]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_epoch.c
Merge ACPICA 20191018.
[FreeBSD/FreeBSD.git] / sys / kern / subr_epoch.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/counter.h>
35 #include <sys/epoch.h>
36 #include <sys/gtaskqueue.h>
37 #include <sys/kernel.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/sx.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #ifdef EPOCH_TRACE
50 #include <machine/stdarg.h>
51 #include <sys/stack.h>
52 #include <sys/tree.h>
53 #endif
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_kern.h>
57 #include <vm/uma.h>
58
59 #include <ck_epoch.h>
60
61 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
62
63 #ifdef __amd64__
64 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
65 #else
66 #define EPOCH_ALIGN CACHE_LINE_SIZE
67 #endif
68
69 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
70 typedef struct epoch_record {
71         ck_epoch_record_t er_record;
72         struct epoch_context er_drain_ctx;
73         struct epoch *er_parent;
74         volatile struct epoch_tdlist er_tdlist;
75         volatile uint32_t er_gen;
76         uint32_t er_cpuid;
77 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
78
79 struct epoch {
80         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
81         epoch_record_t e_pcpu_record;
82         int     e_idx;
83         int     e_flags;
84         struct sx e_drain_sx;
85         struct mtx e_drain_mtx;
86         volatile int e_drain_count;
87         const char *e_name;
88 };
89
90 /* arbitrary --- needs benchmarking */
91 #define MAX_ADAPTIVE_SPIN 100
92 #define MAX_EPOCHS 64
93
94 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
95 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
96 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
97
98 /* Stats. */
99 static counter_u64_t block_count;
100
101 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
102     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
103 static counter_u64_t migrate_count;
104
105 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
106     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
107 static counter_u64_t turnstile_count;
108
109 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
110     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
111 static counter_u64_t switch_count;
112
113 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
114     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
115 static counter_u64_t epoch_call_count;
116
117 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
118     &epoch_call_count, "# of times a callback was deferred");
119 static counter_u64_t epoch_call_task_count;
120
121 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
122     &epoch_call_task_count, "# of times a callback task was run");
123
124 TAILQ_HEAD (threadlist, thread);
125
126 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
127     ck_epoch_entry_container)
128
129 epoch_t allepochs[MAX_EPOCHS];
130
131 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
132 DPCPU_DEFINE(int, epoch_cb_count);
133
134 static __read_mostly int inited;
135 static __read_mostly int epoch_count;
136 __read_mostly epoch_t global_epoch;
137 __read_mostly epoch_t global_epoch_preempt;
138
139 static void epoch_call_task(void *context __unused);
140 static  uma_zone_t pcpu_zone_record;
141
142 #ifdef EPOCH_TRACE
143 struct stackentry {
144         RB_ENTRY(stackentry) se_node;
145         struct stack se_stack;
146 };
147
148 static int
149 stackentry_compare(struct stackentry *a, struct stackentry *b)
150 {
151
152         if (a->se_stack.depth > b->se_stack.depth)
153                 return (1);
154         if (a->se_stack.depth < b->se_stack.depth)
155                 return (-1);
156         for (int i = 0; i < a->se_stack.depth; i++) {
157                 if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
158                         return (1);
159                 if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
160                         return (-1);
161         }
162
163         return (0);
164 }
165
166 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
167 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
168
169 static struct mtx epoch_stacks_lock;
170 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
171
172 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
173 static inline void
174 epoch_trace_report(const char *fmt, ...)
