]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_gtaskqueue.c
Make linux_ptrace() use linux_msg() instead of printf().
[FreeBSD/FreeBSD.git] / sys / kern / subr_gtaskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/kernel.h>
37 #include <sys/kthread.h>
38 #include <sys/libkern.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/gtaskqueue.h>
47 #include <sys/unistd.h>
48 #include <machine/stdarg.h>
49
50 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
51 static void     gtaskqueue_thread_enqueue(void *);
52 static void     gtaskqueue_thread_loop(void *arg);
53 static int      task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
54 static void     gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
55
56 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
57 TASKQGROUP_DEFINE(config, 1, 1);
58
59 struct gtaskqueue_busy {
60         struct gtask    *tb_running;
61         TAILQ_ENTRY(gtaskqueue_busy) tb_link;
62 };
63
64 static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1;
65
66 typedef void (*gtaskqueue_enqueue_fn)(void *context);
67
68 struct gtaskqueue {
69         STAILQ_HEAD(, gtask)    tq_queue;
70         gtaskqueue_enqueue_fn   tq_enqueue;
71         void                    *tq_context;
72         char                    *tq_name;
73         TAILQ_HEAD(, gtaskqueue_busy) tq_active;
74         struct mtx              tq_mutex;
75         struct thread           **tq_threads;
76         int                     tq_tcount;
77         int                     tq_spin;
78         int                     tq_flags;
79         int                     tq_callouts;
80         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
81         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
82 };
83
84 #define TQ_FLAGS_ACTIVE         (1 << 0)
85 #define TQ_FLAGS_BLOCKED        (1 << 1)
86 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
87
88 #define DT_CALLOUT_ARMED        (1 << 0)
89
90 #define TQ_LOCK(tq)                                                     \
91         do {                                                            \
92                 if ((tq)->tq_spin)                                      \
93                         mtx_lock_spin(&(tq)->tq_mutex);                 \
94                 else                                                    \
95                         mtx_lock(&(tq)->tq_mutex);                      \
96         } while (0)
97 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
98
99 #define TQ_UNLOCK(tq)                                                   \
100         do {                                                            \
101                 if ((tq)->tq_spin)                                      \
102                         mtx_unlock_spin(&(tq)->tq_mutex);               \
103                 else                                                    \
104                         mtx_unlock(&(tq)->tq_mutex);                    \
105         } while (0)
106 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
107
108 #ifdef INVARIANTS
109 static void
110 gtask_dump(struct gtask *gtask)
111 {
112         printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
113                gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
114 }
115 #endif
116
117 static __inline int
118 TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
119     int t)
120 {
121         if (tq->tq_spin)
122                 return (msleep_spin(p, m, wm, t));
123         return (msleep(p, m, pri, wm, t));
124 }
125
126 static struct gtaskqueue *
127 _gtaskqueue_create(const char *name, int mflags,
128                  taskqueue_enqueue_fn enqueue, void *context,
129                  int mtxflags, const char *mtxname __unused)
130 {
131         struct gtaskqueue *queue;
132         char *tq_name;
133
134         tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
135         if (!tq_name)
136                 return (NULL);
137
138         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
139
140         queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
141         if (!queue) {
142                 free(tq_name, M_GTASKQUEUE);
143                 return (NULL);
144         }
145
146         STAILQ_INIT(&queue->tq_queue);
147         TAILQ_INIT(&queue->tq_active);
148         queue->tq_enqueue = enqueue;
149         queue->tq_context = context;
150         queue->tq_name = tq_name;
151         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
152         queue->tq_flags |= TQ_FLAGS_ACTIVE;
153         if (enqueue == gtaskqueue_thread_enqueue)
154                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
155         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
156
157         return (queue);
158 }
159
160
161 /*
162  * Signal a taskqueue thread to terminate.
