]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_gtaskqueue.c
Remove duplicated empty lines from kern/*.c
[FreeBSD/FreeBSD.git] / sys / kern / subr_gtaskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/kernel.h>
37 #include <sys/kthread.h>
38 #include <sys/libkern.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/gtaskqueue.h>
47 #include <sys/unistd.h>
48 #include <machine/stdarg.h>
49
50 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
51 static void     gtaskqueue_thread_enqueue(void *);
52 static void     gtaskqueue_thread_loop(void *arg);
53 static int      task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
54 static void     gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
55
56 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
57 TASKQGROUP_DEFINE(config, 1, 1);
58
59 struct gtaskqueue_busy {
60         struct gtask            *tb_running;
61         u_int                    tb_seq;
62         LIST_ENTRY(gtaskqueue_busy) tb_link;
63 };
64
65 typedef void (*gtaskqueue_enqueue_fn)(void *context);
66
67 struct gtaskqueue {
68         STAILQ_HEAD(, gtask)    tq_queue;
69         LIST_HEAD(, gtaskqueue_busy) tq_active;
70         u_int                   tq_seq;
71         int                     tq_callouts;
72         struct mtx_padalign     tq_mutex;
73         gtaskqueue_enqueue_fn   tq_enqueue;
74         void                    *tq_context;
75         char                    *tq_name;
76         struct thread           **tq_threads;
77         int                     tq_tcount;
78         int                     tq_spin;
79         int                     tq_flags;
80         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
81         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
82 };
83
84 #define TQ_FLAGS_ACTIVE         (1 << 0)
85 #define TQ_FLAGS_BLOCKED        (1 << 1)
86 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
87
88 #define DT_CALLOUT_ARMED        (1 << 0)
89
90 #define TQ_LOCK(tq)                                                     \
91         do {                                                            \
92                 if ((tq)->tq_spin)                                      \
93                         mtx_lock_spin(&(tq)->tq_mutex);                 \
94                 else                                                    \
95                         mtx_lock(&(tq)->tq_mutex);                      \
96         } while (0)
97 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
98
99 #define TQ_UNLOCK(tq)                                                   \
100         do {                                                            \
101                 if ((tq)->tq_spin)                                      \
102                         mtx_unlock_spin(&(tq)->tq_mutex);               \
103                 else                                                    \
104                         mtx_unlock(&(tq)->tq_mutex);                    \
105         } while (0)
106 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
107
108 #ifdef INVARIANTS
109 static void
110 gtask_dump(struct gtask *gtask)
111 {
112         printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
113                gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
114 }
115 #endif
116
117 static __inline int
118 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
119 {
120         if (tq->tq_spin)
121                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
122         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
123 }
124
125 static struct gtaskqueue *
126 _gtaskqueue_create(const char *name, int mflags,
127                  taskqueue_enqueue_fn enqueue, void *context,
128                  int mtxflags, const char *mtxname __unused)
129 {
130         struct gtaskqueue *queue;
131         char *tq_name;
132
133         tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
134         if (!tq_name)
135                 return (NULL);
136
137         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
138
139         queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
140         if (!queue) {
141                 free(tq_name, M_GTASKQUEUE);
142                 return (NULL);
143         }
144
145         STAILQ_INIT(&queue->tq_queue);
146         LIST_INIT(&queue->tq_active);
147         queue->tq_enqueue = enqueue;
148         queue->tq_context = context;
149         queue->tq_name = tq_name;
150         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
151         queue->tq_flags |= TQ_FLAGS_ACTIVE;
152         if (enqueue == gtaskqueue_thread_enqueue)
153                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
154         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
155
156         return (queue);
157 }
158
159 /*
160  * Signal a taskqueue thread to terminate.