175 {
176         va_list ap;
177         struct stackentry se, *new;
178
179         stack_zero(&se.se_stack);       /* XXX: is it really needed? */
180         stack_save(&se.se_stack);
181
182         /* Tree is never reduced - go lockless. */
183         if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
184                 return;
185
186         new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
187         if (new != NULL) {
188                 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
189
190                 mtx_lock(&epoch_stacks_lock);
191                 new = RB_INSERT(stacktree, &epoch_stacks, new);
192                 mtx_unlock(&epoch_stacks_lock);
193                 if (new != NULL)
194                         free(new, M_STACK);
195         }
196
197         va_start(ap, fmt);
198         (void)vprintf(fmt, ap);
199         va_end(ap);
200         stack_print_ddb(&se.se_stack);
201 }
202
203 static inline void
204 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
205     const char *file, int line)
206 {
207         epoch_tracker_t iet;
208
209         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
210                 if (iet->et_epoch == epoch)
211                         epoch_trace_report("Recursively entering epoch %s "
212                             "previously entered at %s:%d\n",
213                             epoch->e_name, iet->et_file, iet->et_line);
214         et->et_epoch = epoch;
215         et->et_file = file;
216         et->et_line = line;
217         SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
218 }
219
220 static inline void
221 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
222     const char *file, int line)
223 {
224
225         if (SLIST_FIRST(&td->td_epochs) != et) {
226                 epoch_trace_report("Exiting epoch %s in a not nested order. "
227                     "Most recently entered %s at %s:%d\n",
228                     epoch->e_name,
229                     SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
230                     SLIST_FIRST(&td->td_epochs)->et_file,
231                     SLIST_FIRST(&td->td_epochs)->et_line);
232                 /* This will panic if et is not anywhere on td_epochs. */
233                 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
234         } else
235                 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
236 }
237
238 /* Used by assertions that check thread state before going to sleep. */
239 void
240 epoch_trace_list(struct thread *td)
241 {
242         epoch_tracker_t iet;
243
244         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
245                 printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
246                     iet->et_file, iet->et_line);
247 }
248 #endif /* EPOCH_TRACE */
249
250 static void
251 epoch_init(void *arg __unused)
252 {
253         int cpu;
254
255         block_count = counter_u64_alloc(M_WAITOK);
256         migrate_count = counter_u64_alloc(M_WAITOK);
257         turnstile_count = counter_u64_alloc(M_WAITOK);
258         switch_count = counter_u64_alloc(M_WAITOK);
259         epoch_call_count = counter_u64_alloc(M_WAITOK);
260         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
261
262         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
263             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
264             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
265         CPU_FOREACH(cpu) {
266                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
267                     epoch_call_task, NULL);
268                 taskqgroup_attach_cpu(qgroup_softirq,
269                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
270                     "epoch call task");
271         }
272 #ifdef EPOCH_TRACE
273         SLIST_INIT(&thread0.td_epochs);
274 #endif
275         inited = 1;
276         global_epoch = epoch_alloc("Global", 0);
277         global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
278 }
279 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
280
281 #if !defined(EARLY_AP_STARTUP)
282 static void
283 epoch_init_smp(void *dummy __unused)
284 {
285         inited = 2;
286 }
287 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
288 #endif
289
290 static void
291 epoch_ctor(epoch_t epoch)
292 {
293         epoch_record_t er;
294         int cpu;
295
296         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
297         CPU_FOREACH(cpu) {
298                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
299                 bzero(er, sizeof(*er));
300                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
301                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
302                 er->er_cpuid = cpu;
303                 er->er_parent = epoch;
304         }
305 }
306
307 static void
308 epoch_adjust_prio(struct thread *td, u_char prio)
309 {
310
311         thread_lock(td);
