296 {
297         inited = 2;
298 }
299 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
300 #endif
301
302 static void
303 epoch_ctor(epoch_t epoch)
304 {
305         epoch_record_t er;
306         int cpu;
307
308         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
309         CPU_FOREACH(cpu) {
310                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
311                 bzero(er, sizeof(*er));
312                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
313                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
314                 er->er_cpuid = cpu;
315                 er->er_parent = epoch;
316         }
317 }
318
319 static void
320 epoch_adjust_prio(struct thread *td, u_char prio)
321 {
322
323         thread_lock(td);
324         sched_prio(td, prio);
325         thread_unlock(td);
326 }
327
328 epoch_t
329 epoch_alloc(const char *name, int flags)
330 {
331         epoch_t epoch;
332         int i;
333
334         MPASS(name != NULL);
335
336         if (__predict_false(!inited))
337                 panic("%s called too early in boot", __func__);
338
339         EPOCH_LOCK();
340
341         /*
342          * Find a free index in the epoch array. If no free index is
343          * found, try to use the index after the last one.
344          */
345         for (i = 0;; i++) {
346                 /*
347                  * If too many epochs are currently allocated,
348                  * return NULL.
349                  */
350                 if (i == MAX_EPOCHS) {
351                         epoch = NULL;
352                         goto done;
353                 }
354                 if (epoch_array[i].e_in_use == 0)
355                         break;
356         }
357
358         epoch = epoch_array + i;
359         ck_epoch_init(&epoch->e_epoch);
360         epoch_ctor(epoch);
361         epoch->e_flags = flags;
362         epoch->e_name = name;
363         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
364         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
365
366         /*
367          * Set e_in_use last, because when this field is set the
368          * epoch_call_task() function will start scanning this epoch
369          * structure.
370          */
371         atomic_store_rel_int(&epoch->e_in_use, 1);
372 done:
373         EPOCH_UNLOCK();
374         return (epoch);
375 }
376
377 void
378 epoch_free(epoch_t epoch)
379 {
380
381         EPOCH_LOCK();
382
383         MPASS(epoch->e_in_use != 0);
384
385         epoch_drain_callbacks(epoch);
386
387         atomic_store_rel_int(&epoch->e_in_use, 0);
388         /*
389          * Make sure the epoch_call_task() function see e_in_use equal
390          * to zero, by calling epoch_wait() on the global_epoch:
391          */
392         epoch_wait(global_epoch);
393         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
394         mtx_destroy(&epoch->e_drain_mtx);
395         sx_destroy(&epoch->e_drain_sx);
396         memset(epoch, 0, sizeof(*epoch));
397
398         EPOCH_UNLOCK();
399 }
400
401 static epoch_record_t
402 epoch_currecord(epoch_t epoch)
403 {
404
405         return (zpcpu_get(epoch->e_pcpu_record));
406 }
407
408 #define INIT_CHECK(epoch)                                       \
409         do {                                                    \
410                 if (__predict_false((epoch) == NULL))           \
411                         return;                                 \
412         } while (0)
413
414 void
415 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
416 {
417         struct epoch_record *er;
418         struct thread *td;
419
420         MPASS(cold || epoch != NULL);
421         MPASS(epoch->e_flags & EPOCH_PREEMPT);
422         td = curthread;
423         MPASS((vm_offset_t)et >= td->td_kstack &&
424             (vm_offset_t)et + sizeof(struct epoch_tracker) <=
425             td->td_kstack + td->td_kstack_pages * PAGE_SIZE);
426
427         INIT_CHECK(epoch);
428 #ifdef EPOCH_TRACE
429         epoch_trace_enter(td, epoch, et, file, line);
430 #endif
431         et->et_td = td;
432         THREAD_NO_SLEEPING();
433         critical_enter();
434         sched_pin();
435         td->td_pre_epoch_prio = td->td_priority;
436         er = epoch_currecord(epoch);
437         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
438         ck_epoch_begin(&er->er_record, &et->et_section);
439         critical_exit();
440 }
441
442 void
443 epoch_enter(epoch_t epoch)
444 {
445         epoch_record_t er;
446
447         MPASS(cold || epoch != NULL);
448         INIT_CHECK(epoch);
449         critical_enter();
450         er = epoch_currecord(epoch);
451         ck_epoch_begin(&er->er_record, NULL);
452 }
453
454 void
455 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
456 {
457         struct epoch_record *er;
458         struct thread *td;
459
460         INIT_CHECK(epoch);
461         td = curthread;
462         critical_enter();
463         sched_unpin();
464         THREAD_SLEEPING_OK();
465         er = epoch_currecord(epoch);
466         MPASS(epoch->e_flags & EPOCH_PREEMPT);
467         MPASS(et != NULL);
468         MPASS(et->et_td == td);
469 #ifdef INVARIANTS
470         et->et_td = (void*)0xDEADBEEF;
471 #endif
472         ck_epoch_end(&er->er_record, &et->et_section);
473         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
474         er->er_gen++;
475         if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
476                 epoch_adjust_prio(td, td->td_pre_epoch_prio);
477         critical_exit();
478 #ifdef EPOCH_TRACE
479         epoch_trace_exit(td, epoch, et, file, line);
480 #endif
481 }
482
483 void
484 epoch_exit(epoch_t epoch)
485 {
486         epoch_record_t er;
487
488         INIT_CHECK(epoch);
489         er = epoch_currecord(epoch);
490         ck_epoch_end(&er->er_record, NULL);
491         critical_exit();
492 }
493
494 /*
495  * epoch_block_handler_preempt() is a callback from the CK code when another
496  * thread is currently in an epoch section.