163  */
164 static void
165 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
166 {
167
168         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
169                 wakeup(tq);
170                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
171         }
172 }
173
174 static void
175 gtaskqueue_free(struct gtaskqueue *queue)
176 {
177
178         TQ_LOCK(queue);
179         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
180         gtaskqueue_terminate(queue->tq_threads, queue);
181         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
182         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
183         mtx_destroy(&queue->tq_mutex);
184         free(queue->tq_threads, M_GTASKQUEUE);
185         free(queue->tq_name, M_GTASKQUEUE);
186         free(queue, M_GTASKQUEUE);
187 }
188
189 /*
190  * Wait for all to complete, then prevent it from being enqueued
191  */
192 void
193 grouptask_block(struct grouptask *grouptask)
194 {
195         struct gtaskqueue *queue = grouptask->gt_taskqueue;
196         struct gtask *gtask = &grouptask->gt_task;
197
198 #ifdef INVARIANTS
199         if (queue == NULL) {
200                 gtask_dump(gtask);
201                 panic("queue == NULL");
202         }
203 #endif
204         TQ_LOCK(queue);
205         gtask->ta_flags |= TASK_NOENQUEUE;
206         gtaskqueue_drain_locked(queue, gtask);
207         TQ_UNLOCK(queue);
208 }
209
210 void
211 grouptask_unblock(struct grouptask *grouptask)
212 {
213         struct gtaskqueue *queue = grouptask->gt_taskqueue;
214         struct gtask *gtask = &grouptask->gt_task;
215
216 #ifdef INVARIANTS
217         if (queue == NULL) {
218                 gtask_dump(gtask);
219                 panic("queue == NULL");
220         }
221 #endif
222         TQ_LOCK(queue);
223         gtask->ta_flags &= ~TASK_NOENQUEUE;
224         TQ_UNLOCK(queue);
225 }
226
227 int
228 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
229 {
230 #ifdef INVARIANTS
231         if (queue == NULL) {
232                 gtask_dump(gtask);
233                 panic("queue == NULL");
234         }
235 #endif
236         TQ_LOCK(queue);
237         if (gtask->ta_flags & TASK_ENQUEUED) {
238                 TQ_UNLOCK(queue);
239                 return (0);
240         }
241         if (gtask->ta_flags & TASK_NOENQUEUE) {
242                 TQ_UNLOCK(queue);
243                 return (EAGAIN);
244         }
245         STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
246         gtask->ta_flags |= TASK_ENQUEUED;
247         TQ_UNLOCK(queue);
248         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
249                 queue->tq_enqueue(queue->tq_context);
250         return (0);
251 }
252
253 static void
254 gtaskqueue_task_nop_fn(void *context)
255 {
256 }
257
258 /*
259  * Block until all currently queued tasks in this taskqueue
260  * have begun execution.  Tasks queued during execution of
261  * this function are ignored.
262  */
263 static void
264 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
265 {
266         struct gtask t_barrier;
267
268         if (STAILQ_EMPTY(&queue->tq_queue))
269                 return;
270
271         /*
272          * Enqueue our barrier after all current tasks, but with
273          * the highest priority so that newly queued tasks cannot
274          * pass it.  Because of the high priority, we can not use
275          * taskqueue_enqueue_locked directly (which drops the lock
276          * anyway) so just insert it at tail while we have the
277          * queue lock.
278          */
279         GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
280         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
281         t_barrier.ta_flags |= TASK_ENQUEUED;
282
283         /*
284          * Once the barrier has executed, all previously queued tasks
285          * have completed or are currently executing.
286          */
287         while (t_barrier.ta_flags & TASK_ENQUEUED)
288                 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
289 }
290
291 /*
292  * Block until all currently executing tasks for this taskqueue
293  * complete.  Tasks that begin execution during the execution
294  * of this function are ignored.
295  */
296 static void
297 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
298 {
299         struct gtaskqueue_busy tb_marker, *tb_first;
300
301         if (TAILQ_EMPTY(&queue->tq_active))
302                 return;
303
304         /* Block taskq_terminate().*/
305         queue->tq_callouts++;
306
307         /*
308          * Wait for all currently executing taskqueue threads
309          * to go idle.
310          */
311         tb_marker.tb_running = TB_DRAIN_WAITER;
312         TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
313         while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
314                 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
315         TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
316
317         /*
318          * Wakeup any other drain waiter that happened to queue up
319          * without any intervening active thread.