312         sched_prio(td, prio);
313         thread_unlock(td);
314 }
315
316 epoch_t
317 epoch_alloc(const char *name, int flags)
318 {
319         epoch_t epoch;
320
321         if (__predict_false(!inited))
322                 panic("%s called too early in boot", __func__);
323         epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK);
324         ck_epoch_init(&epoch->e_epoch);
325         epoch_ctor(epoch);
326         MPASS(epoch_count < MAX_EPOCHS - 2);
327         epoch->e_flags = flags;
328         epoch->e_idx = epoch_count;
329         epoch->e_name = name;
330         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
331         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
332         allepochs[epoch_count++] = epoch;
333         return (epoch);
334 }
335
336 void
337 epoch_free(epoch_t epoch)
338 {
339
340         epoch_drain_callbacks(epoch);
341         allepochs[epoch->e_idx] = NULL;
342         epoch_wait(global_epoch);
343         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
344         mtx_destroy(&epoch->e_drain_mtx);
345         sx_destroy(&epoch->e_drain_sx);
346         free(epoch, M_EPOCH);
347 }
348
349 static epoch_record_t
350 epoch_currecord(epoch_t epoch)
351 {
352
353         return (zpcpu_get_cpu(epoch->e_pcpu_record, curcpu));
354 }
355
356 #define INIT_CHECK(epoch)                                       \
357         do {                                                    \
358                 if (__predict_false((epoch) == NULL))           \
359                         return;                                 \
360         } while (0)
361
362 void
363 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
364 {
365         struct epoch_record *er;
366         struct thread *td;
367
368         MPASS(cold || epoch != NULL);
369         INIT_CHECK(epoch);
370         MPASS(epoch->e_flags & EPOCH_PREEMPT);
371         td = curthread;
372 #ifdef EPOCH_TRACE
373         epoch_trace_enter(td, epoch, et, file, line);
374 #endif
375         et->et_td = td;
376         td->td_epochnest++;
377         critical_enter();
378         sched_pin();
379         td->td_pre_epoch_prio = td->td_priority;
380         er = epoch_currecord(epoch);
381         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
382         ck_epoch_begin(&er->er_record, &et->et_section);
383         critical_exit();
384 }
385
386 void
387 epoch_enter(epoch_t epoch)
388 {
389         struct thread *td;
390         epoch_record_t er;
391
392         MPASS(cold || epoch != NULL);
393         INIT_CHECK(epoch);
394         td = curthread;
395         td->td_epochnest++;
396         critical_enter();
397         er = epoch_currecord(epoch);
398         ck_epoch_begin(&er->er_record, NULL);
399 }
400
401 void
402 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
403 {
404         struct epoch_record *er;
405         struct thread *td;
406
407         INIT_CHECK(epoch);
408         td = curthread;
409         critical_enter();
410         sched_unpin();
411         MPASS(td->td_epochnest);
412         td->td_epochnest--;
413         er = epoch_currecord(epoch);
414         MPASS(epoch->e_flags & EPOCH_PREEMPT);
415         MPASS(et != NULL);
416         MPASS(et->et_td == td);
417 #ifdef INVARIANTS
418         et->et_td = (void*)0xDEADBEEF;
419 #endif
420         ck_epoch_end(&er->er_record, &et->et_section);
421         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
422         er->er_gen++;
423         if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
424                 epoch_adjust_prio(td, td->td_pre_epoch_prio);
425         critical_exit();
426 #ifdef EPOCH_TRACE
427         epoch_trace_exit(td, epoch, et, file, line);
428 #endif
429 }
430
431 void
432 epoch_exit(epoch_t epoch)
433 {
434         struct thread *td;
435         epoch_record_t er;
436
437         INIT_CHECK(epoch);
438         td = curthread;
439         MPASS(td->td_epochnest);
440         td->td_epochnest--;
441         er = epoch_currecord(epoch);
442         ck_epoch_end(&er->er_record, NULL);
443         critical_exit();
444 }
445
446 /*
447  * epoch_block_handler_preempt() is a callback from the CK code when another
448  * thread is currently in an epoch section.
449  */
450 static void
451 epoch_block_handler_preempt(struct ck_epoch *global __unused,
452     ck_epoch_record_t *cr, void *arg __unused)
453 {
454         epoch_record_t record;
455         struct thread *td, *owner, *curwaittd;
456         struct epoch_tracker *tdwait;
457         struct turnstile *ts;
458         struct lock_object *lock;
459         int spincount, gen;
460         int locksheld __unused;
461
462         record = __containerof(cr, struct epoch_record, er_record);
463         td = curthread;
464         locksheld = td->td_locks;
465         spincount = 0;
466         counter_u64_add(block_count, 1);
467         /*
468          * We lost a race and there's no longer any threads
469          * on the CPU in an epoch section.