497  */
498 static void
499 epoch_block_handler_preempt(struct ck_epoch *global __unused,
500     ck_epoch_record_t *cr, void *arg __unused)
501 {
502         epoch_record_t record;
503         struct thread *td, *owner, *curwaittd;
504         struct epoch_tracker *tdwait;
505         struct turnstile *ts;
506         struct lock_object *lock;
507         int spincount, gen;
508         int locksheld __unused;
509
510         record = __containerof(cr, struct epoch_record, er_record);
511         td = curthread;
512         locksheld = td->td_locks;
513         spincount = 0;
514         counter_u64_add(block_count, 1);
515         /*
516          * We lost a race and there's no longer any threads
517          * on the CPU in an epoch section.
518          */
519         if (TAILQ_EMPTY(&record->er_tdlist))
520                 return;
521
522         if (record->er_cpuid != curcpu) {
523                 /*
524                  * If the head of the list is running, we can wait for it
525                  * to remove itself from the list and thus save us the
526                  * overhead of a migration
527                  */
528                 gen = record->er_gen;
529                 thread_unlock(td);
530                 /*
531                  * We can't actually check if the waiting thread is running
532                  * so we simply poll for it to exit before giving up and
533                  * migrating.
534                  */
535                 do {
536                         cpu_spinwait();
537                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
538                                  gen == record->er_gen &&
539                                  spincount++ < MAX_ADAPTIVE_SPIN);
540                 thread_lock(td);
541                 /*
542                  * If the generation has changed we can poll again
543                  * otherwise we need to migrate.
544                  */
545                 if (gen != record->er_gen)
546                         return;
547                 /*
548                  * Being on the same CPU as that of the record on which
549                  * we need to wait allows us access to the thread
550                  * list associated with that CPU. We can then examine the
551                  * oldest thread in the queue and wait on its turnstile
552                  * until it resumes and so on until a grace period
553                  * elapses.
554                  *
555                  */
556                 counter_u64_add(migrate_count, 1);
557                 sched_bind(td, record->er_cpuid);
558                 /*
559                  * At this point we need to return to the ck code
560                  * to scan to see if a grace period has elapsed.
561                  * We can't move on to check the thread list, because
562                  * in the meantime new threads may have arrived that
563                  * in fact belong to a different epoch.
564                  */
565                 return;
566         }
567         /*
568          * Try to find a thread in an epoch section on this CPU
569          * waiting on a turnstile. Otherwise find the lowest
570          * priority thread (highest prio value) and drop our priority
571          * to match to allow it to run.
572          */
573         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
574                 /*
575                  * Propagate our priority to any other waiters to prevent us
576                  * from starving them. They will have their original priority
577                  * restore on exit from epoch_wait().
578                  */
579                 curwaittd = tdwait->et_td;
580                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
581                         critical_enter();
582                         thread_unlock(td);
583                         thread_lock(curwaittd);
584                         sched_prio(curwaittd, td->td_priority);
585                         thread_unlock(curwaittd);
586                         thread_lock(td);
587                         critical_exit();
588                 }
589                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
590                     ((ts = curwaittd->td_blocked) != NULL)) {
591                         /*
592                          * We unlock td to allow turnstile_wait to reacquire
593                          * the thread lock. Before unlocking it we enter a
594                          * critical section to prevent preemption after we
595                          * reenable interrupts by dropping the thread lock in
596                          * order to prevent curwaittd from getting to run.
