]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_gtaskqueue.c
vmware: Fix a typo in a source code comment
[FreeBSD/FreeBSD.git] / sys / kern / subr_gtaskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/cpuset.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/libkern.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/epoch.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/gtaskqueue.h>
46 #include <sys/unistd.h>
47 #include <machine/stdarg.h>
48
49 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
50 static void     gtaskqueue_thread_enqueue(void *);
51 static void     gtaskqueue_thread_loop(void *arg);
52 static int      task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
53 static void     gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
54
55 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
56
57 struct gtaskqueue_busy {
58         struct gtask            *tb_running;
59         u_int                    tb_seq;
60         LIST_ENTRY(gtaskqueue_busy) tb_link;
61 };
62
63 typedef void (*gtaskqueue_enqueue_fn)(void *context);
64
65 struct gtaskqueue {
66         STAILQ_HEAD(, gtask)    tq_queue;
67         LIST_HEAD(, gtaskqueue_busy) tq_active;
68         u_int                   tq_seq;
69         int                     tq_callouts;
70         struct mtx_padalign     tq_mutex;
71         gtaskqueue_enqueue_fn   tq_enqueue;
72         void                    *tq_context;
73         char                    *tq_name;
74         struct thread           **tq_threads;
75         int                     tq_tcount;
76         int                     tq_spin;
77         int                     tq_flags;
78         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
79         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
80 };
81
82 #define TQ_FLAGS_ACTIVE         (1 << 0)
83 #define TQ_FLAGS_BLOCKED        (1 << 1)
84 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
85
86 #define DT_CALLOUT_ARMED        (1 << 0)
87
88 #define TQ_LOCK(tq)                                                     \
89         do {                                                            \
90                 if ((tq)->tq_spin)                                      \
91                         mtx_lock_spin(&(tq)->tq_mutex);                 \
92                 else                                                    \
93                         mtx_lock(&(tq)->tq_mutex);                      \
94         } while (0)
95 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
96
97 #define TQ_UNLOCK(tq)                                                   \
98         do {                                                            \
99                 if ((tq)->tq_spin)                                      \
100                         mtx_unlock_spin(&(tq)->tq_mutex);               \
101                 else                                                    \
102                         mtx_unlock(&(tq)->tq_mutex);                    \
103         } while (0)
104 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
105
106 #ifdef INVARIANTS
107 static void
108 gtask_dump(struct gtask *gtask)
109 {
110         printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
111                gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
112 }
113 #endif
114
115 static __inline int
116 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
117 {
118         if (tq->tq_spin)
119                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
120         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
121 }
122
123 static struct gtaskqueue *
124 _gtaskqueue_create(const char *name, int mflags,
125                  taskqueue_enqueue_fn enqueue, void *context,
126                  int mtxflags, const char *mtxname __unused)
127 {
128         struct gtaskqueue *queue;
129         char *tq_name;
130
131         tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
132         if (!tq_name)
133                 return (NULL);
134
135         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
136
137         queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
138         if (!queue) {
139                 free(tq_name, M_GTASKQUEUE);
140                 return (NULL);
141         }
142
143         STAILQ_INIT(&queue->tq_queue);
144         LIST_INIT(&queue->tq_active);
145         queue->tq_enqueue = enqueue;
146         queue->tq_context = context;
147         queue->tq_name = tq_name;
148         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
149         queue->tq_flags |= TQ_FLAGS_ACTIVE;
150         if (enqueue == gtaskqueue_thread_enqueue)
151                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
152         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
153
154         return (queue);
155 }
156
157 /*
158  * Signal a taskqueue thread to terminate.