470          */
471         if (TAILQ_EMPTY(&record->er_tdlist))
472                 return;
473
474         if (record->er_cpuid != curcpu) {
475                 /*
476                  * If the head of the list is running, we can wait for it
477                  * to remove itself from the list and thus save us the
478                  * overhead of a migration
479                  */
480                 gen = record->er_gen;
481                 thread_unlock(td);
482                 /*
483                  * We can't actually check if the waiting thread is running
484                  * so we simply poll for it to exit before giving up and
485                  * migrating.
486                  */
487                 do {
488                         cpu_spinwait();
489                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
490                                  gen == record->er_gen &&
491                                  spincount++ < MAX_ADAPTIVE_SPIN);
492                 thread_lock(td);
493                 /*
494                  * If the generation has changed we can poll again
495                  * otherwise we need to migrate.
496                  */
497                 if (gen != record->er_gen)
498                         return;
499                 /*
500                  * Being on the same CPU as that of the record on which
501                  * we need to wait allows us access to the thread
502                  * list associated with that CPU. We can then examine the
503                  * oldest thread in the queue and wait on its turnstile
504                  * until it resumes and so on until a grace period
505                  * elapses.
506                  *
507                  */
508                 counter_u64_add(migrate_count, 1);
509                 sched_bind(td, record->er_cpuid);
510                 /*
511                  * At this point we need to return to the ck code
512                  * to scan to see if a grace period has elapsed.
513                  * We can't move on to check the thread list, because
514                  * in the meantime new threads may have arrived that
515                  * in fact belong to a different epoch.
516                  */
517                 return;
518         }
519         /*
520          * Try to find a thread in an epoch section on this CPU
521          * waiting on a turnstile. Otherwise find the lowest
522          * priority thread (highest prio value) and drop our priority
523          * to match to allow it to run.
524          */
525         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
526                 /*
527                  * Propagate our priority to any other waiters to prevent us
528                  * from starving them. They will have their original priority
529                  * restore on exit from epoch_wait().
530                  */
531                 curwaittd = tdwait->et_td;
532                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
533                         critical_enter();
534                         thread_unlock(td);
535                         thread_lock(curwaittd);
536                         sched_prio(curwaittd, td->td_priority);
537                         thread_unlock(curwaittd);
538                         thread_lock(td);
539                         critical_exit();
540                 }
541                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
542                     ((ts = curwaittd->td_blocked) != NULL)) {
543                         /*
544                          * We unlock td to allow turnstile_wait to reacquire
545                          * the thread lock. Before unlocking it we enter a
546                          * critical section to prevent preemption after we
547                          * reenable interrupts by dropping the thread lock in
548                          * order to prevent curwaittd from getting to run.
549                          */
550                         critical_enter();
551                         thread_unlock(td);
552
553                         if (turnstile_lock(ts, &lock, &owner)) {
554                                 if (ts == curwaittd->td_blocked) {
555                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
556                                             TD_ON_LOCK(curwaittd));
557                                         critical_exit();
558                                         turnstile_wait(ts, owner,
559                                             curwaittd->td_tsqueue);
560                                         counter_u64_add(turnstile_count, 1);
561                                         thread_lock(td);
562                                         return;
563                                 }
564                                 turnstile_unlock(ts, lock);
565                         }
566                         thread_lock(td);
567                         critical_exit();
568                         KASSERT(td->td_locks == locksheld,
569                             ("%d extra locks held", td->td_locks - locksheld));
570                 }
571         }
572         /*
573          * We didn't find any threads actually blocked on a lock
574          * so we have nothing to do except context switch away.
