]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_gtaskqueue.c
Update bmake to version 20180919
[FreeBSD/FreeBSD.git] / sys / kern / subr_gtaskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/kthread.h>
39 #include <sys/libkern.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/gtaskqueue.h>
48 #include <sys/unistd.h>
49 #include <machine/stdarg.h>
50
51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
52 static void     gtaskqueue_thread_enqueue(void *);
53 static void     gtaskqueue_thread_loop(void *arg);
54 static int      task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
55 static void     gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
56
57 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
58 TASKQGROUP_DEFINE(config, 1, 1);
59
60 struct gtaskqueue_busy {
61         struct gtask    *tb_running;
62         TAILQ_ENTRY(gtaskqueue_busy) tb_link;
63 };
64
65 static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1;
66
67 struct gtaskqueue {
68         STAILQ_HEAD(, gtask)    tq_queue;
69         gtaskqueue_enqueue_fn   tq_enqueue;
70         void                    *tq_context;
71         char                    *tq_name;
72         TAILQ_HEAD(, gtaskqueue_busy) tq_active;
73         struct mtx              tq_mutex;
74         struct thread           **tq_threads;
75         int                     tq_tcount;
76         int                     tq_spin;
77         int                     tq_flags;
78         int                     tq_callouts;
79         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
80         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
81 };
82
83 #define TQ_FLAGS_ACTIVE         (1 << 0)
84 #define TQ_FLAGS_BLOCKED        (1 << 1)
85 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
86
87 #define DT_CALLOUT_ARMED        (1 << 0)
88
89 #define TQ_LOCK(tq)                                                     \
90         do {                                                            \
91                 if ((tq)->tq_spin)                                      \
92                         mtx_lock_spin(&(tq)->tq_mutex);                 \
93                 else                                                    \
94                         mtx_lock(&(tq)->tq_mutex);                      \
95         } while (0)
96 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
97
98 #define TQ_UNLOCK(tq)                                                   \
99         do {                                                            \
100                 if ((tq)->tq_spin)                                      \
101                         mtx_unlock_spin(&(tq)->tq_mutex);               \
102                 else                                                    \
103                         mtx_unlock(&(tq)->tq_mutex);                    \
104         } while (0)
105 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
106
107 #ifdef INVARIANTS
108 static void
109 gtask_dump(struct gtask *gtask)
110 {
111         printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
112                gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
113 }
114 #endif
115
116 static __inline int
117 TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
118     int t)
119 {
120         if (tq->tq_spin)
121                 return (msleep_spin(p, m, wm, t));
122         return (msleep(p, m, pri, wm, t));
123 }
124
125 static struct gtaskqueue *
126 _gtaskqueue_create(const char *name, int mflags,
127                  taskqueue_enqueue_fn enqueue, void *context,
128                  int mtxflags, const char *mtxname __unused)
129 {
130         struct gtaskqueue *queue;
131         char *tq_name;
132
133         tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
134         if (!tq_name)
135                 return (NULL);
136
137         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
138
139         queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
140         if (!queue) {
141                 free(tq_name, M_GTASKQUEUE);
142                 return (NULL);
143         }
144
145         STAILQ_INIT(&queue->tq_queue);
146         TAILQ_INIT(&queue->tq_active);
147         queue->tq_enqueue = enqueue;
148         queue->tq_context = context;
149         queue->tq_name = tq_name;
150         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
151         queue->tq_flags |= TQ_FLAGS_ACTIVE;
152         if (enqueue == gtaskqueue_thread_enqueue)
153                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
154         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
155
156         return (queue);
157 }
158
159
160 /*
161  * Signal a taskqueue thread to terminate.