320          */
321         tb_first = TAILQ_FIRST(&queue->tq_active);
322         if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
323                 wakeup(tb_first);
324
325         /* Release taskqueue_terminate(). */
326         queue->tq_callouts--;
327         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
328                 wakeup_one(queue->tq_threads);
329 }
330
331 void
332 gtaskqueue_block(struct gtaskqueue *queue)
333 {
334
335         TQ_LOCK(queue);
336         queue->tq_flags |= TQ_FLAGS_BLOCKED;
337         TQ_UNLOCK(queue);
338 }
339
340 void
341 gtaskqueue_unblock(struct gtaskqueue *queue)
342 {
343
344         TQ_LOCK(queue);
345         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
346         if (!STAILQ_EMPTY(&queue->tq_queue))
347                 queue->tq_enqueue(queue->tq_context);
348         TQ_UNLOCK(queue);
349 }
350
351 static void
352 gtaskqueue_run_locked(struct gtaskqueue *queue)
353 {
354         struct gtaskqueue_busy tb;
355         struct gtaskqueue_busy *tb_first;
356         struct gtask *gtask;
357
358         KASSERT(queue != NULL, ("tq is NULL"));
359         TQ_ASSERT_LOCKED(queue);
360         tb.tb_running = NULL;
361
362         while (STAILQ_FIRST(&queue->tq_queue)) {
363                 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
364
365                 /*
366                  * Carefully remove the first task from the queue and
367                  * clear its TASK_ENQUEUED flag
368                  */
369                 gtask = STAILQ_FIRST(&queue->tq_queue);
370                 KASSERT(gtask != NULL, ("task is NULL"));
371                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
372                 gtask->ta_flags &= ~TASK_ENQUEUED;
373                 tb.tb_running = gtask;
374                 TQ_UNLOCK(queue);
375
376                 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
377                 gtask->ta_func(gtask->ta_context);
378
379                 TQ_LOCK(queue);
380                 tb.tb_running = NULL;
381                 wakeup(gtask);
382
383                 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
384                 tb_first = TAILQ_FIRST(&queue->tq_active);
385                 if (tb_first != NULL &&
386                     tb_first->tb_running == TB_DRAIN_WAITER)
387                         wakeup(tb_first);
388         }
389 }
390
391 static int
392 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
393 {
394         struct gtaskqueue_busy *tb;
395
396         TQ_ASSERT_LOCKED(queue);
397         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
398                 if (tb->tb_running == gtask)
399                         return (1);
400         }
401         return (0);
402 }
403
404 static int
405 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
406 {
407
408         if (gtask->ta_flags & TASK_ENQUEUED)
409                 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
410         gtask->ta_flags &= ~TASK_ENQUEUED;
411         return (task_is_running(queue, gtask) ? EBUSY : 0);
412 }
413
414 int
415 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
416 {
417         int error;
418
419         TQ_LOCK(queue);
420         error = gtaskqueue_cancel_locked(queue, gtask);
421         TQ_UNLOCK(queue);
422
423         return (error);
424 }
425
426 static void
427 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
428 {
429         while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
430                 TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0);
431 }
432
433 void
434 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
435 {
436
437         if (!queue->tq_spin)
438                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
439
440         TQ_LOCK(queue);
441         gtaskqueue_drain_locked(queue, gtask);
442         TQ_UNLOCK(queue);
443 }
444
445 void
446 gtaskqueue_drain_all(struct gtaskqueue *queue)
447 {
448
449         if (!queue->tq_spin)
450                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
451
452         TQ_LOCK(queue);
453         gtaskqueue_drain_tq_queue(queue);
454         gtaskqueue_drain_tq_active(queue);
455         TQ_UNLOCK(queue);
456 }
457
458 static int
459 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
460     cpuset_t *mask, const char *name, va_list ap)
461 {
462         char ktname[MAXCOMLEN + 1];
463         struct thread *td;
464         struct gtaskqueue *tq;
465         int i, error;
466
467         if (count <= 0)
468                 return (EINVAL);
469
470         vsnprintf(ktname, sizeof(ktname), name, ap);
471         tq = *tqp;
472
473         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
474             M_NOWAIT | M_ZERO);
475         if (tq->tq_threads == NULL) {
476                 printf("%s: no memory for %s threads\n", __func__, ktname);
477                 return (ENOMEM);
478         }
479
480         for (i = 0; i < count; i++) {
481                 if (count == 1)
482                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
483                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
484                 else
485                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
486                             &tq->tq_threads[i], RFSTOPPED, 0,
487                             "%s_%d", ktname, i);
488                 if (error) {
489                         /* should be ok to continue, taskqueue_free will dtrt */
490                         printf("%s: kthread_add(%s): error %d", __func__,
491                             ktname, error);
492                         tq->tq_threads[i] = NULL;               /* paranoid */
493                 } else
494                         tq->tq_tcount++;
495         }
496         for (i = 0; i < count; i++) {
497                 if (tq->tq_threads[i] == NULL)
498                         continue;
499                 td = tq->tq_threads[i];
500                 if (mask) {
501                         error = cpuset_setthread(td->td_tid, mask);
502                         /*
503                          * Failing to pin is rarely an actual fatal error;
504                          * it'll just affect performance.
