]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_gtaskqueue.c
sysctl(9): Fix a few mandoc related issues
[FreeBSD/FreeBSD.git] / sys / kern / subr_gtaskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/kernel.h>
37 #include <sys/kthread.h>
38 #include <sys/libkern.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/epoch.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/gtaskqueue.h>
48 #include <sys/unistd.h>
49 #include <machine/stdarg.h>
50
51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
52 static void     gtaskqueue_thread_enqueue(void *);
53 static void     gtaskqueue_thread_loop(void *arg);
54 static int      task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
55 static void     gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
56
57 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
58
59 struct gtaskqueue_busy {
60         struct gtask            *tb_running;
61         u_int                    tb_seq;
62         LIST_ENTRY(gtaskqueue_busy) tb_link;
63 };
64
65 typedef void (*gtaskqueue_enqueue_fn)(void *context);
66
67 struct gtaskqueue {
68         STAILQ_HEAD(, gtask)    tq_queue;
69         LIST_HEAD(, gtaskqueue_busy) tq_active;
70         u_int                   tq_seq;
71         int                     tq_callouts;
72         struct mtx_padalign     tq_mutex;
73         gtaskqueue_enqueue_fn   tq_enqueue;
74         void                    *tq_context;
75         char                    *tq_name;
76         struct thread           **tq_threads;
77         int                     tq_tcount;
78         int                     tq_spin;
79         int                     tq_flags;
80         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
81         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
82 };
83
84 #define TQ_FLAGS_ACTIVE         (1 << 0)
85 #define TQ_FLAGS_BLOCKED        (1 << 1)
86 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
87
88 #define DT_CALLOUT_ARMED        (1 << 0)
89
90 #define TQ_LOCK(tq)                                                     \
91         do {                                                            \
92                 if ((tq)->tq_spin)                                      \
93                         mtx_lock_spin(&(tq)->tq_mutex);                 \
94                 else                                                    \
95                         mtx_lock(&(tq)->tq_mutex);                      \
96         } while (0)
97 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
98
99 #define TQ_UNLOCK(tq)                                                   \
100         do {                                                            \
101                 if ((tq)->tq_spin)                                      \
102                         mtx_unlock_spin(&(tq)->tq_mutex);               \
103                 else                                                    \
104                         mtx_unlock(&(tq)->tq_mutex);                    \
105         } while (0)
106 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
107
108 #ifdef INVARIANTS
109 static void
110 gtask_dump(struct gtask *gtask)
111 {
112         printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
113                gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
114 }
115 #endif
116
117 static __inline int
118 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
119 {
120         if (tq->tq_spin)
121                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
122         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
123 }
124
125 static struct gtaskqueue *
126 _gtaskqueue_create(const char *name, int mflags,
127                  taskqueue_enqueue_fn enqueue, void *context,
128                  int mtxflags, const char *mtxname __unused)
129 {
130         struct gtaskqueue *queue;
131         char *tq_name;
132
133         tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
134         if (!tq_name)
135                 return (NULL);
136
137         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
138
139         queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
140         if (!queue) {
141                 free(tq_name, M_GTASKQUEUE);
142                 return (NULL);
143         }
144
145         STAILQ_INIT(&queue->tq_queue);
146         LIST_INIT(&queue->tq_active);
147         queue->tq_enqueue = enqueue;
148         queue->tq_context = context;
149         queue->tq_name = tq_name;
150         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
151         queue->tq_flags |= TQ_FLAGS_ACTIVE;
152         if (enqueue == gtaskqueue_thread_enqueue)
153                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
154         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
155
156         return (queue);
157 }
158
159 /*
160  * Signal a taskqueue thread to terminate.
