]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_gtaskqueue.c
MFV r357783:
[FreeBSD/FreeBSD.git] / sys / kern / subr_gtaskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/kernel.h>
37 #include <sys/kthread.h>
38 #include <sys/libkern.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/epoch.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/gtaskqueue.h>
48 #include <sys/unistd.h>
49 #include <machine/stdarg.h>
50
51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
52 static void     gtaskqueue_thread_enqueue(void *);
53 static void     gtaskqueue_thread_loop(void *arg);
54 static int      task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
55 static void     gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
56
57 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
58 TASKQGROUP_DEFINE(config, 1, 1);
59
60 struct gtaskqueue_busy {
61         struct gtask            *tb_running;
62         u_int                    tb_seq;
63         LIST_ENTRY(gtaskqueue_busy) tb_link;
64 };
65
66 typedef void (*gtaskqueue_enqueue_fn)(void *context);
67
68 struct gtaskqueue {
69         STAILQ_HEAD(, gtask)    tq_queue;
70         LIST_HEAD(, gtaskqueue_busy) tq_active;
71         u_int                   tq_seq;
72         int                     tq_callouts;
73         struct mtx_padalign     tq_mutex;
74         gtaskqueue_enqueue_fn   tq_enqueue;
75         void                    *tq_context;
76         char                    *tq_name;
77         struct thread           **tq_threads;
78         int                     tq_tcount;
79         int                     tq_spin;
80         int                     tq_flags;
81         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
82         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
83 };
84
85 #define TQ_FLAGS_ACTIVE         (1 << 0)
86 #define TQ_FLAGS_BLOCKED        (1 << 1)
87 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
88
89 #define DT_CALLOUT_ARMED        (1 << 0)
90
91 #define TQ_LOCK(tq)                                                     \
92         do {                                                            \
93                 if ((tq)->tq_spin)                                      \
94                         mtx_lock_spin(&(tq)->tq_mutex);                 \
95                 else                                                    \
96                         mtx_lock(&(tq)->tq_mutex);                      \
97         } while (0)
98 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
99
100 #define TQ_UNLOCK(tq)                                                   \
101         do {                                                            \
102                 if ((tq)->tq_spin)                                      \
103                         mtx_unlock_spin(&(tq)->tq_mutex);               \
104                 else                                                    \
105                         mtx_unlock(&(tq)->tq_mutex);                    \
106         } while (0)
107 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
108
109 #ifdef INVARIANTS
110 static void
111 gtask_dump(struct gtask *gtask)
112 {
113         printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
114                gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
115 }
116 #endif
117
118 static __inline int
119 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
120 {
121         if (tq->tq_spin)
122                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
123         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
124 }
125
126 static struct gtaskqueue *
127 _gtaskqueue_create(const char *name, int mflags,
128                  taskqueue_enqueue_fn enqueue, void *context,
129                  int mtxflags, const char *mtxname __unused)
130 {
131         struct gtaskqueue *queue;
132         char *tq_name;
133
134         tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
135         if (!tq_name)
136                 return (NULL);
137
138         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
139
140         queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
141         if (!queue) {
142                 free(tq_name, M_GTASKQUEUE);
143                 return (NULL);
144         }
145
146         STAILQ_INIT(&queue->tq_queue);
147         LIST_INIT(&queue->tq_active);
148         queue->tq_enqueue = enqueue;
149         queue->tq_context = context;
150         queue->tq_name = tq_name;
151         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
152         queue->tq_flags |= TQ_FLAGS_ACTIVE;
153         if (enqueue == gtaskqueue_thread_enqueue)
154                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
155         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
156
157         return (queue);
158 }
159
160 /*
161  * Signal a taskqueue thread to terminate.
