]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_gtaskqueue.c
usb(4): Remove a double word in a source code comment
[FreeBSD/FreeBSD.git] / sys / kern / subr_gtaskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/bus.h>
32 #include <sys/cpuset.h>
33 #include <sys/kernel.h>
34 #include <sys/kthread.h>
35 #include <sys/libkern.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/epoch.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/gtaskqueue.h>
45 #include <sys/unistd.h>
46 #include <machine/stdarg.h>
47
48 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
49 static void     gtaskqueue_thread_enqueue(void *);
50 static void     gtaskqueue_thread_loop(void *arg);
51 static int      task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
52 static void     gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
53
54 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
55
56 struct gtaskqueue_busy {
57         struct gtask            *tb_running;
58         u_int                    tb_seq;
59         LIST_ENTRY(gtaskqueue_busy) tb_link;
60 };
61
62 typedef void (*gtaskqueue_enqueue_fn)(void *context);
63
64 struct gtaskqueue {
65         STAILQ_HEAD(, gtask)    tq_queue;
66         LIST_HEAD(, gtaskqueue_busy) tq_active;
67         u_int                   tq_seq;
68         int                     tq_callouts;
69         struct mtx_padalign     tq_mutex;
70         gtaskqueue_enqueue_fn   tq_enqueue;
71         void                    *tq_context;
72         char                    *tq_name;
73         struct thread           **tq_threads;
74         int                     tq_tcount;
75         int                     tq_spin;
76         int                     tq_flags;
77         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
78         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
79 };
80
81 #define TQ_FLAGS_ACTIVE         (1 << 0)
82 #define TQ_FLAGS_BLOCKED        (1 << 1)
83 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
84
85 #define DT_CALLOUT_ARMED        (1 << 0)
86
87 #define TQ_LOCK(tq)                                                     \
88         do {                                                            \
89                 if ((tq)->tq_spin)                                      \
90                         mtx_lock_spin(&(tq)->tq_mutex);                 \
91                 else                                                    \
92                         mtx_lock(&(tq)->tq_mutex);                      \
93         } while (0)
94 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
95
96 #define TQ_UNLOCK(tq)                                                   \
97         do {                                                            \
98                 if ((tq)->tq_spin)                                      \
99                         mtx_unlock_spin(&(tq)->tq_mutex);               \
100                 else                                                    \
101                         mtx_unlock(&(tq)->tq_mutex);                    \
102         } while (0)
103 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
104
105 #ifdef INVARIANTS
106 static void
107 gtask_dump(struct gtask *gtask)
108 {
109         printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
110                gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
111 }
112 #endif
113
114 static __inline int
115 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
116 {
117         if (tq->tq_spin)
118                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
119         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
120 }
121
122 static struct gtaskqueue *
123 _gtaskqueue_create(const char *name, int mflags,
124                  taskqueue_enqueue_fn enqueue, void *context,
125                  int mtxflags, const char *mtxname __unused)
126 {
127         struct gtaskqueue *queue;
128         char *tq_name;
129
130         tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
131         if (!tq_name)
132                 return (NULL);
133
134         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
135
136         queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
137         if (!queue) {
138                 free(tq_name, M_GTASKQUEUE);
139                 return (NULL);
140         }
141
142         STAILQ_INIT(&queue->tq_queue);
143         LIST_INIT(&queue->tq_active);
144         queue->tq_enqueue = enqueue;
145         queue->tq_context = context;
146         queue->tq_name = tq_name;
147         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
148         queue->tq_flags |= TQ_FLAGS_ACTIVE;
149         if (enqueue == gtaskqueue_thread_enqueue)
150                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
151         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
152
153         return (queue);
154 }
155
156 /*
157  * Signal a taskqueue thread to terminate.