161  */
162 static void
163 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
164 {
165
166         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
167                 wakeup(tq);
168                 TQ_SLEEP(tq, pp, "gtq_destroy");
169         }
170 }
171
172 static void __unused
173 gtaskqueue_free(struct gtaskqueue *queue)
174 {
175
176         TQ_LOCK(queue);
177         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
178         gtaskqueue_terminate(queue->tq_threads, queue);
179         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
180         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
181         mtx_destroy(&queue->tq_mutex);
182         free(queue->tq_threads, M_GTASKQUEUE);
183         free(queue->tq_name, M_GTASKQUEUE);
184         free(queue, M_GTASKQUEUE);
185 }
186
187 /*
188  * Wait for all to complete, then prevent it from being enqueued
189  */
190 void
191 grouptask_block(struct grouptask *grouptask)
192 {
193         struct gtaskqueue *queue = grouptask->gt_taskqueue;
194         struct gtask *gtask = &grouptask->gt_task;
195
196 #ifdef INVARIANTS
197         if (queue == NULL) {
198                 gtask_dump(gtask);
199                 panic("queue == NULL");
200         }
201 #endif
202         TQ_LOCK(queue);
203         gtask->ta_flags |= TASK_NOENQUEUE;
204         gtaskqueue_drain_locked(queue, gtask);
205         TQ_UNLOCK(queue);
206 }
207
208 void
209 grouptask_unblock(struct grouptask *grouptask)
210 {
211         struct gtaskqueue *queue = grouptask->gt_taskqueue;
212         struct gtask *gtask = &grouptask->gt_task;
213
214 #ifdef INVARIANTS
215         if (queue == NULL) {
216                 gtask_dump(gtask);
217                 panic("queue == NULL");
218         }
219 #endif
220         TQ_LOCK(queue);
221         gtask->ta_flags &= ~TASK_NOENQUEUE;
222         TQ_UNLOCK(queue);
223 }
224
225 int
226 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
227 {
228 #ifdef INVARIANTS
229         if (queue == NULL) {
230                 gtask_dump(gtask);
231                 panic("queue == NULL");
232         }
233 #endif
234         TQ_LOCK(queue);
235         if (gtask->ta_flags & TASK_ENQUEUED) {
236                 TQ_UNLOCK(queue);
237                 return (0);
238         }
239         if (gtask->ta_flags & TASK_NOENQUEUE) {
240                 TQ_UNLOCK(queue);
241                 return (EAGAIN);
242         }
243         STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
244         gtask->ta_flags |= TASK_ENQUEUED;
245         TQ_UNLOCK(queue);
246         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
247                 queue->tq_enqueue(queue->tq_context);
248         return (0);
249 }
250
251 static void
252 gtaskqueue_task_nop_fn(void *context)
253 {
254 }
255
256 /*
257  * Block until all currently queued tasks in this taskqueue
258  * have begun execution.  Tasks queued during execution of
259  * this function are ignored.
260  */
261 static void
262 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
263 {
264         struct gtask t_barrier;
265
266         if (STAILQ_EMPTY(&queue->tq_queue))
267                 return;
268
269         /*
270          * Enqueue our barrier after all current tasks, but with
271          * the highest priority so that newly queued tasks cannot
272          * pass it.  Because of the high priority, we can not use
273          * taskqueue_enqueue_locked directly (which drops the lock
274          * anyway) so just insert it at tail while we have the
275          * queue lock.
276          */
277         GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
278         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
279         t_barrier.ta_flags |= TASK_ENQUEUED;
280
281         /*
282          * Once the barrier has executed, all previously queued tasks
283          * have completed or are currently executing.
284          */
285         while (t_barrier.ta_flags & TASK_ENQUEUED)
286                 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
287 }
288
289 /*
290  * Block until all currently executing tasks for this taskqueue
291  * complete.  Tasks that begin execution during the execution
292  * of this function are ignored.
