]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_gtaskqueue.c
Merge diff elimination updates from r355953 into vendor/llvm-project.
[FreeBSD/FreeBSD.git] / sys / kern / subr_gtaskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/kernel.h>
37 #include <sys/kthread.h>
38 #include <sys/libkern.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/gtaskqueue.h>
47 #include <sys/unistd.h>
48 #include <machine/stdarg.h>
49
50 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
51 static void     gtaskqueue_thread_enqueue(void *);
52 static void     gtaskqueue_thread_loop(void *arg);
53 static int      task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
54 static void     gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
55
56 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
57 TASKQGROUP_DEFINE(config, 1, 1);
58
59 struct gtaskqueue_busy {
60         struct gtask            *tb_running;
61         u_int                    tb_seq;
62         LIST_ENTRY(gtaskqueue_busy) tb_link;
63 };
64
65 typedef void (*gtaskqueue_enqueue_fn)(void *context);
66
67 struct gtaskqueue {
68         STAILQ_HEAD(, gtask)    tq_queue;
69         LIST_HEAD(, gtaskqueue_busy) tq_active;
70         u_int                   tq_seq;
71         int                     tq_callouts;
72         struct mtx_padalign     tq_mutex;
73         gtaskqueue_enqueue_fn   tq_enqueue;
74         void                    *tq_context;
75         char                    *tq_name;
76         struct thread           **tq_threads;
77         int                     tq_tcount;
78         int                     tq_spin;
79         int                     tq_flags;
80         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
81         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
82 };
83
84 #define TQ_FLAGS_ACTIVE         (1 << 0)
85 #define TQ_FLAGS_BLOCKED        (1 << 1)
86 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
87
88 #define DT_CALLOUT_ARMED        (1 << 0)
89
90 #define TQ_LOCK(tq)                                                     \
91         do {                                                            \
92                 if ((tq)->tq_spin)                                      \
93                         mtx_lock_spin(&(tq)->tq_mutex);                 \
94                 else                                                    \
95                         mtx_lock(&(tq)->tq_mutex);                      \
96         } while (0)
97 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
98
99 #define TQ_UNLOCK(tq)                                                   \
100         do {                                                            \
101                 if ((tq)->tq_spin)                                      \
102                         mtx_unlock_spin(&(tq)->tq_mutex);               \
103                 else                                                    \
104                         mtx_unlock(&(tq)->tq_mutex);                    \
105         } while (0)
106 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
107
108 #ifdef INVARIANTS
109 static void
110 gtask_dump(struct gtask *gtask)
111 {
112         printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
113                gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
114 }
115 #endif
116
117 static __inline int
118 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
119 {
120         if (tq->tq_spin)
121                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
122         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
123 }
124
125 static struct gtaskqueue *
126 _gtaskqueue_create(const char *name, int mflags,
127                  taskqueue_enqueue_fn enqueue, void *context,
128                  int mtxflags, const char *mtxname __unused)
129 {
130         struct gtaskqueue *queue;
131         char *tq_name;
132
133         tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
134         if (!tq_name)
135                 return (NULL);
136
137         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
138
139         queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
140         if (!queue) {
141                 free(tq_name, M_GTASKQUEUE);
142                 return (NULL);
143         }
144
145         STAILQ_INIT(&queue->tq_queue);
146         LIST_INIT(&queue->tq_active);
147         queue->tq_enqueue = enqueue;
148         queue->tq_context = context;
149         queue->tq_name = tq_name;
150         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
151         queue->tq_flags |= TQ_FLAGS_ACTIVE;
152         if (enqueue == gtaskqueue_thread_enqueue)
153                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
154         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
155
156         return (queue);
157 }
158
159
160 /*
161  * Signal a taskqueue thread to terminate.
