]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
sysctl(9): Fix a few mandoc related issues
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/kthread.h>
39 #include <sys/libkern.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/epoch.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/taskqueue.h>
49 #include <sys/unistd.h>
50 #include <machine/stdarg.h>
51
52 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
53 static void     *taskqueue_giant_ih;
54 static void     *taskqueue_ih;
55 static void      taskqueue_fast_enqueue(void *);
56 static void      taskqueue_swi_enqueue(void *);
57 static void      taskqueue_swi_giant_enqueue(void *);
58
59 struct taskqueue_busy {
60         struct task             *tb_running;
61         u_int                    tb_seq;
62         LIST_ENTRY(taskqueue_busy) tb_link;
63 };
64
65 struct taskqueue {
66         STAILQ_HEAD(, task)     tq_queue;
67         LIST_HEAD(, taskqueue_busy) tq_active;
68         struct task             *tq_hint;
69         u_int                   tq_seq;
70         int                     tq_callouts;
71         struct mtx_padalign     tq_mutex;
72         taskqueue_enqueue_fn    tq_enqueue;
73         void                    *tq_context;
74         char                    *tq_name;
75         struct thread           **tq_threads;
76         int                     tq_tcount;
77         int                     tq_spin;
78         int                     tq_flags;
79         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
80         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
81 };
82
83 #define TQ_FLAGS_ACTIVE         (1 << 0)
84 #define TQ_FLAGS_BLOCKED        (1 << 1)
85 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
86
87 #define DT_CALLOUT_ARMED        (1 << 0)
88 #define DT_DRAIN_IN_PROGRESS    (1 << 1)
89
90 #define TQ_LOCK(tq)                                                     \
91         do {                                                            \
92                 if ((tq)->tq_spin)                                      \
93                         mtx_lock_spin(&(tq)->tq_mutex);                 \
94                 else                                                    \
95                         mtx_lock(&(tq)->tq_mutex);                      \
96         } while (0)
97 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
98
99 #define TQ_UNLOCK(tq)                                                   \
100         do {                                                            \
101                 if ((tq)->tq_spin)                                      \
102                         mtx_unlock_spin(&(tq)->tq_mutex);               \
103                 else                                                    \
104                         mtx_unlock(&(tq)->tq_mutex);                    \
105         } while (0)
106 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
107
108 void
109 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
110     int priority, task_fn_t func, void *context)
111 {
112
113         TASK_INIT(&timeout_task->t, priority, func, context);
114         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
115             CALLOUT_RETURNUNLOCKED);
116         timeout_task->q = queue;
117         timeout_task->f = 0;
118 }
119
120 static __inline int
121 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm)
122 {
123         if (tq->tq_spin)
124                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
125         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
126 }
127
128 static struct taskqueue *
129 _taskqueue_create(const char *name, int mflags,
130                  taskqueue_enqueue_fn enqueue, void *context,
131                  int mtxflags, const char *mtxname __unused)
132 {
133         struct taskqueue *queue;
134         char *tq_name;
135
136         tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
137         if (tq_name == NULL)
138                 return (NULL);
139
140         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
141         if (queue == NULL) {
142                 free(tq_name, M_TASKQUEUE);
143                 return (NULL);
144         }
145
146         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
147
148         STAILQ_INIT(&queue->tq_queue);
149         LIST_INIT(&queue->tq_active);
150         queue->tq_enqueue = enqueue;
151         queue->tq_context = context;
152         queue->tq_name = tq_name;
153         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
154         queue->tq_flags |= TQ_FLAGS_ACTIVE;
155         if (enqueue == taskqueue_fast_enqueue ||
156             enqueue == taskqueue_swi_enqueue ||
157             enqueue == taskqueue_swi_giant_enqueue ||
158             enqueue == taskqueue_thread_enqueue)
159                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
160         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
161
162         return (queue);
163 }
164
165 struct taskqueue *
166 taskqueue_create(const char *name, int mflags,
167                  taskqueue_enqueue_fn enqueue, void *context)
168 {
169
170         return _taskqueue_create(name, mflags, enqueue, context,
171                         MTX_DEF, name);
172 }
173
174 void
175 taskqueue_set_callback(struct taskqueue *queue,
176     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
177     void *context)
178 {
179
180         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
181             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
182             ("Callback type %d not valid, must be %d-%d", cb_type,
183             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
184         KASSERT((queue->tq_callbacks[cb_type] == NULL),
185             ("Re-initialization of taskqueue callback?"));
186
187         queue->tq_callbacks[cb_type] = callback;
188         queue->tq_cb_contexts[cb_type] = context;
189 }
190
191 /*
192  * Signal a taskqueue thread to terminate.