162  */
163 static void
164 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
165 {
166
167         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
168                 wakeup(tq);
169                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
170         }
171 }
172
173 static void
174 gtaskqueue_free(struct gtaskqueue *queue)
175 {
176
177         TQ_LOCK(queue);
178         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
179         gtaskqueue_terminate(queue->tq_threads, queue);
180         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
181         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
182         mtx_destroy(&queue->tq_mutex);
183         free(queue->tq_threads, M_GTASKQUEUE);
184         free(queue->tq_name, M_GTASKQUEUE);
185         free(queue, M_GTASKQUEUE);
186 }
187
188 /*
189  * Wait for all to complete, then prevent it from being enqueued
190  */
191 void
192 grouptask_block(struct grouptask *grouptask)
193 {
194         struct gtaskqueue *queue = grouptask->gt_taskqueue;
195         struct gtask *gtask = &grouptask->gt_task;
196
197 #ifdef INVARIANTS
198         if (queue == NULL) {
199                 gtask_dump(gtask);
200                 panic("queue == NULL");
201         }
202 #endif
203         TQ_LOCK(queue);
204         gtask->ta_flags |= TASK_NOENQUEUE;
205         gtaskqueue_drain_locked(queue, gtask);
206         TQ_UNLOCK(queue);
207 }
208
209 void
210 grouptask_unblock(struct grouptask *grouptask)
211 {
212         struct gtaskqueue *queue = grouptask->gt_taskqueue;
213         struct gtask *gtask = &grouptask->gt_task;
214
215 #ifdef INVARIANTS
216         if (queue == NULL) {
217                 gtask_dump(gtask);
218                 panic("queue == NULL");
219         }
220 #endif
221         TQ_LOCK(queue);
222         gtask->ta_flags &= ~TASK_NOENQUEUE;
223         TQ_UNLOCK(queue);
224 }
225
226 int
227 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
228 {
229 #ifdef INVARIANTS
230         if (queue == NULL) {
231                 gtask_dump(gtask);
232                 panic("queue == NULL");
233         }
234 #endif
235         TQ_LOCK(queue);
236         if (gtask->ta_flags & TASK_ENQUEUED) {
237                 TQ_UNLOCK(queue);
238                 return (0);
239         }
240         if (gtask->ta_flags & TASK_NOENQUEUE) {
241                 TQ_UNLOCK(queue);
242                 return (EAGAIN);
243         }
244         STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
245         gtask->ta_flags |= TASK_ENQUEUED;
246         TQ_UNLOCK(queue);
247         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
248                 queue->tq_enqueue(queue->tq_context);
249         return (0);
250 }
251
252 static void
253 gtaskqueue_task_nop_fn(void *context)
254 {
255 }
256
257 /*
258  * Block until all currently queued tasks in this taskqueue
259  * have begun execution.  Tasks queued during execution of
260  * this function are ignored.
261  */
262 static void
263 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
264 {
265         struct gtask t_barrier;
266
267         if (STAILQ_EMPTY(&queue->tq_queue))
268                 return;
269
270         /*
271          * Enqueue our barrier after all current tasks, but with
272          * the highest priority so that newly queued tasks cannot
273          * pass it.  Because of the high priority, we can not use
274          * taskqueue_enqueue_locked directly (which drops the lock
275          * anyway) so just insert it at tail while we have the
276          * queue lock.
277          */
278         GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
279         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
280         t_barrier.ta_flags |= TASK_ENQUEUED;
281
282         /*
283          * Once the barrier has executed, all previously queued tasks
284          * have completed or are currently executing.
285          */
286         while (t_barrier.ta_flags & TASK_ENQUEUED)
287                 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
288 }
289
290 /*
291  * Block until all currently executing tasks for this taskqueue
292  * complete.  Tasks that begin execution during the execution
293  * of this function are ignored.
294  */
295 static void
296 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
297 {
298         struct gtaskqueue_busy tb_marker, *tb_first;
299
300         if (TAILQ_EMPTY(&queue->tq_active))
301                 return;
302
303         /* Block taskq_terminate().*/
304         queue->tq_callouts++;
305
306         /*
307          * Wait for all currently executing taskqueue threads
308          * to go idle.
309          */
310         tb_marker.tb_running = TB_DRAIN_WAITER;
311         TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
312         while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
313                 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
314         TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
315
316         /*
317          * Wakeup any other drain waiter that happened to queue up
318          * without any intervening active thread.