158  */
159 static void
160 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
161 {
162
163         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
164                 wakeup(tq);
165                 TQ_SLEEP(tq, pp, "gtq_destroy");
166         }
167 }
168
169 static void __unused
170 gtaskqueue_free(struct gtaskqueue *queue)
171 {
172
173         TQ_LOCK(queue);
174         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
175         gtaskqueue_terminate(queue->tq_threads, queue);
176         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
177         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
178         mtx_destroy(&queue->tq_mutex);
179         free(queue->tq_threads, M_GTASKQUEUE);
180         free(queue->tq_name, M_GTASKQUEUE);
181         free(queue, M_GTASKQUEUE);
182 }
183
184 /*
185  * Wait for all to complete, then prevent it from being enqueued
186  */
187 void
188 grouptask_block(struct grouptask *grouptask)
189 {
190         struct gtaskqueue *queue = grouptask->gt_taskqueue;
191         struct gtask *gtask = &grouptask->gt_task;
192
193 #ifdef INVARIANTS
194         if (queue == NULL) {
195                 gtask_dump(gtask);
196                 panic("queue == NULL");
197         }
198 #endif
199         TQ_LOCK(queue);
200         gtask->ta_flags |= TASK_NOENQUEUE;
201         gtaskqueue_drain_locked(queue, gtask);
202         TQ_UNLOCK(queue);
203 }
204
205 void
206 grouptask_unblock(struct grouptask *grouptask)
207 {
208         struct gtaskqueue *queue = grouptask->gt_taskqueue;
209         struct gtask *gtask = &grouptask->gt_task;
210
211 #ifdef INVARIANTS
212         if (queue == NULL) {
213                 gtask_dump(gtask);
214                 panic("queue == NULL");
215         }
216 #endif
217         TQ_LOCK(queue);
218         gtask->ta_flags &= ~TASK_NOENQUEUE;
219         TQ_UNLOCK(queue);
220 }
221
222 int
223 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
224 {
225 #ifdef INVARIANTS
226         if (queue == NULL) {
227                 gtask_dump(gtask);
228                 panic("queue == NULL");
229         }
230 #endif
231         TQ_LOCK(queue);
232         if (gtask->ta_flags & TASK_ENQUEUED) {
233                 TQ_UNLOCK(queue);
234                 return (0);
235         }
236         if (gtask->ta_flags & TASK_NOENQUEUE) {
237                 TQ_UNLOCK(queue);
238                 return (EAGAIN);
239         }
240         STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
241         gtask->ta_flags |= TASK_ENQUEUED;
242         TQ_UNLOCK(queue);
243         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
244                 queue->tq_enqueue(queue->tq_context);
245         return (0);
246 }
247
248 static void
249 gtaskqueue_task_nop_fn(void *context)
250 {
251 }
252
253 /*
254  * Block until all currently queued tasks in this taskqueue
255  * have begun execution.  Tasks queued during execution of
256  * this function are ignored.
257  */
258 static void
259 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
260 {
261         struct gtask t_barrier;
262
263         if (STAILQ_EMPTY(&queue->tq_queue))
264                 return;
265
266         /*
267          * Enqueue our barrier after all current tasks, but with
268          * the highest priority so that newly queued tasks cannot
269          * pass it.  Because of the high priority, we can not use
270          * taskqueue_enqueue_locked directly (which drops the lock
271          * anyway) so just insert it at tail while we have the
272          * queue lock.
273          */
274         GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
275         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
276         t_barrier.ta_flags |= TASK_ENQUEUED;
277
278         /*
279          * Once the barrier has executed, all previously queued tasks
280          * have completed or are currently executing.
281          */
282         while (t_barrier.ta_flags & TASK_ENQUEUED)
283                 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
284 }
285
286 /*
287  * Block until all currently executing tasks for this taskqueue
288  * complete.  Tasks that begin execution during the execution
289  * of this function are ignored.