505                          */
506                         if (error)
507                                 printf("%s: curthread=%llu: can't pin; "
508                                     "error=%d\n",
509                                     __func__,
510                                     (unsigned long long) td->td_tid,
511                                     error);
512                 }
513                 thread_lock(td);
514                 sched_prio(td, pri);
515                 sched_add(td, SRQ_BORING);
516                 thread_unlock(td);
517         }
518
519         return (0);
520 }
521
522 static int
523 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
524     const char *name, ...)
525 {
526         va_list ap;
527         int error;
528
529         va_start(ap, name);
530         error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
531         va_end(ap);
532         return (error);
533 }
534
535 static inline void
536 gtaskqueue_run_callback(struct gtaskqueue *tq,
537     enum taskqueue_callback_type cb_type)
538 {
539         taskqueue_callback_fn tq_callback;
540
541         TQ_ASSERT_UNLOCKED(tq);
542         tq_callback = tq->tq_callbacks[cb_type];
543         if (tq_callback != NULL)
544                 tq_callback(tq->tq_cb_contexts[cb_type]);
545 }
546
547 static void
548 gtaskqueue_thread_loop(void *arg)
549 {
550         struct gtaskqueue **tqp, *tq;
551
552         tqp = arg;
553         tq = *tqp;
554         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
555         TQ_LOCK(tq);
556         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
557                 /* XXX ? */
558                 gtaskqueue_run_locked(tq);
559                 /*
560                  * Because taskqueue_run() can drop tq_mutex, we need to
561                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
562                  * meantime, which means we missed a wakeup.
563                  */
564                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
565                         break;
566                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
567         }
568         gtaskqueue_run_locked(tq);
569         /*
570          * This thread is on its way out, so just drop the lock temporarily
571          * in order to call the shutdown callback.  This allows the callback
572          * to look at the taskqueue, even just before it dies.
573          */
574         TQ_UNLOCK(tq);
575         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
576         TQ_LOCK(tq);
577
578         /* rendezvous with thread that asked us to terminate */
579         tq->tq_tcount--;
580         wakeup_one(tq->tq_threads);
581         TQ_UNLOCK(tq);
582         kthread_exit();
583 }
584
585 static void
586 gtaskqueue_thread_enqueue(void *context)
587 {
588         struct gtaskqueue **tqp, *tq;
589
590         tqp = context;
591         tq = *tqp;
592         wakeup_one(tq);
593 }
594
595
596 static struct gtaskqueue *
597 gtaskqueue_create_fast(const char *name, int mflags,
598                  taskqueue_enqueue_fn enqueue, void *context)
599 {
600         return _gtaskqueue_create(name, mflags, enqueue, context,
601                         MTX_SPIN, "fast_taskqueue");
602 }
603
604
605 struct taskqgroup_cpu {
606         LIST_HEAD(, grouptask)  tgc_tasks;
607         struct gtaskqueue       *tgc_taskq;
608         int     tgc_cnt;
609         int     tgc_cpu;
610 };
611
612 struct taskqgroup {
613         struct taskqgroup_cpu tqg_queue[MAXCPU];
614         struct mtx      tqg_lock;
615         const char *    tqg_name;
616         int             tqg_adjusting;
617         int             tqg_stride;
618         int             tqg_cnt;
619 };
620
621 struct taskq_bind_task {
622         struct gtask bt_task;
623         int     bt_cpuid;
624 };
625
626 static void
627 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
628 {
629         struct taskqgroup_cpu *qcpu;
630
631         qcpu = &qgroup->tqg_queue[idx];
632         LIST_INIT(&qcpu->tgc_tasks);
633         qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
634             taskqueue_thread_enqueue, &qcpu->tgc_taskq);
635         gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
636             "%s_%d", qgroup->tqg_name, idx);
637         qcpu->tgc_cpu = cpu;
638 }
639
640 static void
641 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
642 {
643
644         gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
645 }
646
647 /*
648  * Find the taskq with least # of tasks that doesn't currently have any
649  * other queues from the uniq identifier.