319          */
320         tb_first = TAILQ_FIRST(&queue->tq_active);
321         if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
322                 wakeup(tb_first);
323
324         /* Release taskqueue_terminate(). */
325         queue->tq_callouts--;
326         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
327                 wakeup_one(queue->tq_threads);
328 }
329
330 void
331 gtaskqueue_block(struct gtaskqueue *queue)
332 {
333
334         TQ_LOCK(queue);
335         queue->tq_flags |= TQ_FLAGS_BLOCKED;
336         TQ_UNLOCK(queue);
337 }
338
339 void
340 gtaskqueue_unblock(struct gtaskqueue *queue)
341 {
342
343         TQ_LOCK(queue);
344         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
345         if (!STAILQ_EMPTY(&queue->tq_queue))
346                 queue->tq_enqueue(queue->tq_context);
347         TQ_UNLOCK(queue);
348 }
349
350 static void
351 gtaskqueue_run_locked(struct gtaskqueue *queue)
352 {
353         struct gtaskqueue_busy tb;
354         struct gtaskqueue_busy *tb_first;
355         struct gtask *gtask;
356
357         KASSERT(queue != NULL, ("tq is NULL"));
358         TQ_ASSERT_LOCKED(queue);
359         tb.tb_running = NULL;
360
361         while (STAILQ_FIRST(&queue->tq_queue)) {
362                 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
363
364                 /*
365                  * Carefully remove the first task from the queue and
366                  * clear its TASK_ENQUEUED flag
367                  */
368                 gtask = STAILQ_FIRST(&queue->tq_queue);
369                 KASSERT(gtask != NULL, ("task is NULL"));
370                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
371                 gtask->ta_flags &= ~TASK_ENQUEUED;
372                 tb.tb_running = gtask;
373                 TQ_UNLOCK(queue);
374
375                 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
376                 gtask->ta_func(gtask->ta_context);
377
378                 TQ_LOCK(queue);
379                 tb.tb_running = NULL;
380                 wakeup(gtask);
381
382                 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
383                 tb_first = TAILQ_FIRST(&queue->tq_active);
384                 if (tb_first != NULL &&
385                     tb_first->tb_running == TB_DRAIN_WAITER)
386                         wakeup(tb_first);
387         }
388 }
389
390 static int
391 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
392 {
393         struct gtaskqueue_busy *tb;
394
395         TQ_ASSERT_LOCKED(queue);
396         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
397                 if (tb->tb_running == gtask)
398                         return (1);
399         }
400         return (0);
401 }
402
403 static int
404 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
405 {
406
407         if (gtask->ta_flags & TASK_ENQUEUED)
408                 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
409         gtask->ta_flags &= ~TASK_ENQUEUED;
410         return (task_is_running(queue, gtask) ? EBUSY : 0);
411 }
412
413 int
414 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
415 {
416         int error;
417
418         TQ_LOCK(queue);
419         error = gtaskqueue_cancel_locked(queue, gtask);
420         TQ_UNLOCK(queue);
421
422         return (error);
423 }
424
425 static void
426 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
427 {
428         while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
429                 TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0);
430 }
431
432 void
433 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
434 {
435
436         if (!queue->tq_spin)
437                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
438
439         TQ_LOCK(queue);
440         gtaskqueue_drain_locked(queue, gtask);
441         TQ_UNLOCK(queue);
442 }
443
444 void
445 gtaskqueue_drain_all(struct gtaskqueue *queue)
446 {
447
448         if (!queue->tq_spin)
449                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
450
451         TQ_LOCK(queue);
452         gtaskqueue_drain_tq_queue(queue);
453         gtaskqueue_drain_tq_active(queue);
454         TQ_UNLOCK(queue);
455 }
456
457 static int
458 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
459     cpuset_t *mask, const char *name, va_list ap)
460 {
461         char ktname[MAXCOMLEN + 1];
462         struct thread *td;
463         struct gtaskqueue *tq;
464         int i, error;
465
466         if (count <= 0)
467                 return (EINVAL);
468
469         vsnprintf(ktname, sizeof(ktname), name, ap);
470         tq = *tqp;
471
472         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
473             M_NOWAIT | M_ZERO);
474         if (tq->tq_threads == NULL) {
475                 printf("%s: no memory for %s threads\n", __func__, ktname);
476                 return (ENOMEM);
477         }
478
479         for (i = 0; i < count; i++) {
480                 if (count == 1)
481                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
482                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
483                 else
484                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
485                             &tq->tq_threads[i], RFSTOPPED, 0,
486                             "%s_%d", ktname, i);
487                 if (error) {
488                         /* should be ok to continue, taskqueue_free will dtrt */
489                         printf("%s: kthread_add(%s): error %d", __func__,
490                             ktname, error);
491                         tq->tq_threads[i] = NULL;               /* paranoid */
492                 } else
493                         tq->tq_tcount++;
494         }
495         for (i = 0; i < count; i++) {
496                 if (tq->tq_threads[i] == NULL)
497                         continue;
498                 td = tq->tq_threads[i];
499                 if (mask) {
500                         error = cpuset_setthread(td->td_tid, mask);
501                         /*
502                          * Failing to pin is rarely an actual fatal error;
503                          * it'll just affect performance.