159  */
160 static void
161 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
162 {
163
164         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
165                 wakeup(tq);
166                 TQ_SLEEP(tq, pp, "gtq_destroy");
167         }
168 }
169
170 static void __unused
171 gtaskqueue_free(struct gtaskqueue *queue)
172 {
173
174         TQ_LOCK(queue);
175         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
176         gtaskqueue_terminate(queue->tq_threads, queue);
177         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
178         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
179         mtx_destroy(&queue->tq_mutex);
180         free(queue->tq_threads, M_GTASKQUEUE);
181         free(queue->tq_name, M_GTASKQUEUE);
182         free(queue, M_GTASKQUEUE);
183 }
184
185 /*
186  * Wait for all to complete, then prevent it from being enqueued
187  */
188 void
189 grouptask_block(struct grouptask *grouptask)
190 {
191         struct gtaskqueue *queue = grouptask->gt_taskqueue;
192         struct gtask *gtask = &grouptask->gt_task;
193
194 #ifdef INVARIANTS
195         if (queue == NULL) {
196                 gtask_dump(gtask);
197                 panic("queue == NULL");
198         }
199 #endif
200         TQ_LOCK(queue);
201         gtask->ta_flags |= TASK_NOENQUEUE;
202         gtaskqueue_drain_locked(queue, gtask);
203         TQ_UNLOCK(queue);
204 }
205
206 void
207 grouptask_unblock(struct grouptask *grouptask)
208 {
209         struct gtaskqueue *queue = grouptask->gt_taskqueue;
210         struct gtask *gtask = &grouptask->gt_task;
211
212 #ifdef INVARIANTS
213         if (queue == NULL) {
214                 gtask_dump(gtask);
215                 panic("queue == NULL");
216         }
217 #endif
218         TQ_LOCK(queue);
219         gtask->ta_flags &= ~TASK_NOENQUEUE;
220         TQ_UNLOCK(queue);
221 }
222
223 int
224 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
225 {
226 #ifdef INVARIANTS
227         if (queue == NULL) {
228                 gtask_dump(gtask);
229                 panic("queue == NULL");
230         }
231 #endif
232         TQ_LOCK(queue);
233         if (gtask->ta_flags & TASK_ENQUEUED) {
234                 TQ_UNLOCK(queue);
235                 return (0);
236         }
237         if (gtask->ta_flags & TASK_NOENQUEUE) {
238                 TQ_UNLOCK(queue);
239                 return (EAGAIN);
240         }
241         STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
242         gtask->ta_flags |= TASK_ENQUEUED;
243         TQ_UNLOCK(queue);
244         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
245                 queue->tq_enqueue(queue->tq_context);
246         return (0);
247 }
248
249 static void
250 gtaskqueue_task_nop_fn(void *context)
251 {
252 }
253
254 /*
255  * Block until all currently queued tasks in this taskqueue
256  * have begun execution.  Tasks queued during execution of
257  * this function are ignored.
258  */
259 static void
260 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
261 {
262         struct gtask t_barrier;
263
264         if (STAILQ_EMPTY(&queue->tq_queue))
265                 return;
266
267         /*
268          * Enqueue our barrier after all current tasks, but with
269          * the highest priority so that newly queued tasks cannot
270          * pass it.  Because of the high priority, we can not use
271          * taskqueue_enqueue_locked directly (which drops the lock
272          * anyway) so just insert it at tail while we have the
273          * queue lock.
274          */
275         GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
276         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
277         t_barrier.ta_flags |= TASK_ENQUEUED;
278
279         /*
280          * Once the barrier has executed, all previously queued tasks
281          * have completed or are currently executing.
282          */
283         while (t_barrier.ta_flags & TASK_ENQUEUED)
284                 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
285 }
286
287 /*
288  * Block until all currently executing tasks for this taskqueue
289  * complete.  Tasks that begin execution during the execution
290  * of this function are ignored.