650  */
651 static int
652 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
653 {
654         struct grouptask *n;
655         int i, idx, mincnt;
656         int strict;
657
658         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
659         if (qgroup->tqg_cnt == 0)
660                 return (0);
661         idx = -1;
662         mincnt = INT_MAX;
663         /*
664          * Two passes;  First scan for a queue with the least tasks that
665          * does not already service this uniq id.  If that fails simply find
666          * the queue with the least total tasks;
667          */
668         for (strict = 1; mincnt == INT_MAX; strict = 0) {
669                 for (i = 0; i < qgroup->tqg_cnt; i++) {
670                         if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
671                                 continue;
672                         if (strict) {
673                                 LIST_FOREACH(n,
674                                     &qgroup->tqg_queue[i].tgc_tasks, gt_list)
675                                         if (n->gt_uniq == uniq)
676                                                 break;
677                                 if (n != NULL)
678                                         continue;
679                         }
680                         mincnt = qgroup->tqg_queue[i].tgc_cnt;
681                         idx = i;
682                 }
683         }
684         if (idx == -1)
685                 panic("%s: failed to pick a qid.", __func__);
686
687         return (idx);
688 }
689
690 /*
691  * smp_started is unusable since it is not set for UP kernels or even for
692  * SMP kernels when there is 1 CPU.  This is usually handled by adding a
693  * (mp_ncpus == 1) test, but that would be broken here since we need to
694  * to synchronize with the SI_SUB_SMP ordering.  Even in the pure SMP case
695  * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
696  *
697  * So maintain our own flag.  It must be set after all CPUs are started
698  * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
699  * adjustment is properly delayed.  SI_ORDER_FOURTH is clearly before
700  * SI_ORDER_ANY and unclearly after the CPUs are started.  It would be
701  * simpler for adjustment to pass a flag indicating if it is delayed.
702  */ 
703
704 static int tqg_smp_started;
705
706 static void
707 tqg_record_smp_started(void *arg)
708 {
709         tqg_smp_started = 1;
710 }
711
712 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
713         tqg_record_smp_started, NULL);
714
715 void
716 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
717     void *uniq, device_t dev, struct resource *irq, const char *name)
718 {
719         int cpu, qid, error;
720
721         gtask->gt_uniq = uniq;
722         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
723         gtask->gt_dev = dev;
724         gtask->gt_irq = irq;
725         gtask->gt_cpu = -1;
726         mtx_lock(&qgroup->tqg_lock);
727         qid = taskqgroup_find(qgroup, uniq);
728         qgroup->tqg_queue[qid].tgc_cnt++;
729         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
730         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
731         if (dev != NULL && irq != NULL && tqg_smp_started) {
732                 cpu = qgroup->tqg_queue[qid].tgc_cpu;
733                 gtask->gt_cpu = cpu;
734                 mtx_unlock(&qgroup->tqg_lock);
735                 error = bus_bind_intr(dev, irq, cpu);
736                 if (error)
737                         printf("%s: binding interrupt failed for %s: %d\n",
738                             __func__, gtask->gt_name, error);
739         } else
740                 mtx_unlock(&qgroup->tqg_lock);
741 }
742
743 static void
744 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
745 {
746         int qid, cpu, error;
747
748         mtx_lock(&qgroup->tqg_lock);
749         qid = taskqgroup_find(qgroup, gtask->gt_uniq);
750         cpu = qgroup->tqg_queue[qid].tgc_cpu;
751         if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) {
752                 mtx_unlock(&qgroup->tqg_lock);
753                 error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu);
754                 mtx_lock(&qgroup->tqg_lock);
755                 if (error)
756                         printf("%s: binding interrupt failed for %s: %d\n",
757                             __func__, gtask->gt_name, error);
758
759         }
760         qgroup->tqg_queue[qid].tgc_cnt++;
761         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
762         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
763         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