504                          */
505                         if (error)
506                                 printf("%s: curthread=%llu: can't pin; "
507                                     "error=%d\n",
508                                     __func__,
509                                     (unsigned long long) td->td_tid,
510                                     error);
511                 }
512                 thread_lock(td);
513                 sched_prio(td, pri);
514                 sched_add(td, SRQ_BORING);
515                 thread_unlock(td);
516         }
517
518         return (0);
519 }
520
521 static int
522 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
523     const char *name, ...)
524 {
525         va_list ap;
526         int error;
527
528         va_start(ap, name);
529         error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
530         va_end(ap);
531         return (error);
532 }
533
534 static inline void
535 gtaskqueue_run_callback(struct gtaskqueue *tq,
536     enum taskqueue_callback_type cb_type)
537 {
538         taskqueue_callback_fn tq_callback;
539
540         TQ_ASSERT_UNLOCKED(tq);
541         tq_callback = tq->tq_callbacks[cb_type];
542         if (tq_callback != NULL)
543                 tq_callback(tq->tq_cb_contexts[cb_type]);
544 }
545
546 static void
547 gtaskqueue_thread_loop(void *arg)
548 {
549         struct gtaskqueue **tqp, *tq;
550
551         tqp = arg;
552         tq = *tqp;
553         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
554         TQ_LOCK(tq);
555         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
556                 /* XXX ? */
557                 gtaskqueue_run_locked(tq);
558                 /*
559                  * Because taskqueue_run() can drop tq_mutex, we need to
560                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
561                  * meantime, which means we missed a wakeup.
562                  */
563                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
564                         break;
565                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
566         }
567         gtaskqueue_run_locked(tq);
568         /*
569          * This thread is on its way out, so just drop the lock temporarily
570          * in order to call the shutdown callback.  This allows the callback
571          * to look at the taskqueue, even just before it dies.
572          */
573         TQ_UNLOCK(tq);
574         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
575         TQ_LOCK(tq);
576
577         /* rendezvous with thread that asked us to terminate */
578         tq->tq_tcount--;
579         wakeup_one(tq->tq_threads);
580         TQ_UNLOCK(tq);
581         kthread_exit();
582 }
583
584 static void
585 gtaskqueue_thread_enqueue(void *context)
586 {
587         struct gtaskqueue **tqp, *tq;
588
589         tqp = context;
590         tq = *tqp;
591         wakeup_one(tq);
592 }
593
594
595 static struct gtaskqueue *
596 gtaskqueue_create_fast(const char *name, int mflags,
597                  taskqueue_enqueue_fn enqueue, void *context)
598 {
599         return _gtaskqueue_create(name, mflags, enqueue, context,
600                         MTX_SPIN, "fast_taskqueue");
601 }
602
603
604 struct taskqgroup_cpu {
605         LIST_HEAD(, grouptask)  tgc_tasks;
606         struct gtaskqueue       *tgc_taskq;
607         int     tgc_cnt;
608         int     tgc_cpu;
609 };
610
611 struct taskqgroup {
612         struct taskqgroup_cpu tqg_queue[MAXCPU];
613         struct mtx      tqg_lock;
614         const char *    tqg_name;
615         int             tqg_adjusting;
616         int             tqg_stride;
617         int             tqg_cnt;
618 };
619
620 struct taskq_bind_task {
621         struct gtask bt_task;
622         int     bt_cpuid;
623 };
624
625 static void
626 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
627 {
628         struct taskqgroup_cpu *qcpu;
629
630         qcpu = &qgroup->tqg_queue[idx];
631         LIST_INIT(&qcpu->tgc_tasks);
632         qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
633             taskqueue_thread_enqueue, &qcpu->tgc_taskq);
634         gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
635             "%s_%d", qgroup->tqg_name, idx);
636         qcpu->tgc_cpu = cpu;
637 }
638
639 static void
640 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
641 {
642
643         gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
644 }
645
646 /*
647  * Find the taskq with least # of tasks that doesn't currently have any
648  * other queues from the uniq identifier.