162  */
163 static void
164 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
165 {
166
167         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
168                 wakeup(tq);
169                 TQ_SLEEP(tq, pp, "gtq_destroy");
170         }
171 }
172
173 static void
174 gtaskqueue_free(struct gtaskqueue *queue)
175 {
176
177         TQ_LOCK(queue);
178         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
179         gtaskqueue_terminate(queue->tq_threads, queue);
180         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
181         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
182         mtx_destroy(&queue->tq_mutex);
183         free(queue->tq_threads, M_GTASKQUEUE);
184         free(queue->tq_name, M_GTASKQUEUE);
185         free(queue, M_GTASKQUEUE);
186 }
187
188 /*
189  * Wait for all to complete, then prevent it from being enqueued
190  */
191 void
192 grouptask_block(struct grouptask *grouptask)
193 {
194         struct gtaskqueue *queue = grouptask->gt_taskqueue;
195         struct gtask *gtask = &grouptask->gt_task;
196
197 #ifdef INVARIANTS
198         if (queue == NULL) {
199                 gtask_dump(gtask);
200                 panic("queue == NULL");
201         }
202 #endif
203         TQ_LOCK(queue);
204         gtask->ta_flags |= TASK_NOENQUEUE;
205         gtaskqueue_drain_locked(queue, gtask);
206         TQ_UNLOCK(queue);
207 }
208
209 void
210 grouptask_unblock(struct grouptask *grouptask)
211 {
212         struct gtaskqueue *queue = grouptask->gt_taskqueue;
213         struct gtask *gtask = &grouptask->gt_task;
214
215 #ifdef INVARIANTS
216         if (queue == NULL) {
217                 gtask_dump(gtask);
218                 panic("queue == NULL");
219         }
220 #endif
221         TQ_LOCK(queue);
222         gtask->ta_flags &= ~TASK_NOENQUEUE;
223         TQ_UNLOCK(queue);
224 }
225
226 int
227 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
228 {
229 #ifdef INVARIANTS
230         if (queue == NULL) {
231                 gtask_dump(gtask);
232                 panic("queue == NULL");
233         }
234 #endif
235         TQ_LOCK(queue);
236         if (gtask->ta_flags & TASK_ENQUEUED) {
237                 TQ_UNLOCK(queue);
238                 return (0);
239         }
240         if (gtask->ta_flags & TASK_NOENQUEUE) {
241                 TQ_UNLOCK(queue);
242                 return (EAGAIN);
243         }
244         STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
245         gtask->ta_flags |= TASK_ENQUEUED;
246         TQ_UNLOCK(queue);
247         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
248                 queue->tq_enqueue(queue->tq_context);
249         return (0);
250 }
251
252 static void
253 gtaskqueue_task_nop_fn(void *context)
254 {
255 }
256
257 /*
258  * Block until all currently queued tasks in this taskqueue
259  * have begun execution.  Tasks queued during execution of
260  * this function are ignored.
261  */
262 static void
263 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
264 {
265         struct gtask t_barrier;
266
267         if (STAILQ_EMPTY(&queue->tq_queue))
268                 return;
269
270         /*
271          * Enqueue our barrier after all current tasks, but with
272          * the highest priority so that newly queued tasks cannot
273          * pass it.  Because of the high priority, we can not use
274          * taskqueue_enqueue_locked directly (which drops the lock
275          * anyway) so just insert it at tail while we have the
276          * queue lock.
277          */
278         GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
279         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
280         t_barrier.ta_flags |= TASK_ENQUEUED;
281
282         /*
283          * Once the barrier has executed, all previously queued tasks
284          * have completed or are currently executing.
285          */
286         while (t_barrier.ta_flags & TASK_ENQUEUED)
287                 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
288 }
289
290 /*
291  * Block until all currently executing tasks for this taskqueue
292  * complete.  Tasks that begin execution during the execution
293  * of this function are ignored.