293  */
294 static void
295 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
296 {
297         struct gtaskqueue_busy *tb;
298         u_int seq;
299
300         if (LIST_EMPTY(&queue->tq_active))
301                 return;
302
303         /* Block taskq_terminate().*/
304         queue->tq_callouts++;
305
306         /* Wait for any active task with sequence from the past. */
307         seq = queue->tq_seq;
308 restart:
309         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
310                 if ((int)(tb->tb_seq - seq) <= 0) {
311                         TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
312                         goto restart;
313                 }
314         }
315
316         /* Release taskqueue_terminate(). */
317         queue->tq_callouts--;
318         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
319                 wakeup_one(queue->tq_threads);
320 }
321
322 void
323 gtaskqueue_block(struct gtaskqueue *queue)
324 {
325
326         TQ_LOCK(queue);
327         queue->tq_flags |= TQ_FLAGS_BLOCKED;
328         TQ_UNLOCK(queue);
329 }
330
331 void
332 gtaskqueue_unblock(struct gtaskqueue *queue)
333 {
334
335         TQ_LOCK(queue);
336         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
337         if (!STAILQ_EMPTY(&queue->tq_queue))
338                 queue->tq_enqueue(queue->tq_context);
339         TQ_UNLOCK(queue);
340 }
341
342 static void
343 gtaskqueue_run_locked(struct gtaskqueue *queue)
344 {
345         struct epoch_tracker et;
346         struct gtaskqueue_busy tb;
347         struct gtask *gtask;
348         bool in_net_epoch;
349
350         KASSERT(queue != NULL, ("tq is NULL"));
351         TQ_ASSERT_LOCKED(queue);
352         tb.tb_running = NULL;
353         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
354         in_net_epoch = false;
355
356         while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
357                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
358                 gtask->ta_flags &= ~TASK_ENQUEUED;
359                 tb.tb_running = gtask;
360                 tb.tb_seq = ++queue->tq_seq;
361                 TQ_UNLOCK(queue);
362
363                 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
364                 if (!in_net_epoch && TASK_IS_NET(gtask)) {
365                         in_net_epoch = true;
366                         NET_EPOCH_ENTER(et);
367                 } else if (in_net_epoch && !TASK_IS_NET(gtask)) {
368                         NET_EPOCH_EXIT(et);
369                         in_net_epoch = false;
370                 }
371                 gtask->ta_func(gtask->ta_context);
372
373                 TQ_LOCK(queue);
374                 wakeup(gtask);
375         }
376         if (in_net_epoch)
377                 NET_EPOCH_EXIT(et);
378         LIST_REMOVE(&tb, tb_link);
379 }
380
381 static int
382 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
383 {
384         struct gtaskqueue_busy *tb;
385
386         TQ_ASSERT_LOCKED(queue);
387         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
388                 if (tb->tb_running == gtask)
389                         return (1);
390         }
391         return (0);
392 }
393
394 static int
395 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
396 {
397
398         if (gtask->ta_flags & TASK_ENQUEUED)
399                 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
400         gtask->ta_flags &= ~TASK_ENQUEUED;
401         return (task_is_running(queue, gtask) ? EBUSY : 0);
402 }
403
404 int
405 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
406 {
407         int error;
408
409         TQ_LOCK(queue);
410         error = gtaskqueue_cancel_locked(queue, gtask);
411         TQ_UNLOCK(queue);
412
413         return (error);
414 }
415
416 static void
417 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
418 {
419         while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
420                 TQ_SLEEP(queue, gtask, "gtq_drain");
421 }
422
423 void
424 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
425 {
426
427         if (!queue->tq_spin)
428                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
429
430         TQ_LOCK(queue);
431         gtaskqueue_drain_locked(queue, gtask);
432         TQ_UNLOCK(queue);
433 }
434
435 void
436 gtaskqueue_drain_all(struct gtaskqueue *queue)
437 {
438
439         if (!queue->tq_spin)
440                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
441