649  */
650 static int
651 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
652 {
653         struct grouptask *n;
654         int i, idx, mincnt;
655         int strict;
656
657         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
658         if (qgroup->tqg_cnt == 0)
659                 return (0);
660         idx = -1;
661         mincnt = INT_MAX;
662         /*
663          * Two passes;  First scan for a queue with the least tasks that
664          * does not already service this uniq id.  If that fails simply find
665          * the queue with the least total tasks;
666          */
667         for (strict = 1; mincnt == INT_MAX; strict = 0) {
668                 for (i = 0; i < qgroup->tqg_cnt; i++) {
669                         if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
670                                 continue;
671                         if (strict) {
672                                 LIST_FOREACH(n,
673                                     &qgroup->tqg_queue[i].tgc_tasks, gt_list)
674                                         if (n->gt_uniq == uniq)
675                                                 break;
676                                 if (n != NULL)
677                                         continue;
678                         }
679                         mincnt = qgroup->tqg_queue[i].tgc_cnt;
680                         idx = i;
681                 }
682         }
683         if (idx == -1)
684                 panic("taskqgroup_find: Failed to pick a qid.");
685
686         return (idx);
687 }
688
689 /*
690  * smp_started is unusable since it is not set for UP kernels or even for
691  * SMP kernels when there is 1 CPU.  This is usually handled by adding a
692  * (mp_ncpus == 1) test, but that would be broken here since we need to
693  * to synchronize with the SI_SUB_SMP ordering.  Even in the pure SMP case
694  * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
695  *
696  * So maintain our own flag.  It must be set after all CPUs are started
697  * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
698  * adjustment is properly delayed.  SI_ORDER_FOURTH is clearly before
699  * SI_ORDER_ANY and unclearly after the CPUs are started.  It would be
700  * simpler for adjustment to pass a flag indicating if it is delayed.
701  */ 
702
703 static int tqg_smp_started;
704
705 static void
706 tqg_record_smp_started(void *arg)
707 {
708         tqg_smp_started = 1;
709 }
710
711 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
712         tqg_record_smp_started, NULL);
713
714 void
715 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
716     void *uniq, int irq, const char *name)
717 {
718         cpuset_t mask;
719         int qid, error;
720
721         gtask->gt_uniq = uniq;
722         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
723         gtask->gt_irq = irq;
724         gtask->gt_cpu = -1;
725         mtx_lock(&qgroup->tqg_lock);
726         qid = taskqgroup_find(qgroup, uniq);
727         qgroup->tqg_queue[qid].tgc_cnt++;
728         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
729         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
730         if (irq != -1 && tqg_smp_started) {
731                 gtask->gt_cpu = qgroup->tqg_queue[qid].tgc_cpu;
732                 CPU_ZERO(&mask);
733                 CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask);
734                 mtx_unlock(&qgroup->tqg_lock);
735                 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
736                 if (error)
737                         printf("%s: setaffinity failed for %s: %d\n", __func__, gtask->gt_name, error);
738         } else
739                 mtx_unlock(&qgroup->tqg_lock);
740 }
741
742 static void
743 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
744 {
745         cpuset_t mask;
746         int qid, cpu, error;
747
748         mtx_lock(&qgroup->tqg_lock);
749         qid = taskqgroup_find(qgroup, gtask->gt_uniq);
750         cpu = qgroup->tqg_queue[qid].tgc_cpu;
751         if (gtask->gt_irq != -1) {
752                 mtx_unlock(&qgroup->tqg_lock);
753
754                 CPU_ZERO(&mask);
755                 CPU_SET(cpu, &mask);
756                 error = intr_setaffinity(gtask->gt_irq, CPU_WHICH_IRQ, &mask);
757                 mtx_lock(&qgroup->tqg_lock);
758                 if (error)
759                         printf("%s: %s setaffinity failed: %d\n", __func__, gtask->gt_name, error);
760
761         }
762         qgroup->tqg_queue[qid].tgc_cnt++;
763
764         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask,
765                          gt_list);
766         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