294  */
295 static void
296 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
297 {
298         struct gtaskqueue_busy *tb;
299         u_int seq;
300
301         if (LIST_EMPTY(&queue->tq_active))
302                 return;
303
304         /* Block taskq_terminate().*/
305         queue->tq_callouts++;
306
307         /* Wait for any active task with sequence from the past. */
308         seq = queue->tq_seq;
309 restart:
310         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
311                 if ((int)(tb->tb_seq - seq) <= 0) {
312                         TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
313                         goto restart;
314                 }
315         }
316
317         /* Release taskqueue_terminate(). */
318         queue->tq_callouts--;
319         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
320                 wakeup_one(queue->tq_threads);
321 }
322
323 void
324 gtaskqueue_block(struct gtaskqueue *queue)
325 {
326
327         TQ_LOCK(queue);
328         queue->tq_flags |= TQ_FLAGS_BLOCKED;
329         TQ_UNLOCK(queue);
330 }
331
332 void
333 gtaskqueue_unblock(struct gtaskqueue *queue)
334 {
335
336         TQ_LOCK(queue);
337         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
338         if (!STAILQ_EMPTY(&queue->tq_queue))
339                 queue->tq_enqueue(queue->tq_context);
340         TQ_UNLOCK(queue);
341 }
342
343 static void
344 gtaskqueue_run_locked(struct gtaskqueue *queue)
345 {
346         struct epoch_tracker et;
347         struct gtaskqueue_busy tb;
348         struct gtask *gtask;
349         bool in_net_epoch;
350
351         KASSERT(queue != NULL, ("tq is NULL"));
352         TQ_ASSERT_LOCKED(queue);
353         tb.tb_running = NULL;
354         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
355         in_net_epoch = false;
356
357         while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
358                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
359                 gtask->ta_flags &= ~TASK_ENQUEUED;
360                 tb.tb_running = gtask;
361                 tb.tb_seq = ++queue->tq_seq;
362                 TQ_UNLOCK(queue);
363
364                 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
365                 if (!in_net_epoch && TASK_IS_NET(gtask)) {
366                         in_net_epoch = true;
367                         NET_EPOCH_ENTER(et);
368                 } else if (in_net_epoch && !TASK_IS_NET(gtask)) {
369                         NET_EPOCH_EXIT(et);
370                         in_net_epoch = false;
371                 }
372                 gtask->ta_func(gtask->ta_context);
373
374                 TQ_LOCK(queue);
375                 wakeup(gtask);
376         }
377         if (in_net_epoch)
378                 NET_EPOCH_EXIT(et);
379         LIST_REMOVE(&tb, tb_link);
380 }
381
382 static int
383 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
384 {
385         struct gtaskqueue_busy *tb;
386
387         TQ_ASSERT_LOCKED(queue);
388         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
389                 if (tb->tb_running == gtask)
390                         return (1);
391         }
392         return (0);
393 }
394
395 static int
396 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
397 {
398
399         if (gtask->ta_flags & TASK_ENQUEUED)
400                 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
401         gtask->ta_flags &= ~TASK_ENQUEUED;
402         return (task_is_running(queue, gtask) ? EBUSY : 0);
403 }
404
405 int
406 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
407 {
408         int error;
409
410         TQ_LOCK(queue);
411         error = gtaskqueue_cancel_locked(queue, gtask);
412         TQ_UNLOCK(queue);
413
414         return (error);
415 }
416
417 static void
418 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
419 {
420         while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
421                 TQ_SLEEP(queue, gtask, "gtq_drain");
422 }
423
424 void
425 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
426 {
427
428         if (!queue->tq_spin)
429                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
430
431         TQ_LOCK(queue);
432         gtaskqueue_drain_locked(queue, gtask);
433         TQ_UNLOCK(queue);
434 }
435
436 void
437 gtaskqueue_drain_all(struct gtaskqueue *queue)
438 {
439
440         if (!queue->tq_spin)
441                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
442
443         TQ_LOCK(queue);
444         gtaskqueue_drain_tq_queue(queue);
445         gtaskqueue_drain_tq_active(queue);
446         TQ_UNLOCK(queue);
447 }
448
449 static int
450 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
451     cpuset_t *mask, const char *name, va_list ap)
452 {
453         char ktname[MAXCOMLEN + 1];
454         struct thread *td;
455         struct gtaskqueue *tq;
456         int i, error;
457
458         if (count <= 0)
459                 return (EINVAL);
460
461         vsnprintf(ktname, sizeof(ktname), name, ap);
462         tq = *tqp;
463
464         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
465             M_NOWAIT | M_ZERO);
466         if (tq->tq_threads == NULL) {
467                 printf("%s: no memory for %s threads\n", __func__, ktname);
468                 return (ENOMEM);
469         }
470
471         for (i = 0; i < count; i++) {
472                 if (count == 1)
473                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
474                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
475                 else
476                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
477                             &tq->tq_threads[i], RFSTOPPED, 0,
478                             "%s_%d", ktname, i);
479                 if (error) {
480                         /* should be ok to continue, taskqueue_free will dtrt */
481                         printf("%s: kthread_add(%s): error %d", __func__,
482                             ktname, error);
483                         tq->tq_threads[i] = NULL;               /* paranoid */
484                 } else
485                         tq->tq_tcount++;
486         }
487         for (i = 0; i < count; i++) {
488                 if (tq->tq_threads[i] == NULL)
489                         continue;
490                 td = tq->tq_threads[i];
491                 if (mask) {
492                         error = cpuset_setthread(td->td_tid, mask);
493                         /*
494                          * Failing to pin is rarely an actual fatal error;
495                          * it'll just affect performance.