161  */
162 static void
163 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
164 {
165
166         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
167                 wakeup(tq);
168                 TQ_SLEEP(tq, pp, "gtq_destroy");
169         }
170 }
171
172 static void
173 gtaskqueue_free(struct gtaskqueue *queue)
174 {
175
176         TQ_LOCK(queue);
177         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
178         gtaskqueue_terminate(queue->tq_threads, queue);
179         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
180         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
181         mtx_destroy(&queue->tq_mutex);
182         free(queue->tq_threads, M_GTASKQUEUE);
183         free(queue->tq_name, M_GTASKQUEUE);
184         free(queue, M_GTASKQUEUE);
185 }
186
187 /*
188  * Wait for all to complete, then prevent it from being enqueued
189  */
190 void
191 grouptask_block(struct grouptask *grouptask)
192 {
193         struct gtaskqueue *queue = grouptask->gt_taskqueue;
194         struct gtask *gtask = &grouptask->gt_task;
195
196 #ifdef INVARIANTS
197         if (queue == NULL) {
198                 gtask_dump(gtask);
199                 panic("queue == NULL");
200         }
201 #endif
202         TQ_LOCK(queue);
203         gtask->ta_flags |= TASK_NOENQUEUE;
204         gtaskqueue_drain_locked(queue, gtask);
205         TQ_UNLOCK(queue);
206 }
207
208 void
209 grouptask_unblock(struct grouptask *grouptask)
210 {
211         struct gtaskqueue *queue = grouptask->gt_taskqueue;
212         struct gtask *gtask = &grouptask->gt_task;
213
214 #ifdef INVARIANTS
215         if (queue == NULL) {
216                 gtask_dump(gtask);
217                 panic("queue == NULL");
218         }
219 #endif
220         TQ_LOCK(queue);
221         gtask->ta_flags &= ~TASK_NOENQUEUE;
222         TQ_UNLOCK(queue);
223 }
224
225 int
226 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
227 {
228 #ifdef INVARIANTS
229         if (queue == NULL) {
230                 gtask_dump(gtask);
231                 panic("queue == NULL");
232         }
233 #endif
234         TQ_LOCK(queue);
235         if (gtask->ta_flags & TASK_ENQUEUED) {
236                 TQ_UNLOCK(queue);
237                 return (0);
238         }
239         if (gtask->ta_flags & TASK_NOENQUEUE) {
240                 TQ_UNLOCK(queue);
241                 return (EAGAIN);
242         }
243         STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
244         gtask->ta_flags |= TASK_ENQUEUED;
245         TQ_UNLOCK(queue);
246         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
247                 queue->tq_enqueue(queue->tq_context);
248         return (0);
249 }
250
251 static void
252 gtaskqueue_task_nop_fn(void *context)
253 {
254 }
255
256 /*
257  * Block until all currently queued tasks in this taskqueue
258  * have begun execution.  Tasks queued during execution of
259  * this function are ignored.
260  */
261 static void
262 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
263 {
264         struct gtask t_barrier;
265
266         if (STAILQ_EMPTY(&queue->tq_queue))
267                 return;
268
269         /*
270          * Enqueue our barrier after all current tasks, but with
271          * the highest priority so that newly queued tasks cannot
272          * pass it.  Because of the high priority, we can not use
273          * taskqueue_enqueue_locked directly (which drops the lock
274          * anyway) so just insert it at tail while we have the
275          * queue lock.
276          */
277         GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
278         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
279         t_barrier.ta_flags |= TASK_ENQUEUED;
280
281         /*
282          * Once the barrier has executed, all previously queued tasks
283          * have completed or are currently executing.
284          */
285         while (t_barrier.ta_flags & TASK_ENQUEUED)
286                 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
287 }
288
289 /*
290  * Block until all currently executing tasks for this taskqueue
291  * complete.  Tasks that begin execution during the execution
292  * of this function are ignored.