767         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
768         mtx_unlock(&qgroup->tqg_lock);
769 }
770
771 int
772 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
773         void *uniq, int cpu, int irq, const char *name)
774 {
775         cpuset_t mask;
776         int i, qid, error;
777
778         qid = -1;
779         gtask->gt_uniq = uniq;
780         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
781         gtask->gt_irq = irq;
782         gtask->gt_cpu = cpu;
783         mtx_lock(&qgroup->tqg_lock);
784         if (tqg_smp_started) {
785                 for (i = 0; i < qgroup->tqg_cnt; i++)
786                         if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
787                                 qid = i;
788                                 break;
789                         }
790                 if (qid == -1) {
791                         mtx_unlock(&qgroup->tqg_lock);
792                         printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
793                         return (EINVAL);
794                 }
795         } else
796                 qid = 0;
797         qgroup->tqg_queue[qid].tgc_cnt++;
798         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
799         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
800         cpu = qgroup->tqg_queue[qid].tgc_cpu;
801         mtx_unlock(&qgroup->tqg_lock);
802
803         CPU_ZERO(&mask);
804         CPU_SET(cpu, &mask);
805         if (irq != -1 && tqg_smp_started) {
806                 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
807                 if (error)
808                         printf("%s: setaffinity failed: %d\n", __func__, error);
809         }
810         return (0);
811 }
812
813 static int
814 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
815 {
816         cpuset_t mask;
817         int i, qid, irq, cpu, error;
818
819         qid = -1;
820         irq = gtask->gt_irq;
821         cpu = gtask->gt_cpu;
822         MPASS(tqg_smp_started);
823         mtx_lock(&qgroup->tqg_lock);
824         for (i = 0; i < qgroup->tqg_cnt; i++)
825                 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
826                         qid = i;
827                         break;
828                 }
829         if (qid == -1) {
830                 mtx_unlock(&qgroup->tqg_lock);
831                 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
832                 return (EINVAL);
833         }
834         qgroup->tqg_queue[qid].tgc_cnt++;
835         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
836         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
837         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
838         mtx_unlock(&qgroup->tqg_lock);
839
840         CPU_ZERO(&mask);
841         CPU_SET(cpu, &mask);
842
843         if (irq != -1) {
844                 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
845                 if (error)
846                         printf("%s: setaffinity failed: %d\n", __func__, error);
847         }
848         return (0);
849 }
850
851 void
852 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
853 {
854         int i;
855
856         grouptask_block(gtask);
857         mtx_lock(&qgroup->tqg_lock);
858         for (i = 0; i < qgroup->tqg_cnt; i++)
859                 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
860                         break;
861         if (i == qgroup->tqg_cnt)
862                 panic("taskqgroup_detach: task %s not in group\n", gtask->gt_name);
863         qgroup->tqg_queue[i].tgc_cnt--;
864         LIST_REMOVE(gtask, gt_list);
865         mtx_unlock(&qgroup->tqg_lock);
866         gtask->gt_taskqueue = NULL;
867         gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
868 }
869
870 static void
871 taskqgroup_binder(void *ctx)
872 {
873         struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
874         cpuset_t mask;
875         int error;
876
877         CPU_ZERO(&mask);
878         CPU_SET(gtask->bt_cpuid, &mask);
879         error = cpuset_setthread(curthread->td_tid, &mask);
880         thread_lock(curthread);
881         sched_bind(curthread, gtask->bt_cpuid);
882         thread_unlock(curthread);
883
884         if (error)
885                 printf("%s: setaffinity failed: %d\n", __func__,
886                     error);
887         free(gtask, M_DEVBUF);
888 }
889
890 static void
891 taskqgroup_bind(struct taskqgroup *qgroup)
892 {
893         struct taskq_bind_task *gtask;
894         int i;
895
896         /*
897          * Bind taskqueue threads to specific CPUs, if they have been assigned
898          * one.