496                          */
497                         if (error)
498                                 printf("%s: curthread=%llu: can't pin; "
499                                     "error=%d\n",
500                                     __func__,
501                                     (unsigned long long) td->td_tid,
502                                     error);
503                 }
504                 thread_lock(td);
505                 sched_prio(td, pri);
506                 sched_add(td, SRQ_BORING);
507         }
508
509         return (0);
510 }
511
512 static int
513 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
514     const char *name, ...)
515 {
516         va_list ap;
517         int error;
518
519         va_start(ap, name);
520         error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
521         va_end(ap);
522         return (error);
523 }
524
525 static inline void
526 gtaskqueue_run_callback(struct gtaskqueue *tq,
527     enum taskqueue_callback_type cb_type)
528 {
529         taskqueue_callback_fn tq_callback;
530
531         TQ_ASSERT_UNLOCKED(tq);
532         tq_callback = tq->tq_callbacks[cb_type];
533         if (tq_callback != NULL)
534                 tq_callback(tq->tq_cb_contexts[cb_type]);
535 }
536
537 static void
538 gtaskqueue_thread_loop(void *arg)
539 {
540         struct gtaskqueue **tqp, *tq;
541
542         tqp = arg;
543         tq = *tqp;
544         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
545         TQ_LOCK(tq);
546         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
547                 /* XXX ? */
548                 gtaskqueue_run_locked(tq);
549                 /*
550                  * Because taskqueue_run() can drop tq_mutex, we need to
551                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
552                  * meantime, which means we missed a wakeup.
553                  */
554                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
555                         break;
556                 TQ_SLEEP(tq, tq, "-");
557         }
558         gtaskqueue_run_locked(tq);
559         /*
560          * This thread is on its way out, so just drop the lock temporarily
561          * in order to call the shutdown callback.  This allows the callback
562          * to look at the taskqueue, even just before it dies.
563          */
564         TQ_UNLOCK(tq);
565         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
566         TQ_LOCK(tq);
567
568         /* rendezvous with thread that asked us to terminate */
569         tq->tq_tcount--;
570         wakeup_one(tq->tq_threads);
571         TQ_UNLOCK(tq);
572         kthread_exit();
573 }
574
575 static void
576 gtaskqueue_thread_enqueue(void *context)
577 {
578         struct gtaskqueue **tqp, *tq;
579
580         tqp = context;
581         tq = *tqp;
582         wakeup_any(tq);
583 }
584
585 static struct gtaskqueue *
586 gtaskqueue_create_fast(const char *name, int mflags,
587                  taskqueue_enqueue_fn enqueue, void *context)
588 {
589         return _gtaskqueue_create(name, mflags, enqueue, context,
590                         MTX_SPIN, "fast_taskqueue");
591 }
592
593 struct taskqgroup_cpu {
594         LIST_HEAD(, grouptask)  tgc_tasks;
595         struct gtaskqueue       *tgc_taskq;
596         int     tgc_cnt;
597         int     tgc_cpu;
598 };
599
600 struct taskqgroup {
601         struct taskqgroup_cpu tqg_queue[MAXCPU];
602         struct mtx      tqg_lock;
603         const char *    tqg_name;
604         int             tqg_adjusting;
605         int             tqg_stride;
606         int             tqg_cnt;
607 };
608
609 struct taskq_bind_task {
610         struct gtask bt_task;
611         int     bt_cpuid;
612 };
613
614 static void
615 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
616 {
617         struct taskqgroup_cpu *qcpu;
618
619         qcpu = &qgroup->tqg_queue[idx];
620         LIST_INIT(&qcpu->tgc_tasks);
621         qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
622             taskqueue_thread_enqueue, &qcpu->tgc_taskq);
623         gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
624             "%s_%d", qgroup->tqg_name, idx);
625         qcpu->tgc_cpu = cpu;
626 }
627
628 static void
629 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
630 {
631
632         gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
633 }
634
635 /*
636  * Find the taskq with least # of tasks that doesn't currently have any
637  * other queues from the uniq identifier.