291  */
292 static void
293 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
294 {
295         struct gtaskqueue_busy *tb;
296         u_int seq;
297
298         if (LIST_EMPTY(&queue->tq_active))
299                 return;
300
301         /* Block taskq_terminate().*/
302         queue->tq_callouts++;
303
304         /* Wait for any active task with sequence from the past. */
305         seq = queue->tq_seq;
306 restart:
307         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
308                 if ((int)(tb->tb_seq - seq) <= 0) {
309                         TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
310                         goto restart;
311                 }
312         }
313
314         /* Release taskqueue_terminate(). */
315         queue->tq_callouts--;
316         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
317                 wakeup_one(queue->tq_threads);
318 }
319
320 void
321 gtaskqueue_block(struct gtaskqueue *queue)
322 {
323
324         TQ_LOCK(queue);
325         queue->tq_flags |= TQ_FLAGS_BLOCKED;
326         TQ_UNLOCK(queue);
327 }
328
329 void
330 gtaskqueue_unblock(struct gtaskqueue *queue)
331 {
332
333         TQ_LOCK(queue);
334         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
335         if (!STAILQ_EMPTY(&queue->tq_queue))
336                 queue->tq_enqueue(queue->tq_context);
337         TQ_UNLOCK(queue);
338 }
339
340 static void
341 gtaskqueue_run_locked(struct gtaskqueue *queue)
342 {
343         struct epoch_tracker et;
344         struct gtaskqueue_busy tb;
345         struct gtask *gtask;
346         bool in_net_epoch;
347
348         KASSERT(queue != NULL, ("tq is NULL"));
349         TQ_ASSERT_LOCKED(queue);
350         tb.tb_running = NULL;
351         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
352         in_net_epoch = false;
353
354         while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
355                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
356                 gtask->ta_flags &= ~TASK_ENQUEUED;
357                 tb.tb_running = gtask;
358                 tb.tb_seq = ++queue->tq_seq;
359                 TQ_UNLOCK(queue);
360
361                 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
362                 if (!in_net_epoch && TASK_IS_NET(gtask)) {
363                         in_net_epoch = true;
364                         NET_EPOCH_ENTER(et);
365                 } else if (in_net_epoch && !TASK_IS_NET(gtask)) {
366                         NET_EPOCH_EXIT(et);
367                         in_net_epoch = false;
368                 }
369                 gtask->ta_func(gtask->ta_context);
370
371                 TQ_LOCK(queue);
372                 wakeup(gtask);
373         }
374         if (in_net_epoch)
375                 NET_EPOCH_EXIT(et);
376         LIST_REMOVE(&tb, tb_link);
377 }
378
379 static int
380 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
381 {
382         struct gtaskqueue_busy *tb;
383
384         TQ_ASSERT_LOCKED(queue);
385         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
386                 if (tb->tb_running == gtask)
387                         return (1);
388         }
389         return (0);
390 }
391
392 static int
393 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
394 {
395
396         if (gtask->ta_flags & TASK_ENQUEUED)
397                 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
398         gtask->ta_flags &= ~TASK_ENQUEUED;
399         return (task_is_running(queue, gtask) ? EBUSY : 0);
400 }
401
402 int
403 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
404 {
405         int error;
406
407         TQ_LOCK(queue);
408         error = gtaskqueue_cancel_locked(queue, gtask);
409         TQ_UNLOCK(queue);
410
411         return (error);
412 }
413
414 static void
415 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
416 {
417         while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
418                 TQ_SLEEP(queue, gtask, "gtq_drain");
419 }
420
421 void
422 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
423 {
424
425         if (!queue->tq_spin)
426                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
427
428         TQ_LOCK(queue);
429         gtaskqueue_drain_locked(queue, gtask);
430         TQ_UNLOCK(queue);
431 }
432
433 void
434 gtaskqueue_drain_all(struct gtaskqueue *queue)
435 {
436
437         if (!queue->tq_spin)
438                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
439