293  */
294 static void
295 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
296 {
297         struct gtaskqueue_busy *tb;
298         u_int seq;
299
300         if (LIST_EMPTY(&queue->tq_active))
301                 return;
302
303         /* Block taskq_terminate().*/
304         queue->tq_callouts++;
305
306         /* Wait for any active task with sequence from the past. */
307         seq = queue->tq_seq;
308 restart:
309         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
310                 if ((int)(tb->tb_seq - seq) <= 0) {
311                         TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
312                         goto restart;
313                 }
314         }
315
316         /* Release taskqueue_terminate(). */
317         queue->tq_callouts--;
318         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
319                 wakeup_one(queue->tq_threads);
320 }
321
322 void
323 gtaskqueue_block(struct gtaskqueue *queue)
324 {
325
326         TQ_LOCK(queue);
327         queue->tq_flags |= TQ_FLAGS_BLOCKED;
328         TQ_UNLOCK(queue);
329 }
330
331 void
332 gtaskqueue_unblock(struct gtaskqueue *queue)
333 {
334
335         TQ_LOCK(queue);
336         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
337         if (!STAILQ_EMPTY(&queue->tq_queue))
338                 queue->tq_enqueue(queue->tq_context);
339         TQ_UNLOCK(queue);
340 }
341
342 static void
343 gtaskqueue_run_locked(struct gtaskqueue *queue)
344 {
345         struct gtaskqueue_busy tb;
346         struct gtask *gtask;
347
348         KASSERT(queue != NULL, ("tq is NULL"));
349         TQ_ASSERT_LOCKED(queue);
350         tb.tb_running = NULL;
351         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
352
353         while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
354                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
355                 gtask->ta_flags &= ~TASK_ENQUEUED;
356                 tb.tb_running = gtask;
357                 tb.tb_seq = ++queue->tq_seq;
358                 TQ_UNLOCK(queue);
359
360                 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
361                 gtask->ta_func(gtask->ta_context);
362
363                 TQ_LOCK(queue);
364                 wakeup(gtask);
365         }
366         LIST_REMOVE(&tb, tb_link);
367 }
368
369 static int
370 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
371 {
372         struct gtaskqueue_busy *tb;
373
374         TQ_ASSERT_LOCKED(queue);
375         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
376                 if (tb->tb_running == gtask)
377                         return (1);
378         }
379         return (0);
380 }
381
382 static int
383 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
384 {
385
386         if (gtask->ta_flags & TASK_ENQUEUED)
387                 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
388         gtask->ta_flags &= ~TASK_ENQUEUED;
389         return (task_is_running(queue, gtask) ? EBUSY : 0);
390 }
391
392 int
393 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
394 {
395         int error;
396
397         TQ_LOCK(queue);
398         error = gtaskqueue_cancel_locked(queue, gtask);
399         TQ_UNLOCK(queue);
400
401         return (error);
402 }
403
404 static void
405 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
406 {
407         while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
408                 TQ_SLEEP(queue, gtask, "gtq_drain");
409 }
410
411 void
412 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
413 {
414
415         if (!queue->tq_spin)
416                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
417
418         TQ_LOCK(queue);
419         gtaskqueue_drain_locked(queue, gtask);
420         TQ_UNLOCK(queue);
421 }
422
423 void
424 gtaskqueue_drain_all(struct gtaskqueue *queue)
425 {
426
427         if (!queue->tq_spin)
428                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
429
430         TQ_LOCK(queue);
431         gtaskqueue_drain_tq_queue(queue);
432         gtaskqueue_drain_tq_active(queue);
433         TQ_UNLOCK(queue);
434 }
435
436 static int
437 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
438     cpuset_t *mask, const char *name, va_list ap)
439 {
440         char ktname[MAXCOMLEN + 1];
441         struct thread *td;
442         struct gtaskqueue *tq;
443         int i, error;
444
445         if (count <= 0)
446                 return (EINVAL);
447
448         vsnprintf(ktname, sizeof(ktname), name, ap);
449         tq = *tqp;
450
451         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
452             M_NOWAIT | M_ZERO);
453         if (tq->tq_threads == NULL) {
454                 printf("%s: no memory for %s threads\n", __func__, ktname);
455                 return (ENOMEM);
456         }
457
458         for (i = 0; i < count; i++) {
459                 if (count == 1)
460                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
461                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
462                 else
463                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
464                             &tq->tq_threads[i], RFSTOPPED, 0,
465                             "%s_%d", ktname, i);
466                 if (error) {
467                         /* should be ok to continue, taskqueue_free will dtrt */
468                         printf("%s: kthread_add(%s): error %d", __func__,
469                             ktname, error);
470                         tq->tq_threads[i] = NULL;               /* paranoid */
471                 } else
472                         tq->tq_tcount++;
473         }
474         for (i = 0; i < count; i++) {
475                 if (tq->tq_threads[i] == NULL)
476                         continue;
477                 td = tq->tq_threads[i];
478                 if (mask) {
479                         error = cpuset_setthread(td->td_tid, mask);
480                         /*
481                          * Failing to pin is rarely an actual fatal error;
482                          * it'll just affect performance.