575          */
576         counter_u64_add(switch_count, 1);
577         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
578
579         /*
580          * Release the thread lock while yielding to
581          * allow other threads to acquire the lock
582          * pointed to by TDQ_LOCKPTR(td). Else a
583          * deadlock like situation might happen. (HPS)
584          */
585         thread_unlock(td);
586         thread_lock(td);
587 }
588
589 void
590 epoch_wait_preempt(epoch_t epoch)
591 {
592         struct thread *td;
593         int was_bound;
594         int old_cpu;
595         int old_pinned;
596         u_char old_prio;
597         int locks __unused;
598
599         MPASS(cold || epoch != NULL);
600         INIT_CHECK(epoch);
601         td = curthread;
602 #ifdef INVARIANTS
603         locks = curthread->td_locks;
604         MPASS(epoch->e_flags & EPOCH_PREEMPT);
605         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
606                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
607                     "epoch_wait() can be long running");
608         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
609             "of an epoch section of the same epoch"));
610 #endif
611         thread_lock(td);
612         DROP_GIANT();
613
614         old_cpu = PCPU_GET(cpuid);
615         old_pinned = td->td_pinned;
616         old_prio = td->td_priority;
617         was_bound = sched_is_bound(td);
618         sched_unbind(td);
619         td->td_pinned = 0;
620         sched_bind(td, old_cpu);
621
622         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
623             NULL);
624
625         /* restore CPU binding, if any */
626         if (was_bound != 0) {
627                 sched_bind(td, old_cpu);
628         } else {
629                 /* get thread back to initial CPU, if any */
630                 if (old_pinned != 0)
631                         sched_bind(td, old_cpu);
632                 sched_unbind(td);
633         }
634         /* restore pinned after bind */
635         td->td_pinned = old_pinned;
636
637         /* restore thread priority */
638         sched_prio(td, old_prio);
639         thread_unlock(td);
640         PICKUP_GIANT();
641         KASSERT(td->td_locks == locks,
642             ("%d residual locks held", td->td_locks - locks));
643 }
644
645 static void
646 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
647     void *arg __unused)
648 {
649         cpu_spinwait();
650 }
651
652 void
653 epoch_wait(epoch_t epoch)
654 {
655
656         MPASS(cold || epoch != NULL);
657         INIT_CHECK(epoch);
658         MPASS(epoch->e_flags == 0);
659         critical_enter();
660         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
661         critical_exit();
662 }
663
664 void
665 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
666 {
667         epoch_record_t er;
668         ck_epoch_entry_t *cb;
669
670         cb = (void *)ctx;
671
672         MPASS(callback);
673         /* too early in boot to have epoch set up */
674         if (__predict_false(epoch == NULL))
675                 goto boottime;
676 #if !defined(EARLY_AP_STARTUP)
677         if (__predict_false(inited < 2))
678                 goto boottime;
679 #endif
680
681         critical_enter();
682         *DPCPU_PTR(epoch_cb_count) += 1;
683         er = epoch_currecord(epoch);
684         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
685         critical_exit();
686         return;
687 boottime:
688         callback(ctx);
689 }
690
691 static void
692 epoch_call_task(void *arg __unused)
693 {
694         ck_stack_entry_t *cursor, *head, *next;
695         ck_epoch_record_t *record;
696         epoch_record_t er;
697         epoch_t epoch;
698         ck_stack_t cb_stack;
699         int i, npending, total;
700
701         ck_stack_init(&cb_stack);
702         critical_enter();
703         epoch_enter(global_epoch);
704         for (total = i = 0; i < epoch_count; i++) {
705                 if (__predict_false((epoch = allepochs[i]) == NULL))
706                         continue;
707                 er = epoch_currecord(epoch);
708                 record = &er->er_record;
709                 if ((npending = record->n_pending) == 0)
710                         continue;
711                 ck_epoch_poll_deferred(record, &cb_stack);
712                 total += npending - record->n_pending;
713         }