440         TQ_LOCK(queue);
441         gtaskqueue_drain_tq_queue(queue);
442         gtaskqueue_drain_tq_active(queue);
443         TQ_UNLOCK(queue);
444 }
445
446 static int
447 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
448     cpuset_t *mask, const char *name, va_list ap)
449 {
450         char ktname[MAXCOMLEN + 1];
451         struct thread *td;
452         struct gtaskqueue *tq;
453         int i, error;
454
455         if (count <= 0)
456                 return (EINVAL);
457
458         vsnprintf(ktname, sizeof(ktname), name, ap);
459         tq = *tqp;
460
461         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
462             M_NOWAIT | M_ZERO);
463         if (tq->tq_threads == NULL) {
464                 printf("%s: no memory for %s threads\n", __func__, ktname);
465                 return (ENOMEM);
466         }
467
468         for (i = 0; i < count; i++) {
469                 if (count == 1)
470                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
471                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
472                 else
473                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
474                             &tq->tq_threads[i], RFSTOPPED, 0,
475                             "%s_%d", ktname, i);
476                 if (error) {
477                         /* should be ok to continue, taskqueue_free will dtrt */
478                         printf("%s: kthread_add(%s): error %d", __func__,
479                             ktname, error);
480                         tq->tq_threads[i] = NULL;               /* paranoid */
481                 } else
482                         tq->tq_tcount++;
483         }
484         for (i = 0; i < count; i++) {
485                 if (tq->tq_threads[i] == NULL)
486                         continue;
487                 td = tq->tq_threads[i];
488                 if (mask) {
489                         error = cpuset_setthread(td->td_tid, mask);
490                         /*
491                          * Failing to pin is rarely an actual fatal error;
492                          * it'll just affect performance.
493                          */
494                         if (error)
495                                 printf("%s: curthread=%llu: can't pin; "
496                                     "error=%d\n",
497                                     __func__,
498                                     (unsigned long long) td->td_tid,
499                                     error);
500                 }
501                 thread_lock(td);
502                 sched_prio(td, pri);
503                 sched_add(td, SRQ_BORING);
504         }
505
506         return (0);
507 }
508
509 static int
510 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
511     const char *name, ...)
512 {
513         va_list ap;
514         int error;
515
516         va_start(ap, name);
517         error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
518         va_end(ap);
519         return (error);
520 }
521
522 static inline void
523 gtaskqueue_run_callback(struct gtaskqueue *tq,
524     enum taskqueue_callback_type cb_type)
525 {
526         taskqueue_callback_fn tq_callback;
527
528         TQ_ASSERT_UNLOCKED(tq);
529         tq_callback = tq->tq_callbacks[cb_type];
530         if (tq_callback != NULL)
531                 tq_callback(tq->tq_cb_contexts[cb_type]);
532 }
533
534 static void
535 gtaskqueue_thread_loop(void *arg)
536 {
537         struct gtaskqueue **tqp, *tq;
538
539         tqp = arg;
540         tq = *tqp;
541         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
542         TQ_LOCK(tq);
543         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
544                 /* XXX ? */
545                 gtaskqueue_run_locked(tq);
546                 /*
547                  * Because taskqueue_run() can drop tq_mutex, we need to
548                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
549                  * meantime, which means we missed a wakeup.
550                  */
551                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
552                         break;
553                 TQ_SLEEP(tq, tq, "-");
554         }
555         gtaskqueue_run_locked(tq);
556         /*
557          * This thread is on its way out, so just drop the lock temporarily
558          * in order to call the shutdown callback.  This allows the callback
559          * to look at the taskqueue, even just before it dies.