483                          */
484                         if (error)
485                                 printf("%s: curthread=%llu: can't pin; "
486                                     "error=%d\n",
487                                     __func__,
488                                     (unsigned long long) td->td_tid,
489                                     error);
490                 }
491                 thread_lock(td);
492                 sched_prio(td, pri);
493                 sched_add(td, SRQ_BORING);
494         }
495
496         return (0);
497 }
498
499 static int
500 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
501     const char *name, ...)
502 {
503         va_list ap;
504         int error;
505
506         va_start(ap, name);
507         error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
508         va_end(ap);
509         return (error);
510 }
511
512 static inline void
513 gtaskqueue_run_callback(struct gtaskqueue *tq,
514     enum taskqueue_callback_type cb_type)
515 {
516         taskqueue_callback_fn tq_callback;
517
518         TQ_ASSERT_UNLOCKED(tq);
519         tq_callback = tq->tq_callbacks[cb_type];
520         if (tq_callback != NULL)
521                 tq_callback(tq->tq_cb_contexts[cb_type]);
522 }
523
524 static void
525 gtaskqueue_thread_loop(void *arg)
526 {
527         struct gtaskqueue **tqp, *tq;
528
529         tqp = arg;
530         tq = *tqp;
531         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
532         TQ_LOCK(tq);
533         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
534                 /* XXX ? */
535                 gtaskqueue_run_locked(tq);
536                 /*
537                  * Because taskqueue_run() can drop tq_mutex, we need to
538                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
539                  * meantime, which means we missed a wakeup.
540                  */
541                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
542                         break;
543                 TQ_SLEEP(tq, tq, "-");
544         }
545         gtaskqueue_run_locked(tq);
546         /*
547          * This thread is on its way out, so just drop the lock temporarily
548          * in order to call the shutdown callback.  This allows the callback
549          * to look at the taskqueue, even just before it dies.
550          */
551         TQ_UNLOCK(tq);
552         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
553         TQ_LOCK(tq);
554
555         /* rendezvous with thread that asked us to terminate */
556         tq->tq_tcount--;
557         wakeup_one(tq->tq_threads);
558         TQ_UNLOCK(tq);
559         kthread_exit();
560 }
561
562 static void
563 gtaskqueue_thread_enqueue(void *context)
564 {
565         struct gtaskqueue **tqp, *tq;
566
567         tqp = context;
568         tq = *tqp;
569         wakeup_any(tq);
570 }
571
572 static struct gtaskqueue *
573 gtaskqueue_create_fast(const char *name, int mflags,
574                  taskqueue_enqueue_fn enqueue, void *context)
575 {
576         return _gtaskqueue_create(name, mflags, enqueue, context,
577                         MTX_SPIN, "fast_taskqueue");
578 }
579
580 struct taskqgroup_cpu {
581         LIST_HEAD(, grouptask)  tgc_tasks;
582         struct gtaskqueue       *tgc_taskq;
583         int     tgc_cnt;
584         int     tgc_cpu;
585 };
586
587 struct taskqgroup {
588         struct taskqgroup_cpu tqg_queue[MAXCPU];
589         struct mtx      tqg_lock;
590         const char *    tqg_name;
591         int             tqg_adjusting;
592         int             tqg_stride;
593         int             tqg_cnt;
594 };
595
596 struct taskq_bind_task {
597         struct gtask bt_task;
598         int     bt_cpuid;
599 };
600
601 static void
602 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
603 {
604         struct taskqgroup_cpu *qcpu;
605
606         qcpu = &qgroup->tqg_queue[idx];
607         LIST_INIT(&qcpu->tgc_tasks);
608         qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
609             taskqueue_thread_enqueue, &qcpu->tgc_taskq);
610         gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
611             "%s_%d", qgroup->tqg_name, idx);
612         qcpu->tgc_cpu = cpu;
613 }
614
615 static void
616 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
617 {
618
619         gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
620 }
621
622 /*
623  * Find the taskq with least # of tasks that doesn't currently have any
624  * other queues from the uniq identifier.