442         TQ_LOCK(queue);
443         gtaskqueue_drain_tq_queue(queue);
444         gtaskqueue_drain_tq_active(queue);
445         TQ_UNLOCK(queue);
446 }
447
448 static int
449 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
450     cpuset_t *mask, const char *name, va_list ap)
451 {
452         char ktname[MAXCOMLEN + 1];
453         struct thread *td;
454         struct gtaskqueue *tq;
455         int i, error;
456
457         if (count <= 0)
458                 return (EINVAL);
459
460         vsnprintf(ktname, sizeof(ktname), name, ap);
461         tq = *tqp;
462
463         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
464             M_NOWAIT | M_ZERO);
465         if (tq->tq_threads == NULL) {
466                 printf("%s: no memory for %s threads\n", __func__, ktname);
467                 return (ENOMEM);
468         }
469
470         for (i = 0; i < count; i++) {
471                 if (count == 1)
472                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
473                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
474                 else
475                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
476                             &tq->tq_threads[i], RFSTOPPED, 0,
477                             "%s_%d", ktname, i);
478                 if (error) {
479                         /* should be ok to continue, taskqueue_free will dtrt */
480                         printf("%s: kthread_add(%s): error %d", __func__,
481                             ktname, error);
482                         tq->tq_threads[i] = NULL;               /* paranoid */
483                 } else
484                         tq->tq_tcount++;
485         }
486         for (i = 0; i < count; i++) {
487                 if (tq->tq_threads[i] == NULL)
488                         continue;
489                 td = tq->tq_threads[i];
490                 if (mask) {
491                         error = cpuset_setthread(td->td_tid, mask);
492                         /*
493                          * Failing to pin is rarely an actual fatal error;
494                          * it'll just affect performance.
495                          */
496                         if (error)
497                                 printf("%s: curthread=%llu: can't pin; "
498                                     "error=%d\n",
499                                     __func__,
500                                     (unsigned long long) td->td_tid,
501                                     error);
502                 }
503                 thread_lock(td);
504                 sched_prio(td, pri);
505                 sched_add(td, SRQ_BORING);
506         }
507
508         return (0);
509 }
510
511 static int
512 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
513     const char *name, ...)
514 {
515         va_list ap;
516         int error;
517
518         va_start(ap, name);
519         error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
520         va_end(ap);
521         return (error);
522 }
523
524 static inline void
525 gtaskqueue_run_callback(struct gtaskqueue *tq,
526     enum taskqueue_callback_type cb_type)
527 {
528         taskqueue_callback_fn tq_callback;
529
530         TQ_ASSERT_UNLOCKED(tq);
531         tq_callback = tq->tq_callbacks[cb_type];
532         if (tq_callback != NULL)
533                 tq_callback(tq->tq_cb_contexts[cb_type]);
534 }
535
536 static void
537 gtaskqueue_thread_loop(void *arg)
538 {
539         struct gtaskqueue **tqp, *tq;
540
541         tqp = arg;
542         tq = *tqp;
543         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
544         TQ_LOCK(tq);
545         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
546                 /* XXX ? */
547                 gtaskqueue_run_locked(tq);
548                 /*
549                  * Because taskqueue_run() can drop tq_mutex, we need to
550                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
551                  * meantime, which means we missed a wakeup.
552                  */
553                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
554                         break;
555                 TQ_SLEEP(tq, tq, "-");
556         }
557         gtaskqueue_run_locked(tq);
558         /*
559          * This thread is on its way out, so just drop the lock temporarily
560          * in order to call the shutdown callback.  This allows the callback
561          * to look at the taskqueue, even just before it dies.