560          */
561         TQ_UNLOCK(tq);
562         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
563         TQ_LOCK(tq);
564
565         /* rendezvous with thread that asked us to terminate */
566         tq->tq_tcount--;
567         wakeup_one(tq->tq_threads);
568         TQ_UNLOCK(tq);
569         kthread_exit();
570 }
571
572 static void
573 gtaskqueue_thread_enqueue(void *context)
574 {
575         struct gtaskqueue **tqp, *tq;
576
577         tqp = context;
578         tq = *tqp;
579         wakeup_any(tq);
580 }
581
582 static struct gtaskqueue *
583 gtaskqueue_create_fast(const char *name, int mflags,
584                  taskqueue_enqueue_fn enqueue, void *context)
585 {
586         return _gtaskqueue_create(name, mflags, enqueue, context,
587                         MTX_SPIN, "fast_taskqueue");
588 }
589
590 struct taskqgroup_cpu {
591         LIST_HEAD(, grouptask) tgc_tasks;
592         struct gtaskqueue *tgc_taskq;
593         int             tgc_cnt;
594         int             tgc_cpu;
595 };
596
597 struct taskqgroup {
598         struct taskqgroup_cpu tqg_queue[MAXCPU];
599         struct mtx      tqg_lock;
600         const char *    tqg_name;
601         int             tqg_cnt;
602 };
603
604 struct taskq_bind_task {
605         struct gtask bt_task;
606         int     bt_cpuid;
607 };
608
609 static void
610 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
611 {
612         struct taskqgroup_cpu *qcpu;
613
614         qcpu = &qgroup->tqg_queue[idx];
615         LIST_INIT(&qcpu->tgc_tasks);
616         qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
617             gtaskqueue_thread_enqueue, &qcpu->tgc_taskq);
618         gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
619             "%s_%d", qgroup->tqg_name, idx);
620         qcpu->tgc_cpu = cpu;
621 }
622
623 /*
624  * Find the taskq with least # of tasks that doesn't currently have any
625  * other queues from the uniq identifier.
626  */
627 static int
628 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
629 {
630         struct grouptask *n;
631         int i, idx, mincnt;
632         int strict;
633
634         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
635         KASSERT(qgroup->tqg_cnt != 0,
636             ("qgroup %s has no queues", qgroup->tqg_name));
637
638         /*
639          * Two passes: first scan for a queue with the least tasks that
640          * does not already service this uniq id.  If that fails simply find
641          * the queue with the least total tasks.
642          */
643         for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX;
644             strict = 0) {
645                 for (i = 0; i < qgroup->tqg_cnt; i++) {
646                         if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
647                                 continue;
648                         if (strict) {
649                                 LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks,
650                                     gt_list)
651                                         if (n->gt_uniq == uniq)
652                                                 break;
653                                 if (n != NULL)
654                                         continue;
655                         }
656                         mincnt = qgroup->tqg_queue[i].tgc_cnt;
657                         idx = i;
658                 }
659         }
660         if (idx == -1)
661                 panic("%s: failed to pick a qid.", __func__);
662
663         return (idx);
664 }
665
666 void
667 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
668     void *uniq, device_t dev, struct resource *irq, const char *name)
669 {
670         int cpu, qid, error;
671
672         KASSERT(qgroup->tqg_cnt > 0,
673             ("qgroup %s has no queues", qgroup->tqg_name));
674
675         gtask->gt_uniq = uniq;
676         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
677         gtask->gt_dev = dev;
678         gtask->gt_irq = irq;
679         gtask->gt_cpu = -1;
680         mtx_lock(&qgroup->tqg_lock);
681         qid = taskqgroup_find(qgroup, uniq);
682         qgroup->tqg_queue[qid].tgc_cnt++;
683         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
684         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
685         if (dev != NULL && irq != NULL) {
686                 cpu = qgroup->tqg_queue[qid].tgc_cpu;
687                 gtask->gt_cpu = cpu;
688                 mtx_unlock(&qgroup->tqg_lock);
689                 error = bus_bind_intr(dev, irq, cpu);
690                 if (error)
691                         printf("%s: binding interrupt failed for %s: %d\n",