625  */
626 static int
627 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
628 {
629         struct grouptask *n;
630         int i, idx, mincnt;
631         int strict;
632
633         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
634         if (qgroup->tqg_cnt == 0)
635                 return (0);
636         idx = -1;
637         mincnt = INT_MAX;
638         /*
639          * Two passes;  First scan for a queue with the least tasks that
640          * does not already service this uniq id.  If that fails simply find
641          * the queue with the least total tasks;
642          */
643         for (strict = 1; mincnt == INT_MAX; strict = 0) {
644                 for (i = 0; i < qgroup->tqg_cnt; i++) {
645                         if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
646                                 continue;
647                         if (strict) {
648                                 LIST_FOREACH(n,
649                                     &qgroup->tqg_queue[i].tgc_tasks, gt_list)
650                                         if (n->gt_uniq == uniq)
651                                                 break;
652                                 if (n != NULL)
653                                         continue;
654                         }
655                         mincnt = qgroup->tqg_queue[i].tgc_cnt;
656                         idx = i;
657                 }
658         }
659         if (idx == -1)
660                 panic("%s: failed to pick a qid.", __func__);
661
662         return (idx);
663 }
664
665 /*
666  * smp_started is unusable since it is not set for UP kernels or even for
667  * SMP kernels when there is 1 CPU.  This is usually handled by adding a
668  * (mp_ncpus == 1) test, but that would be broken here since we need to
669  * to synchronize with the SI_SUB_SMP ordering.  Even in the pure SMP case
670  * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
671  *
672  * So maintain our own flag.  It must be set after all CPUs are started
673  * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
674  * adjustment is properly delayed.  SI_ORDER_FOURTH is clearly before
675  * SI_ORDER_ANY and unclearly after the CPUs are started.  It would be
676  * simpler for adjustment to pass a flag indicating if it is delayed.
677  */ 
678
679 static int tqg_smp_started;
680
681 static void
682 tqg_record_smp_started(void *arg)
683 {
684         tqg_smp_started = 1;
685 }
686
687 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
688         tqg_record_smp_started, NULL);
689
690 void
691 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
692     void *uniq, device_t dev, struct resource *irq, const char *name)
693 {
694         int cpu, qid, error;
695
696         gtask->gt_uniq = uniq;
697         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
698         gtask->gt_dev = dev;
699         gtask->gt_irq = irq;
700         gtask->gt_cpu = -1;
701         mtx_lock(&qgroup->tqg_lock);
702         qid = taskqgroup_find(qgroup, uniq);
703         qgroup->tqg_queue[qid].tgc_cnt++;
704         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
705         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
706         if (dev != NULL && irq != NULL && tqg_smp_started) {
707                 cpu = qgroup->tqg_queue[qid].tgc_cpu;
708                 gtask->gt_cpu = cpu;
709                 mtx_unlock(&qgroup->tqg_lock);
710                 error = bus_bind_intr(dev, irq, cpu);
711                 if (error)
712                         printf("%s: binding interrupt failed for %s: %d\n",
713                             __func__, gtask->gt_name, error);
714         } else
715                 mtx_unlock(&qgroup->tqg_lock);
716 }
717
718 static void
719 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
720 {
721         int qid, cpu, error;
722
723         mtx_lock(&qgroup->tqg_lock);
724         qid = taskqgroup_find(qgroup, gtask->gt_uniq);
725         cpu = qgroup->tqg_queue[qid].tgc_cpu;
726         if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) {
727                 mtx_unlock(&qgroup->tqg_lock);
728                 error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu);
729                 mtx_lock(&qgroup->tqg_lock);
730                 if (error)
731                         printf("%s: binding interrupt failed for %s: %d\n",
732                             __func__, gtask->gt_name, error);
733
734         }
735         qgroup->tqg_queue[qid].tgc_cnt++;
736         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
737         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
738         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