764         mtx_unlock(&qgroup->tqg_lock);
765 }
766
767 int
768 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
769     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
770 {
771         int i, qid, error;
772
773         qid = -1;
774         gtask->gt_uniq = uniq;
775         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
776         gtask->gt_dev = dev;
777         gtask->gt_irq = irq;
778         gtask->gt_cpu = cpu;
779         mtx_lock(&qgroup->tqg_lock);
780         if (tqg_smp_started) {
781                 for (i = 0; i < qgroup->tqg_cnt; i++)
782                         if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
783                                 qid = i;
784                                 break;
785                         }
786                 if (qid == -1) {
787                         mtx_unlock(&qgroup->tqg_lock);
788                         printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
789                         return (EINVAL);
790                 }
791         } else
792                 qid = 0;
793         qgroup->tqg_queue[qid].tgc_cnt++;
794         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
795         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
796         cpu = qgroup->tqg_queue[qid].tgc_cpu;
797         mtx_unlock(&qgroup->tqg_lock);
798
799         if (dev != NULL && irq != NULL && tqg_smp_started) {
800                 error = bus_bind_intr(dev, irq, cpu);
801                 if (error)
802                         printf("%s: binding interrupt failed for %s: %d\n",
803                             __func__, gtask->gt_name, error);
804         }
805         return (0);
806 }
807
808 static int
809 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
810 {
811         device_t dev;
812         struct resource *irq;
813         int cpu, error, i, qid;
814
815         qid = -1;
816         dev = gtask->gt_dev;
817         irq = gtask->gt_irq;
818         cpu = gtask->gt_cpu;
819         MPASS(tqg_smp_started);
820         mtx_lock(&qgroup->tqg_lock);
821         for (i = 0; i < qgroup->tqg_cnt; i++)
822                 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
823                         qid = i;
824                         break;
825                 }
826         if (qid == -1) {
827                 mtx_unlock(&qgroup->tqg_lock);
828                 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
829                 return (EINVAL);
830         }
831         qgroup->tqg_queue[qid].tgc_cnt++;
832         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
833         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
834         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
835         mtx_unlock(&qgroup->tqg_lock);
836
837         if (dev != NULL && irq != NULL) {
838                 error = bus_bind_intr(dev, irq, cpu);
839                 if (error)
840                         printf("%s: binding interrupt failed for %s: %d\n",
841                             __func__, gtask->gt_name, error);
842         }
843         return (0);
844 }
845
846 void
847 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
848 {
849         int i;
850
851         grouptask_block(gtask);
852         mtx_lock(&qgroup->tqg_lock);
853         for (i = 0; i < qgroup->tqg_cnt; i++)
854                 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
855                         break;
856         if (i == qgroup->tqg_cnt)
857                 panic("%s: task %s not in group", __func__, gtask->gt_name);
858         qgroup->tqg_queue[i].tgc_cnt--;
859         LIST_REMOVE(gtask, gt_list);
860         mtx_unlock(&qgroup->tqg_lock);
861         gtask->gt_taskqueue = NULL;
862         gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
863 }
864
865 static void
866 taskqgroup_binder(void *ctx)
867 {
868         struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
869         cpuset_t mask;
870         int error;
871
872         CPU_ZERO(&mask);
873         CPU_SET(gtask->bt_cpuid, &mask);
874         error = cpuset_setthread(curthread->td_tid, &mask);
875         thread_lock(curthread);
876         sched_bind(curthread, gtask->bt_cpuid);
877         thread_unlock(curthread);
878
879         if (error)
880                 printf("%s: binding curthread failed: %d\n", __func__, error);
881         free(gtask, M_DEVBUF);
882 }
883
884 static void
885 taskqgroup_bind(struct taskqgroup *qgroup)
886 {
887         struct taskq_bind_task *gtask;
888         int i;
889
890         /*
891          * Bind taskqueue threads to specific CPUs, if they have been assigned
892          * one.