162  */
163 static void
164 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
165 {
166
167         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
168                 wakeup(tq);
169                 TQ_SLEEP(tq, pp, "gtq_destroy");
170         }
171 }
172
173 static void
174 gtaskqueue_free(struct gtaskqueue *queue)
175 {
176
177         TQ_LOCK(queue);
178         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
179         gtaskqueue_terminate(queue->tq_threads, queue);
180         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
181         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
182         mtx_destroy(&queue->tq_mutex);
183         free(queue->tq_threads, M_GTASKQUEUE);
184         free(queue->tq_name, M_GTASKQUEUE);
185         free(queue, M_GTASKQUEUE);
186 }
187
188 /*
189  * Wait for all to complete, then prevent it from being enqueued
190  */
191 void
192 grouptask_block(struct grouptask *grouptask)
193 {
194         struct gtaskqueue *queue = grouptask->gt_taskqueue;
195         struct gtask *gtask = &grouptask->gt_task;
196
197 #ifdef INVARIANTS
198         if (queue == NULL) {
199                 gtask_dump(gtask);
200                 panic("queue == NULL");
201         }
202 #endif
203         TQ_LOCK(queue);
204         gtask->ta_flags |= TASK_NOENQUEUE;
205         gtaskqueue_drain_locked(queue, gtask);
206         TQ_UNLOCK(queue);
207 }
208
209 void
210 grouptask_unblock(struct grouptask *grouptask)
211 {
212         struct gtaskqueue *queue = grouptask->gt_taskqueue;
213         struct gtask *gtask = &grouptask->gt_task;
214
215 #ifdef INVARIANTS
216         if (queue == NULL) {
217                 gtask_dump(gtask);
218                 panic("queue == NULL");
219         }
220 #endif
221         TQ_LOCK(queue);
222         gtask->ta_flags &= ~TASK_NOENQUEUE;
223         TQ_UNLOCK(queue);
224 }
225
226 int
227 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
228 {
229 #ifdef INVARIANTS
230         if (queue == NULL) {
231                 gtask_dump(gtask);
232                 panic("queue == NULL");
233         }
234 #endif
235         TQ_LOCK(queue);
236         if (gtask->ta_flags & TASK_ENQUEUED) {
237                 TQ_UNLOCK(queue);
238                 return (0);
239         }
240         if (gtask->ta_flags & TASK_NOENQUEUE) {
241                 TQ_UNLOCK(queue);
242                 return (EAGAIN);
243         }
244         STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
245         gtask->ta_flags |= TASK_ENQUEUED;
246         TQ_UNLOCK(queue);
247         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
248                 queue->tq_enqueue(queue->tq_context);
249         return (0);
250 }
251
252 static void
253 gtaskqueue_task_nop_fn(void *context)
254 {
255 }
256
257 /*
258  * Block until all currently queued tasks in this taskqueue
259  * have begun execution.  Tasks queued during execution of
260  * this function are ignored.
261  */
262 static void
263 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
264 {
265         struct gtask t_barrier;
266
267         if (STAILQ_EMPTY(&queue->tq_queue))
268                 return;
269
270         /*
271          * Enqueue our barrier after all current tasks, but with
272          * the highest priority so that newly queued tasks cannot
273          * pass it.  Because of the high priority, we can not use
274          * taskqueue_enqueue_locked directly (which drops the lock
275          * anyway) so just insert it at tail while we have the
276          * queue lock.
277          */
278         GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
279         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
280         t_barrier.ta_flags |= TASK_ENQUEUED;
281
282         /*
283          * Once the barrier has executed, all previously queued tasks
284          * have completed or are currently executing.
285          */
286         while (t_barrier.ta_flags & TASK_ENQUEUED)
287                 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
288 }
289
290 /*
291  * Block until all currently executing tasks for this taskqueue
292  * complete.  Tasks that begin execution during the execution
293  * of this function are ignored.