290  */
291 static void
292 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
293 {
294         struct gtaskqueue_busy *tb;
295         u_int seq;
296
297         if (LIST_EMPTY(&queue->tq_active))
298                 return;
299
300         /* Block taskq_terminate().*/
301         queue->tq_callouts++;
302
303         /* Wait for any active task with sequence from the past. */
304         seq = queue->tq_seq;
305 restart:
306         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
307                 if ((int)(tb->tb_seq - seq) <= 0) {
308                         TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
309                         goto restart;
310                 }
311         }
312
313         /* Release taskqueue_terminate(). */
314         queue->tq_callouts--;
315         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
316                 wakeup_one(queue->tq_threads);
317 }
318
319 void
320 gtaskqueue_block(struct gtaskqueue *queue)
321 {
322
323         TQ_LOCK(queue);
324         queue->tq_flags |= TQ_FLAGS_BLOCKED;
325         TQ_UNLOCK(queue);
326 }
327
328 void
329 gtaskqueue_unblock(struct gtaskqueue *queue)
330 {
331
332         TQ_LOCK(queue);
333         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
334         if (!STAILQ_EMPTY(&queue->tq_queue))
335                 queue->tq_enqueue(queue->tq_context);
336         TQ_UNLOCK(queue);
337 }
338
339 static void
340 gtaskqueue_run_locked(struct gtaskqueue *queue)
341 {
342         struct epoch_tracker et;
343         struct gtaskqueue_busy tb;
344         struct gtask *gtask;
345         bool in_net_epoch;
346
347         KASSERT(queue != NULL, ("tq is NULL"));
348         TQ_ASSERT_LOCKED(queue);
349         tb.tb_running = NULL;
350         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
351         in_net_epoch = false;
352
353         while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
354                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
355                 gtask->ta_flags &= ~TASK_ENQUEUED;
356                 tb.tb_running = gtask;
357                 tb.tb_seq = ++queue->tq_seq;
358                 TQ_UNLOCK(queue);
359
360                 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
361                 if (!in_net_epoch && TASK_IS_NET(gtask)) {
362                         in_net_epoch = true;
363                         NET_EPOCH_ENTER(et);
364                 } else if (in_net_epoch && !TASK_IS_NET(gtask)) {
365                         NET_EPOCH_EXIT(et);
366                         in_net_epoch = false;
367                 }
368                 gtask->ta_func(gtask->ta_context);
369
370                 TQ_LOCK(queue);
371                 wakeup(gtask);
372         }
373         if (in_net_epoch)
374                 NET_EPOCH_EXIT(et);
375         LIST_REMOVE(&tb, tb_link);
376 }
377
378 static int
379 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
380 {
381         struct gtaskqueue_busy *tb;
382
383         TQ_ASSERT_LOCKED(queue);
384         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
385                 if (tb->tb_running == gtask)
386                         return (1);
387         }
388         return (0);
389 }
390
391 static int
392 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
393 {
394
395         if (gtask->ta_flags & TASK_ENQUEUED)
396                 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
397         gtask->ta_flags &= ~TASK_ENQUEUED;
398         return (task_is_running(queue, gtask) ? EBUSY : 0);
399 }
400
401 int
402 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
403 {
404         int error;
405
406         TQ_LOCK(queue);
407         error = gtaskqueue_cancel_locked(queue, gtask);
408         TQ_UNLOCK(queue);
409
410         return (error);
411 }
412
413 static void
414 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
415 {
416         while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
417                 TQ_SLEEP(queue, gtask, "gtq_drain");
418 }
419
420 void
421 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
422 {
423
424         if (!queue->tq_spin)
425                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
426
427         TQ_LOCK(queue);
428         gtaskqueue_drain_locked(queue, gtask);
429         TQ_UNLOCK(queue);
430 }
431
432 void
433 gtaskqueue_drain_all(struct gtaskqueue *queue)
434 {
435
436         if (!queue->tq_spin)
437                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
438