899          */
900         if (qgroup->tqg_cnt == 1)
901                 return;
902
903         for (i = 0; i < qgroup->tqg_cnt; i++) {
904                 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
905                 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
906                 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
907                 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
908                     &gtask->bt_task);
909         }
910 }
911
912 static void
913 taskqgroup_config_init(void *arg)
914 {
915         struct taskqgroup *qgroup = qgroup_config;
916         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
917
918         LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
919             grouptask, gt_list);
920         qgroup->tqg_queue[0].tgc_cnt = 0;
921         taskqgroup_cpu_create(qgroup, 0, 0);
922
923         qgroup->tqg_cnt = 1;
924         qgroup->tqg_stride = 1;
925 }
926
927 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND,
928         taskqgroup_config_init, NULL);
929
930 static int
931 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
932 {
933         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
934         struct grouptask *gtask;
935         int i, k, old_cnt, old_cpu, cpu;
936
937         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
938
939         if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
940                 printf("%s: failed cnt: %d stride: %d "
941                     "mp_ncpus: %d tqg_smp_started: %d\n",
942                     __func__, cnt, stride, mp_ncpus, tqg_smp_started);
943                 return (EINVAL);
944         }
945         if (qgroup->tqg_adjusting) {
946                 printf("%s failed: adjusting\n", __func__);
947                 return (EBUSY);
948         }
949         qgroup->tqg_adjusting = 1;
950         old_cnt = qgroup->tqg_cnt;
951         old_cpu = 0;
952         if (old_cnt < cnt)
953                 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
954         mtx_unlock(&qgroup->tqg_lock);
955         /*
956          * Set up queue for tasks added before boot.
957          */
958         if (old_cnt == 0) {
959                 LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
960                     grouptask, gt_list);
961                 qgroup->tqg_queue[0].tgc_cnt = 0;
962         }
963
964         /*
965          * If new taskq threads have been added.
966          */
967         cpu = old_cpu;
968         for (i = old_cnt; i < cnt; i++) {
969                 taskqgroup_cpu_create(qgroup, i, cpu);
970
971                 for (k = 0; k < stride; k++)
972                         cpu = CPU_NEXT(cpu);
973         }
974         mtx_lock(&qgroup->tqg_lock);
975         qgroup->tqg_cnt = cnt;
976         qgroup->tqg_stride = stride;
977
978         /*
979          * Adjust drivers to use new taskqs.
980          */
981         for (i = 0; i < old_cnt; i++) {
982                 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
983                         LIST_REMOVE(gtask, gt_list);
984                         qgroup->tqg_queue[i].tgc_cnt--;
985                         LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
986                 }
987         }
988         mtx_unlock(&qgroup->tqg_lock);
989
990         while ((gtask = LIST_FIRST(&gtask_head))) {
991                 LIST_REMOVE(gtask, gt_list);
992                 if (gtask->gt_cpu == -1)
993                         taskqgroup_attach_deferred(qgroup, gtask);
994                 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
995                         taskqgroup_attach_deferred(qgroup, gtask);
996         }
997
998 #ifdef INVARIANTS
999         mtx_lock(&qgroup->tqg_lock);
1000         for (i = 0; i < qgroup->tqg_cnt; i++) {
1001                 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
1002                 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
1003                         MPASS(gtask->gt_taskqueue != NULL);
1004         }
1005         mtx_unlock(&qgroup->tqg_lock);
1006 #endif
1007         /*
1008          * If taskq thread count has been reduced.
1009          */
1010         for (i = cnt; i < old_cnt; i++)
1011                 taskqgroup_cpu_remove(qgroup, i);
1012
1013         taskqgroup_bind(qgroup);
1014
1015         mtx_lock(&qgroup->tqg_lock);
1016         qgroup->tqg_adjusting = 0;
1017
1018         return (0);
1019 }
1020
1021 int
1022 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
1023 {
1024         int error;
1025
1026         mtx_lock(&qgroup->tqg_lock);
1027         error = _taskqgroup_adjust(qgroup, cnt, stride);
1028         mtx_unlock(&qgroup->tqg_lock);
1029
1030         return (error);
1031 }
1032
1033 struct taskqgroup *
1034 taskqgroup_create(const char *name)
1035 {
1036         struct taskqgroup *qgroup;
1037
1038         qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
1039         mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
1040         qgroup->tqg_name = name;
1041         LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
1042
1043         return (qgroup);
1044 }
1045
1046 void
1047 taskqgroup_destroy(struct taskqgroup *qgroup)
1048 {
1049
1050 }
1051
1052 void
1053 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
1054         const char *name)
1055 {
1056
1057         GROUPTASK_INIT(gtask, 0, fn, ctx);
1058         taskqgroup_attach(qgroup_config, gtask, gtask, -1, name);
1059 }
1060
1061 void
1062 taskqgroup_config_gtask_deinit(struct grouptask *gtask)
1063 {
1064         taskqgroup_detach(qgroup_config, gtask);
1065 }