294  */
295 static void
296 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
297 {
298         struct gtaskqueue_busy *tb;
299         u_int seq;
300
301         if (LIST_EMPTY(&queue->tq_active))
302                 return;
303
304         /* Block taskq_terminate().*/
305         queue->tq_callouts++;
306
307         /* Wait for any active task with sequence from the past. */
308         seq = queue->tq_seq;
309 restart:
310         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
311                 if ((int)(tb->tb_seq - seq) <= 0) {
312                         TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
313                         goto restart;
314                 }
315         }
316
317         /* Release taskqueue_terminate(). */
318         queue->tq_callouts--;
319         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
320                 wakeup_one(queue->tq_threads);
321 }
322
323 void
324 gtaskqueue_block(struct gtaskqueue *queue)
325 {
326
327         TQ_LOCK(queue);
328         queue->tq_flags |= TQ_FLAGS_BLOCKED;
329         TQ_UNLOCK(queue);
330 }
331
332 void
333 gtaskqueue_unblock(struct gtaskqueue *queue)
334 {
335
336         TQ_LOCK(queue);
337         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
338         if (!STAILQ_EMPTY(&queue->tq_queue))
339                 queue->tq_enqueue(queue->tq_context);
340         TQ_UNLOCK(queue);
341 }
342
343 static void
344 gtaskqueue_run_locked(struct gtaskqueue *queue)
345 {
346         struct gtaskqueue_busy tb;
347         struct gtask *gtask;
348
349         KASSERT(queue != NULL, ("tq is NULL"));
350         TQ_ASSERT_LOCKED(queue);
351         tb.tb_running = NULL;
352         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
353
354         while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
355                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
356                 gtask->ta_flags &= ~TASK_ENQUEUED;
357                 tb.tb_running = gtask;
358                 tb.tb_seq = ++queue->tq_seq;
359                 TQ_UNLOCK(queue);
360
361                 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
362                 gtask->ta_func(gtask->ta_context);
363
364                 TQ_LOCK(queue);
365                 wakeup(gtask);
366         }
367         LIST_REMOVE(&tb, tb_link);
368 }
369
370 static int
371 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
372 {
373         struct gtaskqueue_busy *tb;
374
375         TQ_ASSERT_LOCKED(queue);
376         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
377                 if (tb->tb_running == gtask)
378                         return (1);
379         }
380         return (0);
381 }
382
383 static int
384 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
385 {
386
387         if (gtask->ta_flags & TASK_ENQUEUED)
388                 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
389         gtask->ta_flags &= ~TASK_ENQUEUED;
390         return (task_is_running(queue, gtask) ? EBUSY : 0);
391 }
392
393 int
394 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
395 {
396         int error;
397
398         TQ_LOCK(queue);
399         error = gtaskqueue_cancel_locked(queue, gtask);
400         TQ_UNLOCK(queue);
401
402         return (error);
403 }
404
405 static void
406 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
407 {
408         while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
409                 TQ_SLEEP(queue, gtask, "gtq_drain");
410 }
411
412 void
413 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
414 {
415
416         if (!queue->tq_spin)
417                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
418
419         TQ_LOCK(queue);
420         gtaskqueue_drain_locked(queue, gtask);
421         TQ_UNLOCK(queue);
422 }
423
424 void
425 gtaskqueue_drain_all(struct gtaskqueue *queue)
426 {
427
428         if (!queue->tq_spin)
429                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
430
431         TQ_LOCK(queue);
432         gtaskqueue_drain_tq_queue(queue);
433         gtaskqueue_drain_tq_active(queue);
434         TQ_UNLOCK(queue);
435 }
436
437 static int
438 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
439     cpuset_t *mask, const char *name, va_list ap)
440 {
441         char ktname[MAXCOMLEN + 1];
442         struct thread *td;
443         struct gtaskqueue *tq;
444         int i, error;
445
446         if (count <= 0)
447                 return (EINVAL);
448
449         vsnprintf(ktname, sizeof(ktname), name, ap);
450         tq = *tqp;
451
452         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
453             M_NOWAIT | M_ZERO);
454         if (tq->tq_threads == NULL) {
455                 printf("%s: no memory for %s threads\n", __func__, ktname);
456                 return (ENOMEM);
457         }
458
459         for (i = 0; i < count; i++) {
460                 if (count == 1)
461                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
462                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
463                 else
464                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
465                             &tq->tq_threads[i], RFSTOPPED, 0,
466                             "%s_%d", ktname, i);
467                 if (error) {
468                         /* should be ok to continue, taskqueue_free will dtrt */
469                         printf("%s: kthread_add(%s): error %d", __func__,
470                             ktname, error);
471                         tq->tq_threads[i] = NULL;               /* paranoid */
472                 } else
473                         tq->tq_tcount++;
474         }
475         for (i = 0; i < count; i++) {
476                 if (tq->tq_threads[i] == NULL)
477                         continue;
478                 td = tq->tq_threads[i];
479                 if (mask) {
480                         error = cpuset_setthread(td->td_tid, mask);
481                         /*
482                          * Failing to pin is rarely an actual fatal error;
483                          * it'll just affect performance.