439         TQ_LOCK(queue);
440         gtaskqueue_drain_tq_queue(queue);
441         gtaskqueue_drain_tq_active(queue);
442         TQ_UNLOCK(queue);
443 }
444
445 static int
446 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
447     cpuset_t *mask, const char *name, va_list ap)
448 {
449         char ktname[MAXCOMLEN + 1];
450         struct thread *td;
451         struct gtaskqueue *tq;
452         int i, error;
453
454         if (count <= 0)
455                 return (EINVAL);
456
457         vsnprintf(ktname, sizeof(ktname), name, ap);
458         tq = *tqp;
459
460         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
461             M_NOWAIT | M_ZERO);
462         if (tq->tq_threads == NULL) {
463                 printf("%s: no memory for %s threads\n", __func__, ktname);
464                 return (ENOMEM);
465         }
466
467         for (i = 0; i < count; i++) {
468                 if (count == 1)
469                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
470                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
471                 else
472                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
473                             &tq->tq_threads[i], RFSTOPPED, 0,
474                             "%s_%d", ktname, i);
475                 if (error) {
476                         /* should be ok to continue, taskqueue_free will dtrt */
477                         printf("%s: kthread_add(%s): error %d", __func__,
478                             ktname, error);
479                         tq->tq_threads[i] = NULL;               /* paranoid */
480                 } else
481                         tq->tq_tcount++;
482         }
483         for (i = 0; i < count; i++) {
484                 if (tq->tq_threads[i] == NULL)
485                         continue;
486                 td = tq->tq_threads[i];
487                 if (mask) {
488                         error = cpuset_setthread(td->td_tid, mask);
489                         /*
490                          * Failing to pin is rarely an actual fatal error;
491                          * it'll just affect performance.
492                          */
493                         if (error)
494                                 printf("%s: curthread=%llu: can't pin; "
495                                     "error=%d\n",
496                                     __func__,
497                                     (unsigned long long) td->td_tid,
498                                     error);
499                 }
500                 thread_lock(td);
501                 sched_prio(td, pri);
502                 sched_add(td, SRQ_BORING);
503         }
504
505         return (0);
506 }
507
508 static int
509 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
510     const char *name, ...)
511 {
512         va_list ap;
513         int error;
514
515         va_start(ap, name);
516         error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
517         va_end(ap);
518         return (error);
519 }
520
521 static inline void
522 gtaskqueue_run_callback(struct gtaskqueue *tq,
523     enum taskqueue_callback_type cb_type)
524 {
525         taskqueue_callback_fn tq_callback;
526
527         TQ_ASSERT_UNLOCKED(tq);
528         tq_callback = tq->tq_callbacks[cb_type];
529         if (tq_callback != NULL)
530                 tq_callback(tq->tq_cb_contexts[cb_type]);
531 }
532
533 static void
534 gtaskqueue_thread_loop(void *arg)
535 {
536         struct gtaskqueue **tqp, *tq;
537
538         tqp = arg;
539         tq = *tqp;
540         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
541         TQ_LOCK(tq);
542         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
543                 /* XXX ? */
544                 gtaskqueue_run_locked(tq);
545                 /*
546                  * Because taskqueue_run() can drop tq_mutex, we need to
547                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
548                  * meantime, which means we missed a wakeup.
549                  */
550                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
551                         break;
552                 TQ_SLEEP(tq, tq, "-");
553         }
554         gtaskqueue_run_locked(tq);
555         /*
556          * This thread is on its way out, so just drop the lock temporarily
557          * in order to call the shutdown callback.  This allows the callback
558          * to look at the taskqueue, even just before it dies.