893          */
894         if (qgroup->tqg_cnt == 1)
895                 return;
896
897         for (i = 0; i < qgroup->tqg_cnt; i++) {
898                 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
899                 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
900                 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
901                 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
902                     &gtask->bt_task);
903         }
904 }
905
906 static void
907 taskqgroup_config_init(void *arg)
908 {
909         struct taskqgroup *qgroup = qgroup_config;
910         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
911
912         LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
913             grouptask, gt_list);
914         qgroup->tqg_queue[0].tgc_cnt = 0;
915         taskqgroup_cpu_create(qgroup, 0, 0);
916
917         qgroup->tqg_cnt = 1;
918         qgroup->tqg_stride = 1;
919 }
920
921 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND,
922         taskqgroup_config_init, NULL);
923
924 static int
925 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
926 {
927         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
928         struct grouptask *gtask;
929         int i, k, old_cnt, old_cpu, cpu;
930
931         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
932
933         if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
934                 printf("%s: failed cnt: %d stride: %d "
935                     "mp_ncpus: %d tqg_smp_started: %d\n",
936                     __func__, cnt, stride, mp_ncpus, tqg_smp_started);
937                 return (EINVAL);
938         }
939         if (qgroup->tqg_adjusting) {
940                 printf("%s failed: adjusting\n", __func__);
941                 return (EBUSY);
942         }
943         qgroup->tqg_adjusting = 1;
944         old_cnt = qgroup->tqg_cnt;
945         old_cpu = 0;
946         if (old_cnt < cnt)
947                 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
948         mtx_unlock(&qgroup->tqg_lock);
949         /*
950          * Set up queue for tasks added before boot.
951          */
952         if (old_cnt == 0) {
953                 LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
954                     grouptask, gt_list);
955                 qgroup->tqg_queue[0].tgc_cnt = 0;
956         }
957
958         /*
959          * If new taskq threads have been added.
960          */
961         cpu = old_cpu;
962         for (i = old_cnt; i < cnt; i++) {
963                 taskqgroup_cpu_create(qgroup, i, cpu);
964
965                 for (k = 0; k < stride; k++)
966                         cpu = CPU_NEXT(cpu);
967         }
968         mtx_lock(&qgroup->tqg_lock);
969         qgroup->tqg_cnt = cnt;
970         qgroup->tqg_stride = stride;
971
972         /*
973          * Adjust drivers to use new taskqs.
974          */
975         for (i = 0; i < old_cnt; i++) {
976                 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
977                         LIST_REMOVE(gtask, gt_list);
978                         qgroup->tqg_queue[i].tgc_cnt--;
979                         LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
980                 }
981         }
982         mtx_unlock(&qgroup->tqg_lock);
983
984         while ((gtask = LIST_FIRST(&gtask_head))) {
985                 LIST_REMOVE(gtask, gt_list);
986                 if (gtask->gt_cpu == -1)
987                         taskqgroup_attach_deferred(qgroup, gtask);
988                 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
989                         taskqgroup_attach_deferred(qgroup, gtask);
990         }
991
992 #ifdef INVARIANTS
993         mtx_lock(&qgroup->tqg_lock);
994         for (i = 0; i < qgroup->tqg_cnt; i++) {
995                 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
996                 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
997                         MPASS(gtask->gt_taskqueue != NULL);
998         }
999         mtx_unlock(&qgroup->tqg_lock);
1000 #endif
1001         /*
1002          * If taskq thread count has been reduced.
1003          */
1004         for (i = cnt; i < old_cnt; i++)
1005                 taskqgroup_cpu_remove(qgroup, i);
1006
1007         taskqgroup_bind(qgroup);
1008
1009         mtx_lock(&qgroup->tqg_lock);
1010         qgroup->tqg_adjusting = 0;
1011
1012         return (0);
1013 }
1014
1015 int
1016 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
1017 {
1018         int error;
1019
1020         mtx_lock(&qgroup->tqg_lock);
1021         error = _taskqgroup_adjust(qgroup, cnt, stride);
1022         mtx_unlock(&qgroup->tqg_lock);
1023
1024         return (error);
1025 }
1026
1027 struct taskqgroup *
1028 taskqgroup_create(const char *name)
1029 {
1030         struct taskqgroup *qgroup;
1031
1032         qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
1033         mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
1034         qgroup->tqg_name = name;
1035         LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
1036
1037         return (qgroup);
1038 }
1039
1040 void
1041 taskqgroup_destroy(struct taskqgroup *qgroup)
1042 {
1043
1044 }
1045
1046 void
1047 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
1048     const char *name)
1049 {
1050
1051         GROUPTASK_INIT(gtask, 0, fn, ctx);
1052         taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name);
1053 }
1054
1055 void
1056 taskqgroup_config_gtask_deinit(struct grouptask *gtask)
1057 {
1058
1059         taskqgroup_detach(qgroup_config, gtask);
1060 }