714         epoch_exit(global_epoch);
715         *DPCPU_PTR(epoch_cb_count) -= total;
716         critical_exit();
717
718         counter_u64_add(epoch_call_count, total);
719         counter_u64_add(epoch_call_task_count, 1);
720
721         head = ck_stack_batch_pop_npsc(&cb_stack);
722         for (cursor = head; cursor != NULL; cursor = next) {
723                 struct ck_epoch_entry *entry =
724                     ck_epoch_entry_container(cursor);
725
726                 next = CK_STACK_NEXT(cursor);
727                 entry->function(entry);
728         }
729 }
730
731 int
732 in_epoch_verbose(epoch_t epoch, int dump_onfail)
733 {
734         struct epoch_tracker *tdwait;
735         struct thread *td;
736         epoch_record_t er;
737
738         td = curthread;
739         if (td->td_epochnest == 0)
740                 return (0);
741         if (__predict_false((epoch) == NULL))
742                 return (0);
743         critical_enter();
744         er = epoch_currecord(epoch);
745         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
746                 if (tdwait->et_td == td) {
747                         critical_exit();
748                         return (1);
749                 }
750 #ifdef INVARIANTS
751         if (dump_onfail) {
752                 MPASS(td->td_pinned);
753                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
754                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
755                         printf("td_tid: %d ", tdwait->et_td->td_tid);
756                 printf("\n");
757         }
758 #endif
759         critical_exit();
760         return (0);
761 }
762
763 int
764 in_epoch(epoch_t epoch)
765 {
766         return (in_epoch_verbose(epoch, 0));
767 }
768
769 static void
770 epoch_drain_cb(struct epoch_context *ctx)
771 {
772         struct epoch *epoch =
773             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
774
775         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
776                 mtx_lock(&epoch->e_drain_mtx);
777                 wakeup(epoch);
778                 mtx_unlock(&epoch->e_drain_mtx);
779         }
780 }
781
782 void
783 epoch_drain_callbacks(epoch_t epoch)
784 {
785         epoch_record_t er;
786         struct thread *td;
787         int was_bound;
788         int old_pinned;
789         int old_cpu;
790         int cpu;
791
792         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
793             "epoch_drain_callbacks() may sleep!");
794
795         /* too early in boot to have epoch set up */
796         if (__predict_false(epoch == NULL))
797                 return;
798 #if !defined(EARLY_AP_STARTUP)
799         if (__predict_false(inited < 2))
800                 return;
801 #endif
802         DROP_GIANT();
803
804         sx_xlock(&epoch->e_drain_sx);
805         mtx_lock(&epoch->e_drain_mtx);
806
807         td = curthread;
808         thread_lock(td);
809         old_cpu = PCPU_GET(cpuid);
810         old_pinned = td->td_pinned;
811         was_bound = sched_is_bound(td);
812         sched_unbind(td);
813         td->td_pinned = 0;
814
815         CPU_FOREACH(cpu)
816                 epoch->e_drain_count++;
817         CPU_FOREACH(cpu) {
818                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
819                 sched_bind(td, cpu);
820                 epoch_call(epoch, &er->er_drain_ctx, &epoch_drain_cb);
821         }
822
823         /* restore CPU binding, if any */
824         if (was_bound != 0) {
825                 sched_bind(td, old_cpu);
826         } else {
827                 /* get thread back to initial CPU, if any */
828                 if (old_pinned != 0)
829                         sched_bind(td, old_cpu);
830                 sched_unbind(td);
831         }
832         /* restore pinned after bind */
833         td->td_pinned = old_pinned;
834
835         thread_unlock(td);
836
837         while (epoch->e_drain_count != 0)
838                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
839
840         mtx_unlock(&epoch->e_drain_mtx);
841         sx_xunlock(&epoch->e_drain_sx);
842
843         PICKUP_GIANT();
844 }
845
846 void
847 epoch_thread_init(struct thread *td)
848 {
849
850         td->td_et = malloc(sizeof(struct epoch_tracker), M_EPOCH, M_WAITOK);
851 }
852
853 void
854 epoch_thread_fini(struct thread *td)
855 {
856
857         free(td->td_et, M_EPOCH);
858 }