559          */
560         TQ_UNLOCK(tq);
561         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
562         TQ_LOCK(tq);
563
564         /* rendezvous with thread that asked us to terminate */
565         tq->tq_tcount--;
566         wakeup_one(tq->tq_threads);
567         TQ_UNLOCK(tq);
568         kthread_exit();
569 }
570
571 static void
572 gtaskqueue_thread_enqueue(void *context)
573 {
574         struct gtaskqueue **tqp, *tq;
575
576         tqp = context;
577         tq = *tqp;
578         wakeup_any(tq);
579 }
580
581 static struct gtaskqueue *
582 gtaskqueue_create_fast(const char *name, int mflags,
583                  taskqueue_enqueue_fn enqueue, void *context)
584 {
585         return _gtaskqueue_create(name, mflags, enqueue, context,
586                         MTX_SPIN, "fast_taskqueue");
587 }
588
589 struct taskqgroup_cpu {
590         LIST_HEAD(, grouptask) tgc_tasks;
591         struct gtaskqueue *tgc_taskq;
592         int             tgc_cnt;
593         int             tgc_cpu;
594 };
595
596 struct taskqgroup {
597         struct taskqgroup_cpu tqg_queue[MAXCPU];
598         struct mtx      tqg_lock;
599         const char *    tqg_name;
600         int             tqg_cnt;
601 };
602
603 struct taskq_bind_task {
604         struct gtask bt_task;
605         int     bt_cpuid;
606 };
607
608 static void
609 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
610 {
611         struct taskqgroup_cpu *qcpu;
612
613         qcpu = &qgroup->tqg_queue[idx];
614         LIST_INIT(&qcpu->tgc_tasks);
615         qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
616             gtaskqueue_thread_enqueue, &qcpu->tgc_taskq);
617         gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
618             "%s_%d", qgroup->tqg_name, idx);
619         qcpu->tgc_cpu = cpu;
620 }
621
622 /*
623  * Find the taskq with least # of tasks that doesn't currently have any
624  * other queues from the uniq identifier.
625  */
626 static int
627 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
628 {
629         struct grouptask *n;
630         int i, idx, mincnt;
631         int strict;
632
633         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
634         KASSERT(qgroup->tqg_cnt != 0,
635             ("qgroup %s has no queues", qgroup->tqg_name));
636
637         /*
638          * Two passes: first scan for a queue with the least tasks that
639          * does not already service this uniq id.  If that fails simply find
640          * the queue with the least total tasks.
641          */
642         for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX;
643             strict = 0) {
644                 for (i = 0; i < qgroup->tqg_cnt; i++) {
645                         if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
646                                 continue;
647                         if (strict) {
648                                 LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks,
649                                     gt_list)
650                                         if (n->gt_uniq == uniq)
651                                                 break;
652                                 if (n != NULL)
653                                         continue;
654                         }
655                         mincnt = qgroup->tqg_queue[i].tgc_cnt;
656                         idx = i;
657                 }
658         }
659         if (idx == -1)
660                 panic("%s: failed to pick a qid.", __func__);
661
662         return (idx);
663 }
664
665 void
666 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
667     void *uniq, device_t dev, struct resource *irq, const char *name)
668 {
669         int cpu, qid, error;
670
671         KASSERT(qgroup->tqg_cnt > 0,
672             ("qgroup %s has no queues", qgroup->tqg_name));
673
674         gtask->gt_uniq = uniq;
675         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
676         gtask->gt_dev = dev;
677         gtask->gt_irq = irq;
678         gtask->gt_cpu = -1;
679         mtx_lock(&qgroup->tqg_lock);
680         qid = taskqgroup_find(qgroup, uniq);
681         qgroup->tqg_queue[qid].tgc_cnt++;
682         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
683         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
684         if (dev != NULL && irq != NULL) {
685                 cpu = qgroup->tqg_queue[qid].tgc_cpu;
686                 gtask->gt_cpu = cpu;
687                 mtx_unlock(&qgroup->tqg_lock);
688                 error = bus_bind_intr(dev, irq, cpu);
689                 if (error)
690                         printf("%s: binding interrupt failed for %s: %d\n",