484                          */
485                         if (error)
486                                 printf("%s: curthread=%llu: can't pin; "
487                                     "error=%d\n",
488                                     __func__,
489                                     (unsigned long long) td->td_tid,
490                                     error);
491                 }
492                 thread_lock(td);
493                 sched_prio(td, pri);
494                 sched_add(td, SRQ_BORING);
495         }
496
497         return (0);
498 }
499
500 static int
501 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
502     const char *name, ...)
503 {
504         va_list ap;
505         int error;
506
507         va_start(ap, name);
508         error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
509         va_end(ap);
510         return (error);
511 }
512
513 static inline void
514 gtaskqueue_run_callback(struct gtaskqueue *tq,
515     enum taskqueue_callback_type cb_type)
516 {
517         taskqueue_callback_fn tq_callback;
518
519         TQ_ASSERT_UNLOCKED(tq);
520         tq_callback = tq->tq_callbacks[cb_type];
521         if (tq_callback != NULL)
522                 tq_callback(tq->tq_cb_contexts[cb_type]);
523 }
524
525 static void
526 gtaskqueue_thread_loop(void *arg)
527 {
528         struct gtaskqueue **tqp, *tq;
529
530         tqp = arg;
531         tq = *tqp;
532         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
533         TQ_LOCK(tq);
534         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
535                 /* XXX ? */
536                 gtaskqueue_run_locked(tq);
537                 /*
538                  * Because taskqueue_run() can drop tq_mutex, we need to
539                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
540                  * meantime, which means we missed a wakeup.
541                  */
542                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
543                         break;
544                 TQ_SLEEP(tq, tq, "-");
545         }
546         gtaskqueue_run_locked(tq);
547         /*
548          * This thread is on its way out, so just drop the lock temporarily
549          * in order to call the shutdown callback.  This allows the callback
550          * to look at the taskqueue, even just before it dies.
551          */
552         TQ_UNLOCK(tq);
553         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
554         TQ_LOCK(tq);
555
556         /* rendezvous with thread that asked us to terminate */
557         tq->tq_tcount--;
558         wakeup_one(tq->tq_threads);
559         TQ_UNLOCK(tq);
560         kthread_exit();
561 }
562
563 static void
564 gtaskqueue_thread_enqueue(void *context)
565 {
566         struct gtaskqueue **tqp, *tq;
567
568         tqp = context;
569         tq = *tqp;
570         wakeup_any(tq);
571 }
572
573
574 static struct gtaskqueue *
575 gtaskqueue_create_fast(const char *name, int mflags,
576                  taskqueue_enqueue_fn enqueue, void *context)
577 {
578         return _gtaskqueue_create(name, mflags, enqueue, context,
579                         MTX_SPIN, "fast_taskqueue");
580 }
581
582
583 struct taskqgroup_cpu {
584         LIST_HEAD(, grouptask)  tgc_tasks;
585         struct gtaskqueue       *tgc_taskq;
586         int     tgc_cnt;
587         int     tgc_cpu;
588 };
589
590 struct taskqgroup {
591         struct taskqgroup_cpu tqg_queue[MAXCPU];
592         struct mtx      tqg_lock;
593         const char *    tqg_name;
594         int             tqg_adjusting;
595         int             tqg_stride;
596         int             tqg_cnt;
597 };
598
599 struct taskq_bind_task {
600         struct gtask bt_task;
601         int     bt_cpuid;
602 };
603
604 static void
605 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
606 {
607         struct taskqgroup_cpu *qcpu;
608
609         qcpu = &qgroup->tqg_queue[idx];
610         LIST_INIT(&qcpu->tgc_tasks);
611         qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
612             taskqueue_thread_enqueue, &qcpu->tgc_taskq);
613         gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
614             "%s_%d", qgroup->tqg_name, idx);
615         qcpu->tgc_cpu = cpu;
616 }
617
618 static void
619 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
620 {
621
622         gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
623 }
624
625 /*
626  * Find the taskq with least # of tasks that doesn't currently have any
627  * other queues from the uniq identifier.