739         mtx_unlock(&qgroup->tqg_lock);
740 }
741
742 int
743 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
744     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
745 {
746         int i, qid, error;
747
748         qid = -1;
749         gtask->gt_uniq = uniq;
750         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
751         gtask->gt_dev = dev;
752         gtask->gt_irq = irq;
753         gtask->gt_cpu = cpu;
754         mtx_lock(&qgroup->tqg_lock);
755         if (tqg_smp_started) {
756                 for (i = 0; i < qgroup->tqg_cnt; i++)
757                         if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
758                                 qid = i;
759                                 break;
760                         }
761                 if (qid == -1) {
762                         mtx_unlock(&qgroup->tqg_lock);
763                         printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
764                         return (EINVAL);
765                 }
766         } else
767                 qid = 0;
768         qgroup->tqg_queue[qid].tgc_cnt++;
769         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
770         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
771         cpu = qgroup->tqg_queue[qid].tgc_cpu;
772         mtx_unlock(&qgroup->tqg_lock);
773
774         if (dev != NULL && irq != NULL && tqg_smp_started) {
775                 error = bus_bind_intr(dev, irq, cpu);
776                 if (error)
777                         printf("%s: binding interrupt failed for %s: %d\n",
778                             __func__, gtask->gt_name, error);
779         }
780         return (0);
781 }
782
783 static int
784 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
785 {
786         device_t dev;
787         struct resource *irq;
788         int cpu, error, i, qid;
789
790         qid = -1;
791         dev = gtask->gt_dev;
792         irq = gtask->gt_irq;
793         cpu = gtask->gt_cpu;
794         MPASS(tqg_smp_started);
795         mtx_lock(&qgroup->tqg_lock);
796         for (i = 0; i < qgroup->tqg_cnt; i++)
797                 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
798                         qid = i;
799                         break;
800                 }
801         if (qid == -1) {
802                 mtx_unlock(&qgroup->tqg_lock);
803                 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
804                 return (EINVAL);
805         }
806         qgroup->tqg_queue[qid].tgc_cnt++;
807         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
808         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
809         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
810         mtx_unlock(&qgroup->tqg_lock);
811
812         if (dev != NULL && irq != NULL) {
813                 error = bus_bind_intr(dev, irq, cpu);
814                 if (error)
815                         printf("%s: binding interrupt failed for %s: %d\n",
816                             __func__, gtask->gt_name, error);
817         }
818         return (0);
819 }
820
821 void
822 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
823 {
824         int i;
825
826         grouptask_block(gtask);
827         mtx_lock(&qgroup->tqg_lock);
828         for (i = 0; i < qgroup->tqg_cnt; i++)
829                 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
830                         break;
831         if (i == qgroup->tqg_cnt)
832                 panic("%s: task %s not in group", __func__, gtask->gt_name);
833         qgroup->tqg_queue[i].tgc_cnt--;
834         LIST_REMOVE(gtask, gt_list);
835         mtx_unlock(&qgroup->tqg_lock);
836         gtask->gt_taskqueue = NULL;
837         gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
838 }
839
840 static void
841 taskqgroup_binder(void *ctx)
842 {
843         struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
844         cpuset_t mask;
845         int error;
846
847         CPU_ZERO(&mask);
848         CPU_SET(gtask->bt_cpuid, &mask);
849         error = cpuset_setthread(curthread->td_tid, &mask);
850         thread_lock(curthread);
851         sched_bind(curthread, gtask->bt_cpuid);
852         thread_unlock(curthread);
853
854         if (error)
855                 printf("%s: binding curthread failed: %d\n", __func__, error);
856         free(gtask, M_DEVBUF);
857 }
858
859 static void
860 taskqgroup_bind(struct taskqgroup *qgroup)
861 {
862         struct taskq_bind_task *gtask;
863         int i;
864
865         /*
866          * Bind taskqueue threads to specific CPUs, if they have been assigned
867          * one.