638  */
639 static int
640 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
641 {
642         struct grouptask *n;
643         int i, idx, mincnt;
644         int strict;
645
646         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
647         if (qgroup->tqg_cnt == 0)
648                 return (0);
649         idx = -1;
650         mincnt = INT_MAX;
651         /*
652          * Two passes;  First scan for a queue with the least tasks that
653          * does not already service this uniq id.  If that fails simply find
654          * the queue with the least total tasks;
655          */
656         for (strict = 1; mincnt == INT_MAX; strict = 0) {
657                 for (i = 0; i < qgroup->tqg_cnt; i++) {
658                         if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
659                                 continue;
660                         if (strict) {
661                                 LIST_FOREACH(n,
662                                     &qgroup->tqg_queue[i].tgc_tasks, gt_list)
663                                         if (n->gt_uniq == uniq)
664                                                 break;
665                                 if (n != NULL)
666                                         continue;
667                         }
668                         mincnt = qgroup->tqg_queue[i].tgc_cnt;
669                         idx = i;
670                 }
671         }
672         if (idx == -1)
673                 panic("%s: failed to pick a qid.", __func__);
674
675         return (idx);
676 }
677
678 /*
679  * smp_started is unusable since it is not set for UP kernels or even for
680  * SMP kernels when there is 1 CPU.  This is usually handled by adding a
681  * (mp_ncpus == 1) test, but that would be broken here since we need to
682  * to synchronize with the SI_SUB_SMP ordering.  Even in the pure SMP case
683  * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
684  *
685  * So maintain our own flag.  It must be set after all CPUs are started
686  * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
687  * adjustment is properly delayed.  SI_ORDER_FOURTH is clearly before
688  * SI_ORDER_ANY and unclearly after the CPUs are started.  It would be
689  * simpler for adjustment to pass a flag indicating if it is delayed.
690  */ 
691
692 static int tqg_smp_started;
693
694 static void
695 tqg_record_smp_started(void *arg)
696 {
697         tqg_smp_started = 1;
698 }
699
700 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
701         tqg_record_smp_started, NULL);
702
703 void
704 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
705     void *uniq, device_t dev, struct resource *irq, const char *name)
706 {
707         int cpu, qid, error;
708
709         gtask->gt_uniq = uniq;
710         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
711         gtask->gt_dev = dev;
712         gtask->gt_irq = irq;
713         gtask->gt_cpu = -1;
714         mtx_lock(&qgroup->tqg_lock);
715         qid = taskqgroup_find(qgroup, uniq);
716         qgroup->tqg_queue[qid].tgc_cnt++;
717         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
718         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
719         if (dev != NULL && irq != NULL && tqg_smp_started) {
720                 cpu = qgroup->tqg_queue[qid].tgc_cpu;
721                 gtask->gt_cpu = cpu;
722                 mtx_unlock(&qgroup->tqg_lock);
723                 error = bus_bind_intr(dev, irq, cpu);
724                 if (error)
725                         printf("%s: binding interrupt failed for %s: %d\n",
726                             __func__, gtask->gt_name, error);
727         } else
728                 mtx_unlock(&qgroup->tqg_lock);
729 }
730
731 static void
732 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
733 {
734         int qid, cpu, error;
735
736         mtx_lock(&qgroup->tqg_lock);
737         qid = taskqgroup_find(qgroup, gtask->gt_uniq);
738         cpu = qgroup->tqg_queue[qid].tgc_cpu;
739         if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) {
740                 mtx_unlock(&qgroup->tqg_lock);
741                 error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu);
742                 mtx_lock(&qgroup->tqg_lock);
743                 if (error)
744                         printf("%s: binding interrupt failed for %s: %d\n",
745                             __func__, gtask->gt_name, error);
746
747         }
748         qgroup->tqg_queue[qid].tgc_cnt++;
749         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
750         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
751         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