691                             __func__, gtask->gt_name, error);
692         } else
693                 mtx_unlock(&qgroup->tqg_lock);
694 }
695
696 int
697 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
698     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
699 {
700         int i, qid, error;
701
702         gtask->gt_uniq = uniq;
703         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
704         gtask->gt_dev = dev;
705         gtask->gt_irq = irq;
706         gtask->gt_cpu = cpu;
707         mtx_lock(&qgroup->tqg_lock);
708         for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++)
709                 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
710                         qid = i;
711                         break;
712                 }
713         if (qid == -1) {
714                 mtx_unlock(&qgroup->tqg_lock);
715                 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
716                 return (EINVAL);
717         }
718         qgroup->tqg_queue[qid].tgc_cnt++;
719         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
720         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
721         cpu = qgroup->tqg_queue[qid].tgc_cpu;
722         mtx_unlock(&qgroup->tqg_lock);
723
724         if (dev != NULL && irq != NULL) {
725                 error = bus_bind_intr(dev, irq, cpu);
726                 if (error)
727                         printf("%s: binding interrupt failed for %s: %d\n",
728                             __func__, gtask->gt_name, error);
729         }
730         return (0);
731 }
732
733 void
734 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
735 {
736         int i;
737
738         grouptask_block(gtask);
739         mtx_lock(&qgroup->tqg_lock);
740         for (i = 0; i < qgroup->tqg_cnt; i++)
741                 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
742                         break;
743         if (i == qgroup->tqg_cnt)
744                 panic("%s: task %s not in group", __func__, gtask->gt_name);
745         qgroup->tqg_queue[i].tgc_cnt--;
746         LIST_REMOVE(gtask, gt_list);
747         mtx_unlock(&qgroup->tqg_lock);
748         gtask->gt_taskqueue = NULL;
749         gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
750 }
751
752 static void
753 taskqgroup_binder(void *ctx)
754 {
755         struct taskq_bind_task *gtask;
756         cpuset_t mask;
757         int error;
758
759         gtask = ctx;
760         CPU_ZERO(&mask);
761         CPU_SET(gtask->bt_cpuid, &mask);
762         error = cpuset_setthread(curthread->td_tid, &mask);
763         thread_lock(curthread);
764         sched_bind(curthread, gtask->bt_cpuid);
765         thread_unlock(curthread);
766
767         if (error)
768                 printf("%s: binding curthread failed: %d\n", __func__, error);
769         free(gtask, M_DEVBUF);
770 }
771
772 void
773 taskqgroup_bind(struct taskqgroup *qgroup)
774 {
775         struct taskq_bind_task *gtask;
776         int i;
777
778         /*
779          * Bind taskqueue threads to specific CPUs, if they have been assigned
780          * one.
781          */
782         if (qgroup->tqg_cnt == 1)
783                 return;
784
785         for (i = 0; i < qgroup->tqg_cnt; i++) {
786                 gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK);
787                 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
788                 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
789                 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
790                     &gtask->bt_task);
791         }
792 }
793
794 struct taskqgroup *
795 taskqgroup_create(const char *name, int cnt, int stride)
796 {
797         struct taskqgroup *qgroup;
798         int cpu, i, j;
799
800         qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
801         mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
802         qgroup->tqg_name = name;
803         qgroup->tqg_cnt = cnt;
804
805         for (cpu = i = 0; i < cnt; i++) {
806                 taskqgroup_cpu_create(qgroup, i, cpu);
807                 for (j = 0; j < stride; j++)
808                         cpu = CPU_NEXT(cpu);
809         }
810         return (qgroup);
811 }
812
813 void
814 taskqgroup_destroy(struct taskqgroup *qgroup)
815 {
816 }
817
818 void
819 taskqgroup_drain_all(struct taskqgroup *tqg)
820 {
821         struct gtaskqueue *q;
822
823         for (int i = 0; i < mp_ncpus; i++) {
824                 q = tqg->tqg_queue[i].tgc_taskq;
825                 if (q == NULL)
826                         continue;
827                 gtaskqueue_drain_all(q);
828         }
829 }