868          */
869         if (qgroup->tqg_cnt == 1)
870                 return;
871
872         for (i = 0; i < qgroup->tqg_cnt; i++) {
873                 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
874                 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
875                 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
876                 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
877                     &gtask->bt_task);
878         }
879 }
880
881 static void
882 taskqgroup_config_init(void *arg)
883 {
884         struct taskqgroup *qgroup = qgroup_config;
885         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
886
887         LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
888             grouptask, gt_list);
889         qgroup->tqg_queue[0].tgc_cnt = 0;
890         taskqgroup_cpu_create(qgroup, 0, 0);
891
892         qgroup->tqg_cnt = 1;
893         qgroup->tqg_stride = 1;
894 }
895
896 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND,
897         taskqgroup_config_init, NULL);
898
899 static int
900 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
901 {
902         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
903         struct grouptask *gtask;
904         int i, k, old_cnt, old_cpu, cpu;
905
906         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
907
908         if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
909                 printf("%s: failed cnt: %d stride: %d "
910                     "mp_ncpus: %d tqg_smp_started: %d\n",
911                     __func__, cnt, stride, mp_ncpus, tqg_smp_started);
912                 return (EINVAL);
913         }
914         if (qgroup->tqg_adjusting) {
915                 printf("%s failed: adjusting\n", __func__);
916                 return (EBUSY);
917         }
918         qgroup->tqg_adjusting = 1;
919         old_cnt = qgroup->tqg_cnt;
920         old_cpu = 0;
921         if (old_cnt < cnt)
922                 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
923         mtx_unlock(&qgroup->tqg_lock);
924         /*
925          * Set up queue for tasks added before boot.
926          */
927         if (old_cnt == 0) {
928                 LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
929                     grouptask, gt_list);
930                 qgroup->tqg_queue[0].tgc_cnt = 0;
931         }
932
933         /*
934          * If new taskq threads have been added.
935          */
936         cpu = old_cpu;
937         for (i = old_cnt; i < cnt; i++) {
938                 taskqgroup_cpu_create(qgroup, i, cpu);
939
940                 for (k = 0; k < stride; k++)
941                         cpu = CPU_NEXT(cpu);
942         }
943         mtx_lock(&qgroup->tqg_lock);
944         qgroup->tqg_cnt = cnt;
945         qgroup->tqg_stride = stride;
946
947         /*
948          * Adjust drivers to use new taskqs.
949          */
950         for (i = 0; i < old_cnt; i++) {
951                 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
952                         LIST_REMOVE(gtask, gt_list);
953                         qgroup->tqg_queue[i].tgc_cnt--;
954                         LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
955                 }
956         }
957         mtx_unlock(&qgroup->tqg_lock);
958
959         while ((gtask = LIST_FIRST(&gtask_head))) {
960                 LIST_REMOVE(gtask, gt_list);
961                 if (gtask->gt_cpu == -1)
962                         taskqgroup_attach_deferred(qgroup, gtask);
963                 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
964                         taskqgroup_attach_deferred(qgroup, gtask);
965         }
966
967 #ifdef INVARIANTS
968         mtx_lock(&qgroup->tqg_lock);
969         for (i = 0; i < qgroup->tqg_cnt; i++) {
970                 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
971                 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
972                         MPASS(gtask->gt_taskqueue != NULL);
973         }
974         mtx_unlock(&qgroup->tqg_lock);
975 #endif
976         /*
977          * If taskq thread count has been reduced.
978          */
979         for (i = cnt; i < old_cnt; i++)
980                 taskqgroup_cpu_remove(qgroup, i);
981
982         taskqgroup_bind(qgroup);
983
984         mtx_lock(&qgroup->tqg_lock);
985         qgroup->tqg_adjusting = 0;
986
987         return (0);
988 }
989
990 int
991 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
992 {
993         int error;
994
995         mtx_lock(&qgroup->tqg_lock);
996         error = _taskqgroup_adjust(qgroup, cnt, stride);
997         mtx_unlock(&qgroup->tqg_lock);
998
999         return (error);
1000 }
1001
1002 struct taskqgroup *
1003 taskqgroup_create(const char *name)
1004 {
1005         struct taskqgroup *qgroup;
1006
1007         qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
1008         mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
1009         qgroup->tqg_name = name;
1010         LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
1011
1012         return (qgroup);
1013 }
1014
1015 void
1016 taskqgroup_destroy(struct taskqgroup *qgroup)
1017 {
1018
1019 }
1020
1021 void
1022 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
1023     const char *name)
1024 {
1025
1026         GROUPTASK_INIT(gtask, 0, fn, ctx);
1027         taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name);
1028 }
1029
1030 void
1031 taskqgroup_config_gtask_deinit(struct grouptask *gtask)
1032 {
1033
1034         taskqgroup_detach(qgroup_config, gtask);
1035 }