628  */
629 static int
630 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
631 {
632         struct grouptask *n;
633         int i, idx, mincnt;
634         int strict;
635
636         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
637         if (qgroup->tqg_cnt == 0)
638                 return (0);
639         idx = -1;
640         mincnt = INT_MAX;
641         /*
642          * Two passes;  First scan for a queue with the least tasks that
643          * does not already service this uniq id.  If that fails simply find
644          * the queue with the least total tasks;
645          */
646         for (strict = 1; mincnt == INT_MAX; strict = 0) {
647                 for (i = 0; i < qgroup->tqg_cnt; i++) {
648                         if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
649                                 continue;
650                         if (strict) {
651                                 LIST_FOREACH(n,
652                                     &qgroup->tqg_queue[i].tgc_tasks, gt_list)
653                                         if (n->gt_uniq == uniq)
654                                                 break;
655                                 if (n != NULL)
656                                         continue;
657                         }
658                         mincnt = qgroup->tqg_queue[i].tgc_cnt;
659                         idx = i;
660                 }
661         }
662         if (idx == -1)
663                 panic("%s: failed to pick a qid.", __func__);
664
665         return (idx);
666 }
667
668 /*
669  * smp_started is unusable since it is not set for UP kernels or even for
670  * SMP kernels when there is 1 CPU.  This is usually handled by adding a
671  * (mp_ncpus == 1) test, but that would be broken here since we need to
672  * to synchronize with the SI_SUB_SMP ordering.  Even in the pure SMP case
673  * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
674  *
675  * So maintain our own flag.  It must be set after all CPUs are started
676  * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
677  * adjustment is properly delayed.  SI_ORDER_FOURTH is clearly before
678  * SI_ORDER_ANY and unclearly after the CPUs are started.  It would be
679  * simpler for adjustment to pass a flag indicating if it is delayed.
680  */ 
681
682 static int tqg_smp_started;
683
684 static void
685 tqg_record_smp_started(void *arg)
686 {
687         tqg_smp_started = 1;
688 }
689
690 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
691         tqg_record_smp_started, NULL);
692
693 void
694 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
695     void *uniq, device_t dev, struct resource *irq, const char *name)
696 {
697         int cpu, qid, error;
698
699         gtask->gt_uniq = uniq;
700         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
701         gtask->gt_dev = dev;
702         gtask->gt_irq = irq;
703         gtask->gt_cpu = -1;
704         mtx_lock(&qgroup->tqg_lock);
705         qid = taskqgroup_find(qgroup, uniq);
706         qgroup->tqg_queue[qid].tgc_cnt++;
707         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
708         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
709         if (dev != NULL && irq != NULL && tqg_smp_started) {
710                 cpu = qgroup->tqg_queue[qid].tgc_cpu;
711                 gtask->gt_cpu = cpu;
712                 mtx_unlock(&qgroup->tqg_lock);
713                 error = bus_bind_intr(dev, irq, cpu);
714                 if (error)
715                         printf("%s: binding interrupt failed for %s: %d\n",
716                             __func__, gtask->gt_name, error);
717         } else
718                 mtx_unlock(&qgroup->tqg_lock);
719 }
720
721 static void
722 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
723 {
724         int qid, cpu, error;
725
726         mtx_lock(&qgroup->tqg_lock);
727         qid = taskqgroup_find(qgroup, gtask->gt_uniq);
728         cpu = qgroup->tqg_queue[qid].tgc_cpu;
729         if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) {
730                 mtx_unlock(&qgroup->tqg_lock);
731                 error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu);
732                 mtx_lock(&qgroup->tqg_lock);
733                 if (error)
734                         printf("%s: binding interrupt failed for %s: %d\n",
735                             __func__, gtask->gt_name, error);
736
737         }
738         qgroup->tqg_queue[qid].tgc_cnt++;
739         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
740         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
741         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