597                          */
598                         critical_enter();
599                         thread_unlock(td);
600
601                         if (turnstile_lock(ts, &lock, &owner)) {
602                                 if (ts == curwaittd->td_blocked) {
603                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
604                                             TD_ON_LOCK(curwaittd));
605                                         critical_exit();
606                                         turnstile_wait(ts, owner,
607                                             curwaittd->td_tsqueue);
608                                         counter_u64_add(turnstile_count, 1);
609                                         thread_lock(td);
610                                         return;
611                                 }
612                                 turnstile_unlock(ts, lock);
613                         }
614                         thread_lock(td);
615                         critical_exit();
616                         KASSERT(td->td_locks == locksheld,
617                             ("%d extra locks held", td->td_locks - locksheld));
618                 }
619         }
620         /*
621          * We didn't find any threads actually blocked on a lock
622          * so we have nothing to do except context switch away.
623          */
624         counter_u64_add(switch_count, 1);
625         mi_switch(SW_VOL | SWT_RELINQUISH);
626         /*
627          * It is important the thread lock is dropped while yielding
628          * to allow other threads to acquire the lock pointed to by
629          * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the
630          * thread lock before returning. Else a deadlock like
631          * situation might happen.
632          */
633         thread_lock(td);
634 }
635
636 void
637 epoch_wait_preempt(epoch_t epoch)
638 {
639         struct thread *td;
640         int was_bound;
641         int old_cpu;
642         int old_pinned;
643         u_char old_prio;
644         int locks __unused;
645
646         MPASS(cold || epoch != NULL);
647         INIT_CHECK(epoch);
648         td = curthread;
649 #ifdef INVARIANTS
650         locks = curthread->td_locks;
651         MPASS(epoch->e_flags & EPOCH_PREEMPT);
652         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
653                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
654                     "epoch_wait() can be long running");
655         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
656             "of an epoch section of the same epoch"));
657 #endif
658         DROP_GIANT();
659         thread_lock(td);
660
661         old_cpu = PCPU_GET(cpuid);
662         old_pinned = td->td_pinned;
663         old_prio = td->td_priority;
664         was_bound = sched_is_bound(td);
665         sched_unbind(td);
666         td->td_pinned = 0;
667         sched_bind(td, old_cpu);
668
669         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
670             NULL);
671
672         /* restore CPU binding, if any */
673         if (was_bound != 0) {
674                 sched_bind(td, old_cpu);
675         } else {
676                 /* get thread back to initial CPU, if any */
677                 if (old_pinned != 0)
678                         sched_bind(td, old_cpu);
679                 sched_unbind(td);
680         }
681         /* restore pinned after bind */
682         td->td_pinned = old_pinned;
683
684         /* restore thread priority */
685         sched_prio(td, old_prio);
686         thread_unlock(td);
687         PICKUP_GIANT();
688         KASSERT(td->td_locks == locks,
689             ("%d residual locks held", td->td_locks - locks));
690 }
691
692 static void
693 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
694     void *arg __unused)
695 {
696         cpu_spinwait();
697 }
698
699 void
700 epoch_wait(epoch_t epoch)
701 {
702
703         MPASS(cold || epoch != NULL);
704         INIT_CHECK(epoch);
705         MPASS(epoch->e_flags == 0);
706         critical_enter();
707         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
708         critical_exit();
709 }
710
711 void
712 epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
713 {
714         epoch_record_t er;
715         ck_epoch_entry_t *cb;
716
717         cb = (void *)ctx;
718
719         MPASS(callback);
720         /* too early in boot to have epoch set up */
721         if (__predict_false(epoch == NULL))
722                 goto boottime;
723 #if !defined(EARLY_AP_STARTUP)
724         if (__predict_false(inited < 2))
725                 goto boottime;
726 #endif
727
728         critical_enter();
729         *DPCPU_PTR(epoch_cb_count) += 1;
730         er = epoch_currecord(epoch);
731         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
732         critical_exit();
733         return;
734 boottime:
735         callback(ctx);
736 }
737
738 static void
739 epoch_call_task(void *arg __unused)
740 {