752         mtx_unlock(&qgroup->tqg_lock);
753 }
754
755 int
756 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
757     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
758 {
759         int i, qid, error;
760
761         qid = -1;
762         gtask->gt_uniq = uniq;
763         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
764         gtask->gt_dev = dev;
765         gtask->gt_irq = irq;
766         gtask->gt_cpu = cpu;
767         mtx_lock(&qgroup->tqg_lock);
768         if (tqg_smp_started) {
769                 for (i = 0; i < qgroup->tqg_cnt; i++)
770                         if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
771                                 qid = i;
772                                 break;
773                         }
774                 if (qid == -1) {
775                         mtx_unlock(&qgroup->tqg_lock);
776                         printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
777                         return (EINVAL);
778                 }
779         } else
780                 qid = 0;
781         qgroup->tqg_queue[qid].tgc_cnt++;
782         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
783         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
784         cpu = qgroup->tqg_queue[qid].tgc_cpu;
785         mtx_unlock(&qgroup->tqg_lock);
786
787         if (dev != NULL && irq != NULL && tqg_smp_started) {
788                 error = bus_bind_intr(dev, irq, cpu);
789                 if (error)
790                         printf("%s: binding interrupt failed for %s: %d\n",
791                             __func__, gtask->gt_name, error);
792         }
793         return (0);
794 }
795
796 static int
797 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
798 {
799         device_t dev;
800         struct resource *irq;
801         int cpu, error, i, qid;
802
803         qid = -1;
804         dev = gtask->gt_dev;
805         irq = gtask->gt_irq;
806         cpu = gtask->gt_cpu;
807         MPASS(tqg_smp_started);
808         mtx_lock(&qgroup->tqg_lock);
809         for (i = 0; i < qgroup->tqg_cnt; i++)
810                 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
811                         qid = i;
812                         break;
813                 }
814         if (qid == -1) {
815                 mtx_unlock(&qgroup->tqg_lock);
816                 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
817                 return (EINVAL);
818         }
819         qgroup->tqg_queue[qid].tgc_cnt++;
820         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
821         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
822         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
823         mtx_unlock(&qgroup->tqg_lock);
824
825         if (dev != NULL && irq != NULL) {
826                 error = bus_bind_intr(dev, irq, cpu);
827                 if (error)
828                         printf("%s: binding interrupt failed for %s: %d\n",
829                             __func__, gtask->gt_name, error);
830         }
831         return (0);
832 }
833
834 void
835 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
836 {
837         int i;
838
839         grouptask_block(gtask);
840         mtx_lock(&qgroup->tqg_lock);
841         for (i = 0; i < qgroup->tqg_cnt; i++)
842                 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
843                         break;
844         if (i == qgroup->tqg_cnt)
845                 panic("%s: task %s not in group", __func__, gtask->gt_name);
846         qgroup->tqg_queue[i].tgc_cnt--;
847         LIST_REMOVE(gtask, gt_list);
848         mtx_unlock(&qgroup->tqg_lock);
849         gtask->gt_taskqueue = NULL;
850         gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
851 }
852
853 static void
854 taskqgroup_binder(void *ctx)
855 {
856         struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
857         cpuset_t mask;
858         int error;
859
860         CPU_ZERO(&mask);
861         CPU_SET(gtask->bt_cpuid, &mask);
862         error = cpuset_setthread(curthread->td_tid, &mask);
863         thread_lock(curthread);
864         sched_bind(curthread, gtask->bt_cpuid);
865         thread_unlock(curthread);
866
867         if (error)
868                 printf("%s: binding curthread failed: %d\n", __func__, error);
869         free(gtask, M_DEVBUF);
870 }
871
872 static void
873 taskqgroup_bind(struct taskqgroup *qgroup)
874 {
875         struct taskq_bind_task *gtask;
876         int i;
877
878         /*
879          * Bind taskqueue threads to specific CPUs, if they have been assigned
880          * one.