742         mtx_unlock(&qgroup->tqg_lock);
743 }
744
745 int
746 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
747     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
748 {
749         int i, qid, error;
750
751         qid = -1;
752         gtask->gt_uniq = uniq;
753         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
754         gtask->gt_dev = dev;
755         gtask->gt_irq = irq;
756         gtask->gt_cpu = cpu;
757         mtx_lock(&qgroup->tqg_lock);
758         if (tqg_smp_started) {
759                 for (i = 0; i < qgroup->tqg_cnt; i++)
760                         if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
761                                 qid = i;
762                                 break;
763                         }
764                 if (qid == -1) {
765                         mtx_unlock(&qgroup->tqg_lock);
766                         printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
767                         return (EINVAL);
768                 }
769         } else
770                 qid = 0;
771         qgroup->tqg_queue[qid].tgc_cnt++;
772         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
773         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
774         cpu = qgroup->tqg_queue[qid].tgc_cpu;
775         mtx_unlock(&qgroup->tqg_lock);
776
777         if (dev != NULL && irq != NULL && tqg_smp_started) {
778                 error = bus_bind_intr(dev, irq, cpu);
779                 if (error)
780                         printf("%s: binding interrupt failed for %s: %d\n",
781                             __func__, gtask->gt_name, error);
782         }
783         return (0);
784 }
785
786 static int
787 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
788 {
789         device_t dev;
790         struct resource *irq;
791         int cpu, error, i, qid;
792
793         qid = -1;
794         dev = gtask->gt_dev;
795         irq = gtask->gt_irq;
796         cpu = gtask->gt_cpu;
797         MPASS(tqg_smp_started);
798         mtx_lock(&qgroup->tqg_lock);
799         for (i = 0; i < qgroup->tqg_cnt; i++)
800                 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
801                         qid = i;
802                         break;
803                 }
804         if (qid == -1) {
805                 mtx_unlock(&qgroup->tqg_lock);
806                 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
807                 return (EINVAL);
808         }
809         qgroup->tqg_queue[qid].tgc_cnt++;
810         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
811         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
812         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
813         mtx_unlock(&qgroup->tqg_lock);
814
815         if (dev != NULL && irq != NULL) {
816                 error = bus_bind_intr(dev, irq, cpu);
817                 if (error)
818                         printf("%s: binding interrupt failed for %s: %d\n",
819                             __func__, gtask->gt_name, error);
820         }
821         return (0);
822 }
823
824 void
825 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
826 {
827         int i;
828
829         grouptask_block(gtask);
830         mtx_lock(&qgroup->tqg_lock);
831         for (i = 0; i < qgroup->tqg_cnt; i++)
832                 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
833                         break;
834         if (i == qgroup->tqg_cnt)
835                 panic("%s: task %s not in group", __func__, gtask->gt_name);
836         qgroup->tqg_queue[i].tgc_cnt--;
837         LIST_REMOVE(gtask, gt_list);
838         mtx_unlock(&qgroup->tqg_lock);
839         gtask->gt_taskqueue = NULL;
840         gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
841 }
842
843 static void
844 taskqgroup_binder(void *ctx)
845 {
846         struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
847         cpuset_t mask;
848         int error;
849
850         CPU_ZERO(&mask);
851         CPU_SET(gtask->bt_cpuid, &mask);
852         error = cpuset_setthread(curthread->td_tid, &mask);
853         thread_lock(curthread);
854         sched_bind(curthread, gtask->bt_cpuid);
855         thread_unlock(curthread);
856
857         if (error)
858                 printf("%s: binding curthread failed: %d\n", __func__, error);
859         free(gtask, M_DEVBUF);
860 }
861
862 static void
863 taskqgroup_bind(struct taskqgroup *qgroup)
864 {
865         struct taskq_bind_task *gtask;
866         int i;
867
868         /*
869          * Bind taskqueue threads to specific CPUs, if they have been assigned
870          * one.