692                             __func__, gtask->gt_name, error);
693         } else
694                 mtx_unlock(&qgroup->tqg_lock);
695 }
696
697 int
698 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
699     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
700 {
701         int i, qid, error;
702
703         gtask->gt_uniq = uniq;
704         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
705         gtask->gt_dev = dev;
706         gtask->gt_irq = irq;
707         gtask->gt_cpu = cpu;
708         mtx_lock(&qgroup->tqg_lock);
709         for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++)
710                 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
711                         qid = i;
712                         break;
713                 }
714         if (qid == -1) {
715                 mtx_unlock(&qgroup->tqg_lock);
716                 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
717                 return (EINVAL);
718         }
719         qgroup->tqg_queue[qid].tgc_cnt++;
720         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
721         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
722         cpu = qgroup->tqg_queue[qid].tgc_cpu;
723         mtx_unlock(&qgroup->tqg_lock);
724
725         if (dev != NULL && irq != NULL) {
726                 error = bus_bind_intr(dev, irq, cpu);
727                 if (error)
728                         printf("%s: binding interrupt failed for %s: %d\n",
729                             __func__, gtask->gt_name, error);
730         }
731         return (0);
732 }
733
734 void
735 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
736 {
737         int i;
738
739         grouptask_block(gtask);
740         mtx_lock(&qgroup->tqg_lock);
741         for (i = 0; i < qgroup->tqg_cnt; i++)
742                 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
743                         break;
744         if (i == qgroup->tqg_cnt)
745                 panic("%s: task %s not in group", __func__, gtask->gt_name);
746         qgroup->tqg_queue[i].tgc_cnt--;
747         LIST_REMOVE(gtask, gt_list);
748         mtx_unlock(&qgroup->tqg_lock);
749         gtask->gt_taskqueue = NULL;
750         gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
751 }
752
753 static void
754 taskqgroup_binder(void *ctx)
755 {
756         struct taskq_bind_task *gtask;
757         cpuset_t mask;
758         int error;
759
760         gtask = ctx;
761         CPU_ZERO(&mask);
762         CPU_SET(gtask->bt_cpuid, &mask);
763         error = cpuset_setthread(curthread->td_tid, &mask);
764         thread_lock(curthread);
765         sched_bind(curthread, gtask->bt_cpuid);
766         thread_unlock(curthread);
767
768         if (error)
769                 printf("%s: binding curthread failed: %d\n", __func__, error);
770         free(gtask, M_DEVBUF);
771 }
772
773 void
774 taskqgroup_bind(struct taskqgroup *qgroup)
775 {
776         struct taskq_bind_task *gtask;
777         int i;
778
779         /*
780          * Bind taskqueue threads to specific CPUs, if they have been assigned
781          * one.
782          */
783         if (qgroup->tqg_cnt == 1)
784                 return;
785
786         for (i = 0; i < qgroup->tqg_cnt; i++) {
787                 gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK);
788                 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
789                 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
790                 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
791                     &gtask->bt_task);
792         }
793 }
794
795 struct taskqgroup *
796 taskqgroup_create(const char *name, int cnt, int stride)
797 {
798         struct taskqgroup *qgroup;
799         int cpu, i, j;
800
801         qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
802         mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
803         qgroup->tqg_name = name;
804         qgroup->tqg_cnt = cnt;
805
806         for (cpu = i = 0; i < cnt; i++) {
807                 taskqgroup_cpu_create(qgroup, i, cpu);
808                 for (j = 0; j < stride; j++)
809                         cpu = CPU_NEXT(cpu);
810         }
811         return (qgroup);
812 }
813
814 void
815 taskqgroup_destroy(struct taskqgroup *qgroup)
816 {
817 }
818
819 void
820 taskqgroup_drain_all(struct taskqgroup *tqg)
821 {
822         struct gtaskqueue *q;
823
824         for (int i = 0; i < mp_ncpus; i++) {
825                 q = tqg->tqg_queue[i].tgc_taskq;
826                 if (q == NULL)
827                         continue;
828                 gtaskqueue_drain_all(q);
829         }
830 }