881          */
882         if (qgroup->tqg_cnt == 1)
883                 return;
884
885         for (i = 0; i < qgroup->tqg_cnt; i++) {
886                 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
887                 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
888                 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
889                 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
890                     &gtask->bt_task);
891         }
892 }
893
894 static void
895 taskqgroup_config_init(void *arg)
896 {
897         struct taskqgroup *qgroup = qgroup_config;
898         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
899
900         LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
901             grouptask, gt_list);
902         qgroup->tqg_queue[0].tgc_cnt = 0;
903         taskqgroup_cpu_create(qgroup, 0, 0);
904
905         qgroup->tqg_cnt = 1;
906         qgroup->tqg_stride = 1;
907 }
908
909 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND,
910         taskqgroup_config_init, NULL);
911
912 static int
913 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
914 {
915         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
916         struct grouptask *gtask;
917         int i, k, old_cnt, old_cpu, cpu;
918
919         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
920
921         if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
922                 printf("%s: failed cnt: %d stride: %d "
923                     "mp_ncpus: %d tqg_smp_started: %d\n",
924                     __func__, cnt, stride, mp_ncpus, tqg_smp_started);
925                 return (EINVAL);
926         }
927         if (qgroup->tqg_adjusting) {
928                 printf("%s failed: adjusting\n", __func__);
929                 return (EBUSY);
930         }
931         qgroup->tqg_adjusting = 1;
932         old_cnt = qgroup->tqg_cnt;
933         old_cpu = 0;
934         if (old_cnt < cnt)
935                 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
936         mtx_unlock(&qgroup->tqg_lock);
937         /*
938          * Set up queue for tasks added before boot.
939          */
940         if (old_cnt == 0) {
941                 LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
942                     grouptask, gt_list);
943                 qgroup->tqg_queue[0].tgc_cnt = 0;
944         }
945
946         /*
947          * If new taskq threads have been added.
948          */
949         cpu = old_cpu;
950         for (i = old_cnt; i < cnt; i++) {
951                 taskqgroup_cpu_create(qgroup, i, cpu);
952
953                 for (k = 0; k < stride; k++)
954                         cpu = CPU_NEXT(cpu);
955         }
956         mtx_lock(&qgroup->tqg_lock);
957         qgroup->tqg_cnt = cnt;
958         qgroup->tqg_stride = stride;
959
960         /*
961          * Adjust drivers to use new taskqs.
962          */
963         for (i = 0; i < old_cnt; i++) {
964                 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
965                         LIST_REMOVE(gtask, gt_list);
966                         qgroup->tqg_queue[i].tgc_cnt--;
967                         LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
968                 }
969         }
970         mtx_unlock(&qgroup->tqg_lock);
971
972         while ((gtask = LIST_FIRST(&gtask_head))) {
973                 LIST_REMOVE(gtask, gt_list);
974                 if (gtask->gt_cpu == -1)
975                         taskqgroup_attach_deferred(qgroup, gtask);
976                 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
977                         taskqgroup_attach_deferred(qgroup, gtask);
978         }
979
980 #ifdef INVARIANTS
981         mtx_lock(&qgroup->tqg_lock);
982         for (i = 0; i < qgroup->tqg_cnt; i++) {
983                 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
984                 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
985                         MPASS(gtask->gt_taskqueue != NULL);
986         }
987         mtx_unlock(&qgroup->tqg_lock);
988 #endif
989         /*
990          * If taskq thread count has been reduced.
991          */
992         for (i = cnt; i < old_cnt; i++)
993                 taskqgroup_cpu_remove(qgroup, i);
994
995         taskqgroup_bind(qgroup);
996
997         mtx_lock(&qgroup->tqg_lock);
998         qgroup->tqg_adjusting = 0;
999
1000         return (0);
1001 }
1002
1003 int
1004 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
1005 {
1006         int error;
1007
1008         mtx_lock(&qgroup->tqg_lock);
1009         error = _taskqgroup_adjust(qgroup, cnt, stride);
1010         mtx_unlock(&qgroup->tqg_lock);
1011
1012         return (error);
1013 }
1014
1015 struct taskqgroup *
1016 taskqgroup_create(const char *name)
1017 {
1018         struct taskqgroup *qgroup;
1019
1020         qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
1021         mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
1022         qgroup->tqg_name = name;
1023         LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
1024
1025         return (qgroup);
1026 }
1027
1028 void
1029 taskqgroup_destroy(struct taskqgroup *qgroup)
1030 {
1031
1032 }
1033
1034 void
1035 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
1036     const char *name)
1037 {
1038
1039         GROUPTASK_INIT(gtask, 0, fn, ctx);
1040         taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name);
1041 }
1042
1043 void
1044 taskqgroup_config_gtask_deinit(struct grouptask *gtask)
1045 {
1046
1047         taskqgroup_detach(qgroup_config, gtask);
1048 }