193  */
194 static void
195 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
196 {
197
198         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
199                 wakeup(tq);
200                 TQ_SLEEP(tq, pp, "tq_destroy");
201         }
202 }
203
204 void
205 taskqueue_free(struct taskqueue *queue)
206 {
207
208         TQ_LOCK(queue);
209         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
210         taskqueue_terminate(queue->tq_threads, queue);
211         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
212         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
213         mtx_destroy(&queue->tq_mutex);
214         free(queue->tq_threads, M_TASKQUEUE);
215         free(queue->tq_name, M_TASKQUEUE);
216         free(queue, M_TASKQUEUE);
217 }
218
219 static int
220 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
221 {
222         struct task *ins;
223         struct task *prev;
224
225         KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
226         /*
227          * Count multiple enqueues.
228          */
229         if (task->ta_pending) {
230                 if (task->ta_pending < USHRT_MAX)
231                         task->ta_pending++;
232                 TQ_UNLOCK(queue);
233                 return (0);
234         }
235
236         /*
237          * Optimise cases when all tasks use small set of priorities.
238          * In case of only one priority we always insert at the end.
239          * In case of two tq_hint typically gives the insertion point.
240          * In case of more then two tq_hint should halve the search.
241          */
242         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
243         if (!prev || prev->ta_priority >= task->ta_priority) {
244                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
245         } else {
246                 prev = queue->tq_hint;
247                 if (prev && prev->ta_priority >= task->ta_priority) {
248                         ins = STAILQ_NEXT(prev, ta_link);
249                 } else {
250                         prev = NULL;
251                         ins = STAILQ_FIRST(&queue->tq_queue);
252                 }
253                 for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link))
254                         if (ins->ta_priority < task->ta_priority)
255                                 break;
256
257                 if (prev) {
258                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
259                         queue->tq_hint = task;
260                 } else
261                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
262         }
263
264         task->ta_pending = 1;
265         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
266                 TQ_UNLOCK(queue);
267         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
268                 queue->tq_enqueue(queue->tq_context);
269         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
270                 TQ_UNLOCK(queue);
271
272         /* Return with lock released. */
273         return (0);
274 }
275
276 int
277 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
278 {
279         int res;
280
281         TQ_LOCK(queue);
282         res = taskqueue_enqueue_locked(queue, task);
283         /* The lock is released inside. */
284
285         return (res);
286 }
287
288 static void
289 taskqueue_timeout_func(void *arg)
290 {
291         struct taskqueue *queue;
292         struct timeout_task *timeout_task;
293
294         timeout_task = arg;
295         queue = timeout_task->q;
296         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
297         timeout_task->f &= ~DT_CALLOUT_ARMED;
298         queue->tq_callouts--;
299         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
300         /* The lock is released inside. */
301 }
302
303 int
304 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
305     struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
306 {
307         int res;
308
309         TQ_LOCK(queue);
310         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
311             ("Migrated queue"));
312         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
313         timeout_task->q = queue;
314         res = timeout_task->t.ta_pending;
315         if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
316                 /* Do nothing */
317                 TQ_UNLOCK(queue);
318                 res = -1;
319         } else if (sbt == 0) {
320                 taskqueue_enqueue_locked(queue, &timeout_task->t);
321                 /* The lock is released inside. */
322         } else {
323                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
324                         res++;
325                 } else {
326                         queue->tq_callouts++;
327                         timeout_task->f |= DT_CALLOUT_ARMED;
328                         if (sbt < 0)
329                                 sbt = -sbt; /* Ignore overflow. */
330                 }
331                 if (sbt > 0) {
332                         callout_reset_sbt(&timeout_task->c, sbt, pr,
333                             taskqueue_timeout_func, timeout_task, flags);
334                 }
335                 TQ_UNLOCK(queue);
336         }
337         return (res);
338 }
339
340 int
341 taskqueue_enqueue_timeout(struct taskqueue *queue,
342     struct timeout_task *ttask, int ticks)
343 {
344
345         return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
346             0, 0));
347 }
348
349 static void
350 taskqueue_task_nop_fn(void *context, int pending)
351 {
352 }
353
354 /*
355  * Block until all currently queued tasks in this taskqueue
356  * have begun execution.  Tasks queued during execution of
357  * this function are ignored.