741         ck_stack_entry_t *cursor, *head, *next;
742         ck_epoch_record_t *record;
743         epoch_record_t er;
744         epoch_t epoch;
745         ck_stack_t cb_stack;
746         int i, npending, total;
747
748         ck_stack_init(&cb_stack);
749         critical_enter();
750         epoch_enter(global_epoch);
751         for (total = i = 0; i != MAX_EPOCHS; i++) {
752                 epoch = epoch_array + i;
753                 if (__predict_false(
754                     atomic_load_acq_int(&epoch->e_in_use) == 0))
755                         continue;
756                 er = epoch_currecord(epoch);
757                 record = &er->er_record;
758                 if ((npending = record->n_pending) == 0)
759                         continue;
760                 ck_epoch_poll_deferred(record, &cb_stack);
761                 total += npending - record->n_pending;
762         }
763         epoch_exit(global_epoch);
764         *DPCPU_PTR(epoch_cb_count) -= total;
765         critical_exit();
766
767         counter_u64_add(epoch_call_count, total);
768         counter_u64_add(epoch_call_task_count, 1);
769
770         head = ck_stack_batch_pop_npsc(&cb_stack);
771         for (cursor = head; cursor != NULL; cursor = next) {
772                 struct ck_epoch_entry *entry =
773                     ck_epoch_entry_container(cursor);
774
775                 next = CK_STACK_NEXT(cursor);
776                 entry->function(entry);
777         }
778 }
779
780 int
781 in_epoch_verbose(epoch_t epoch, int dump_onfail)
782 {
783         struct epoch_tracker *tdwait;
784         struct thread *td;
785         epoch_record_t er;
786
787         td = curthread;
788         if (THREAD_CAN_SLEEP())
789                 return (0);
790         if (__predict_false((epoch) == NULL))
791                 return (0);
792         critical_enter();
793         er = epoch_currecord(epoch);
794         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
795                 if (tdwait->et_td == td) {
796                         critical_exit();
797                         return (1);
798                 }
799 #ifdef INVARIANTS
800         if (dump_onfail) {
801                 MPASS(td->td_pinned);
802                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
803                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
804                         printf("td_tid: %d ", tdwait->et_td->td_tid);
805                 printf("\n");
806         }
807 #endif
808         critical_exit();
809         return (0);
810 }
811
812 int
813 in_epoch(epoch_t epoch)
814 {
815         return (in_epoch_verbose(epoch, 0));
816 }
817
818 static void
819 epoch_drain_cb(struct epoch_context *ctx)
820 {
821         struct epoch *epoch =
822             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
823
824         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
825                 mtx_lock(&epoch->e_drain_mtx);
826                 wakeup(epoch);
827                 mtx_unlock(&epoch->e_drain_mtx);
828         }
829 }
830
831 void
832 epoch_drain_callbacks(epoch_t epoch)
833 {
834         epoch_record_t er;
835         struct thread *td;
836         int was_bound;
837         int old_pinned;
838         int old_cpu;
839         int cpu;
840
841         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
842             "epoch_drain_callbacks() may sleep!");
843
844         /* too early in boot to have epoch set up */
845         if (__predict_false(epoch == NULL))
846                 return;
847 #if !defined(EARLY_AP_STARTUP)
848         if (__predict_false(inited < 2))
849                 return;
850 #endif
851         DROP_GIANT();
852
853         sx_xlock(&epoch->e_drain_sx);
854         mtx_lock(&epoch->e_drain_mtx);
855
856         td = curthread;
857         thread_lock(td);
858         old_cpu = PCPU_GET(cpuid);
859         old_pinned = td->td_pinned;
860         was_bound = sched_is_bound(td);
861         sched_unbind(td);
862         td->td_pinned = 0;
863
864         CPU_FOREACH(cpu)
865                 epoch->e_drain_count++;
866         CPU_FOREACH(cpu) {
867                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
868                 sched_bind(td, cpu);
869                 epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx);
870         }
871
872         /* restore CPU binding, if any */
873         if (was_bound != 0) {
874                 sched_bind(td, old_cpu);
875         } else {
876                 /* get thread back to initial CPU, if any */
877                 if (old_pinned != 0)
878                         sched_bind(td, old_cpu);
879                 sched_unbind(td);
880         }
881         /* restore pinned after bind */
882         td->td_pinned = old_pinned;
883
884         thread_unlock(td);
885
886         while (epoch->e_drain_count != 0)
887                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
888
889         mtx_unlock(&epoch->e_drain_mtx);
890         sx_xunlock(&epoch->e_drain_sx);
891
892         PICKUP_GIANT();
893 }