562          */
563         TQ_UNLOCK(tq);
564         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
565         TQ_LOCK(tq);
566
567         /* rendezvous with thread that asked us to terminate */
568         tq->tq_tcount--;
569         wakeup_one(tq->tq_threads);
570         TQ_UNLOCK(tq);
571         kthread_exit();
572 }
573
574 static void
575 gtaskqueue_thread_enqueue(void *context)
576 {
577         struct gtaskqueue **tqp, *tq;
578
579         tqp = context;
580         tq = *tqp;
581         wakeup_any(tq);
582 }
583
584 static struct gtaskqueue *
585 gtaskqueue_create_fast(const char *name, int mflags,
586                  taskqueue_enqueue_fn enqueue, void *context)
587 {
588         return _gtaskqueue_create(name, mflags, enqueue, context,
589                         MTX_SPIN, "fast_taskqueue");
590 }
591
592 struct taskqgroup_cpu {
593         LIST_HEAD(, grouptask) tgc_tasks;
594         struct gtaskqueue *tgc_taskq;
595         int             tgc_cnt;
596         int             tgc_cpu;
597 };
598
599 struct taskqgroup {
600         struct taskqgroup_cpu tqg_queue[MAXCPU];
601         struct mtx      tqg_lock;
602         const char *    tqg_name;
603         int             tqg_cnt;
604 };
605
606 struct taskq_bind_task {
607         struct gtask bt_task;
608         int     bt_cpuid;
609 };
610
611 static void
612 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
613 {
614         struct taskqgroup_cpu *qcpu;
615
616         qcpu = &qgroup->tqg_queue[idx];
617         LIST_INIT(&qcpu->tgc_tasks);
618         qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
619             taskqueue_thread_enqueue, &qcpu->tgc_taskq);
620         gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
621             "%s_%d", qgroup->tqg_name, idx);
622         qcpu->tgc_cpu = cpu;
623 }
624
625 /*
626  * Find the taskq with least # of tasks that doesn't currently have any
627  * other queues from the uniq identifier.
628  */
629 static int
630 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
631 {
632         struct grouptask *n;
633         int i, idx, mincnt;
634         int strict;
635
636         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
637         KASSERT(qgroup->tqg_cnt != 0,
638             ("qgroup %s has no queues", qgroup->tqg_name));
639
640         /*
641          * Two passes: first scan for a queue with the least tasks that
642          * does not already service this uniq id.  If that fails simply find
643          * the queue with the least total tasks.
644          */
645         for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX;
646             strict = 0) {
647                 for (i = 0; i < qgroup->tqg_cnt; i++) {
648                         if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
649                                 continue;
650                         if (strict) {
651                                 LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks,
652                                     gt_list)
653                                         if (n->gt_uniq == uniq)
654                                                 break;
655                                 if (n != NULL)
656                                         continue;
657                         }
658                         mincnt = qgroup->tqg_queue[i].tgc_cnt;
659                         idx = i;
660                 }
661         }
662         if (idx == -1)
663                 panic("%s: failed to pick a qid.", __func__);
664
665         return (idx);
666 }
667
668 void
669 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
670     void *uniq, device_t dev, struct resource *irq, const char *name)
671 {
672         int cpu, qid, error;
673
674         KASSERT(qgroup->tqg_cnt > 0,
675             ("qgroup %s has no queues", qgroup->tqg_name));
676
677         gtask->gt_uniq = uniq;
678         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
679         gtask->gt_dev = dev;
680         gtask->gt_irq = irq;
681         gtask->gt_cpu = -1;
682         mtx_lock(&qgroup->tqg_lock);
683         qid = taskqgroup_find(qgroup, uniq);
684         qgroup->tqg_queue[qid].tgc_cnt++;
685         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
686         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
687         if (dev != NULL && irq != NULL) {
688                 cpu = qgroup->tqg_queue[qid].tgc_cpu;
689                 gtask->gt_cpu = cpu;
690                 mtx_unlock(&qgroup->tqg_lock);
691                 error = bus_bind_intr(dev, irq, cpu);
692                 if (error)
693                         printf("%s: binding interrupt failed for %s: %d\n",