871          */
872         if (qgroup->tqg_cnt == 1)
873                 return;
874
875         for (i = 0; i < qgroup->tqg_cnt; i++) {
876                 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
877                 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
878                 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
879                 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
880                     &gtask->bt_task);
881         }
882 }
883
884 static void
885 taskqgroup_config_init(void *arg)
886 {
887         struct taskqgroup *qgroup = qgroup_config;
888         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
889
890         LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
891             grouptask, gt_list);
892         qgroup->tqg_queue[0].tgc_cnt = 0;
893         taskqgroup_cpu_create(qgroup, 0, 0);
894
895         qgroup->tqg_cnt = 1;
896         qgroup->tqg_stride = 1;
897 }
898
899 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND,
900         taskqgroup_config_init, NULL);
901
902 static int
903 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
904 {
905         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
906         struct grouptask *gtask;
907         int i, k, old_cnt, old_cpu, cpu;
908
909         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
910
911         if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
912                 printf("%s: failed cnt: %d stride: %d "
913                     "mp_ncpus: %d tqg_smp_started: %d\n",
914                     __func__, cnt, stride, mp_ncpus, tqg_smp_started);
915                 return (EINVAL);
916         }
917         if (qgroup->tqg_adjusting) {
918                 printf("%s failed: adjusting\n", __func__);
919                 return (EBUSY);
920         }
921         qgroup->tqg_adjusting = 1;
922         old_cnt = qgroup->tqg_cnt;
923         old_cpu = 0;
924         if (old_cnt < cnt)
925                 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
926         mtx_unlock(&qgroup->tqg_lock);
927         /*
928          * Set up queue for tasks added before boot.
929          */
930         if (old_cnt == 0) {
931                 LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
932                     grouptask, gt_list);
933                 qgroup->tqg_queue[0].tgc_cnt = 0;
934         }
935
936         /*
937          * If new taskq threads have been added.
938          */
939         cpu = old_cpu;
940         for (i = old_cnt; i < cnt; i++) {
941                 taskqgroup_cpu_create(qgroup, i, cpu);
942
943                 for (k = 0; k < stride; k++)
944                         cpu = CPU_NEXT(cpu);
945         }
946         mtx_lock(&qgroup->tqg_lock);
947         qgroup->tqg_cnt = cnt;
948         qgroup->tqg_stride = stride;
949
950         /*
951          * Adjust drivers to use new taskqs.
952          */
953         for (i = 0; i < old_cnt; i++) {
954                 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
955                         LIST_REMOVE(gtask, gt_list);
956                         qgroup->tqg_queue[i].tgc_cnt--;
957                         LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
958                 }
959         }
960         mtx_unlock(&qgroup->tqg_lock);
961
962         while ((gtask = LIST_FIRST(&gtask_head))) {
963                 LIST_REMOVE(gtask, gt_list);
964                 if (gtask->gt_cpu == -1)
965                         taskqgroup_attach_deferred(qgroup, gtask);
966                 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
967                         taskqgroup_attach_deferred(qgroup, gtask);
968         }
969
970 #ifdef INVARIANTS
971         mtx_lock(&qgroup->tqg_lock);
972         for (i = 0; i < qgroup->tqg_cnt; i++) {
973                 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
974                 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
975                         MPASS(gtask->gt_taskqueue != NULL);
976         }
977         mtx_unlock(&qgroup->tqg_lock);
978 #endif
979         /*
980          * If taskq thread count has been reduced.
981          */
982         for (i = cnt; i < old_cnt; i++)
983                 taskqgroup_cpu_remove(qgroup, i);
984
985         taskqgroup_bind(qgroup);
986
987         mtx_lock(&qgroup->tqg_lock);
988         qgroup->tqg_adjusting = 0;
989
990         return (0);
991 }
992
993 int
994 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
995 {
996         int error;
997
998         mtx_lock(&qgroup->tqg_lock);
999         error = _taskqgroup_adjust(qgroup, cnt, stride);
1000         mtx_unlock(&qgroup->tqg_lock);
1001
1002         return (error);
1003 }
1004
1005 struct taskqgroup *
1006 taskqgroup_create(const char *name)
1007 {
1008         struct taskqgroup *qgroup;
1009
1010         qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
1011         mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
1012         qgroup->tqg_name = name;
1013         LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
1014
1015         return (qgroup);
1016 }
1017
1018 void
1019 taskqgroup_destroy(struct taskqgroup *qgroup)
1020 {
1021
1022 }
1023
1024 void
1025 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
1026     const char *name)
1027 {
1028
1029         GROUPTASK_INIT(gtask, 0, fn, ctx);
1030         taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name);
1031 }
1032
1033 void
1034 taskqgroup_config_gtask_deinit(struct grouptask *gtask)
1035 {
1036
1037         taskqgroup_detach(qgroup_config, gtask);
1038 }