694                             __func__, gtask->gt_name, error);
695         } else
696                 mtx_unlock(&qgroup->tqg_lock);
697 }
698
699 int
700 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
701     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
702 {
703         int i, qid, error;
704
705         gtask->gt_uniq = uniq;
706         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
707         gtask->gt_dev = dev;
708         gtask->gt_irq = irq;
709         gtask->gt_cpu = cpu;
710         mtx_lock(&qgroup->tqg_lock);
711         for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++)
712                 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
713                         qid = i;
714                         break;
715                 }
716         if (qid == -1) {
717                 mtx_unlock(&qgroup->tqg_lock);
718                 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
719                 return (EINVAL);
720         }
721         qgroup->tqg_queue[qid].tgc_cnt++;
722         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
723         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
724         cpu = qgroup->tqg_queue[qid].tgc_cpu;
725         mtx_unlock(&qgroup->tqg_lock);
726
727         if (dev != NULL && irq != NULL) {
728                 error = bus_bind_intr(dev, irq, cpu);
729                 if (error)
730                         printf("%s: binding interrupt failed for %s: %d\n",
731                             __func__, gtask->gt_name, error);
732         }
733         return (0);
734 }
735
736 void
737 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
738 {
739         int i;
740
741         grouptask_block(gtask);
742         mtx_lock(&qgroup->tqg_lock);
743         for (i = 0; i < qgroup->tqg_cnt; i++)
744                 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
745                         break;
746         if (i == qgroup->tqg_cnt)
747                 panic("%s: task %s not in group", __func__, gtask->gt_name);
748         qgroup->tqg_queue[i].tgc_cnt--;
749         LIST_REMOVE(gtask, gt_list);
750         mtx_unlock(&qgroup->tqg_lock);
751         gtask->gt_taskqueue = NULL;
752         gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
753 }
754
755 static void
756 taskqgroup_binder(void *ctx)
757 {
758         struct taskq_bind_task *gtask;
759         cpuset_t mask;
760         int error;
761
762         gtask = ctx;
763         CPU_ZERO(&mask);
764         CPU_SET(gtask->bt_cpuid, &mask);
765         error = cpuset_setthread(curthread->td_tid, &mask);
766         thread_lock(curthread);
767         sched_bind(curthread, gtask->bt_cpuid);
768         thread_unlock(curthread);
769
770         if (error)
771                 printf("%s: binding curthread failed: %d\n", __func__, error);
772         free(gtask, M_DEVBUF);
773 }
774
775 void
776 taskqgroup_bind(struct taskqgroup *qgroup)
777 {
778         struct taskq_bind_task *gtask;
779         int i;
780
781         /*
782          * Bind taskqueue threads to specific CPUs, if they have been assigned
783          * one.
784          */
785         if (qgroup->tqg_cnt == 1)
786                 return;
787
788         for (i = 0; i < qgroup->tqg_cnt; i++) {
789                 gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK);
790                 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
791                 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
792                 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
793                     &gtask->bt_task);
794         }
795 }
796
797 struct taskqgroup *
798 taskqgroup_create(const char *name, int cnt, int stride)
799 {
800         struct taskqgroup *qgroup;
801         int cpu, i, j;
802
803         qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
804         mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
805         qgroup->tqg_name = name;
806         qgroup->tqg_cnt = cnt;
807
808         for (cpu = i = 0; i < cnt; i++) {
809                 taskqgroup_cpu_create(qgroup, i, cpu);
810                 for (j = 0; j < stride; j++)
811                         cpu = CPU_NEXT(cpu);
812         }
813         return (qgroup);
814 }
815
816 void
817 taskqgroup_destroy(struct taskqgroup *qgroup)
818 {
819 }
820
821 void
822 taskqgroup_drain_all(struct taskqgroup *tqg)
823 {
824         struct gtaskqueue *q;
825
826         for (int i = 0; i < mp_ncpus; i++) {
827                 q = tqg->tqg_queue[i].tgc_taskq;
828                 if (q == NULL)
829                         continue;
830                 gtaskqueue_drain_all(q);
831         }
832 }