358  */
359 static int
360 taskqueue_drain_tq_queue(struct taskqueue *queue)
361 {
362         struct task t_barrier;
363
364         if (STAILQ_EMPTY(&queue->tq_queue))
365                 return (0);
366
367         /*
368          * Enqueue our barrier after all current tasks, but with
369          * the highest priority so that newly queued tasks cannot
370          * pass it.  Because of the high priority, we can not use
371          * taskqueue_enqueue_locked directly (which drops the lock
372          * anyway) so just insert it at tail while we have the
373          * queue lock.
374          */
375         TASK_INIT(&t_barrier, UCHAR_MAX, taskqueue_task_nop_fn, &t_barrier);
376         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
377         queue->tq_hint = &t_barrier;
378         t_barrier.ta_pending = 1;
379
380         /*
381          * Once the barrier has executed, all previously queued tasks
382          * have completed or are currently executing.
383          */
384         while (t_barrier.ta_pending != 0)
385                 TQ_SLEEP(queue, &t_barrier, "tq_qdrain");
386         return (1);
387 }
388
389 /*
390  * Block until all currently executing tasks for this taskqueue
391  * complete.  Tasks that begin execution during the execution
392  * of this function are ignored.
393  */
394 static int
395 taskqueue_drain_tq_active(struct taskqueue *queue)
396 {
397         struct taskqueue_busy *tb;
398         u_int seq;
399
400         if (LIST_EMPTY(&queue->tq_active))
401                 return (0);
402
403         /* Block taskq_terminate().*/
404         queue->tq_callouts++;
405
406         /* Wait for any active task with sequence from the past. */
407         seq = queue->tq_seq;
408 restart:
409         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
410                 if ((int)(tb->tb_seq - seq) <= 0) {
411                         TQ_SLEEP(queue, tb->tb_running, "tq_adrain");
412                         goto restart;
413                 }
414         }
415
416         /* Release taskqueue_terminate(). */
417         queue->tq_callouts--;
418         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
419                 wakeup_one(queue->tq_threads);
420         return (1);
421 }
422
423 void
424 taskqueue_block(struct taskqueue *queue)
425 {
426
427         TQ_LOCK(queue);
428         queue->tq_flags |= TQ_FLAGS_BLOCKED;
429         TQ_UNLOCK(queue);
430 }
431
432 void
433 taskqueue_unblock(struct taskqueue *queue)
434 {
435
436         TQ_LOCK(queue);
437         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
438         if (!STAILQ_EMPTY(&queue->tq_queue))
439                 queue->tq_enqueue(queue->tq_context);
440         TQ_UNLOCK(queue);
441 }
442
443 static void
444 taskqueue_run_locked(struct taskqueue *queue)
445 {
446         struct epoch_tracker et;
447         struct taskqueue_busy tb;
448         struct task *task;
449         bool in_net_epoch;
450         int pending;
451
452         KASSERT(queue != NULL, ("tq is NULL"));
453         TQ_ASSERT_LOCKED(queue);
454         tb.tb_running = NULL;
455         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
456         in_net_epoch = false;
457
458         while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
459                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
460                 if (queue->tq_hint == task)
461                         queue->tq_hint = NULL;
462                 pending = task->ta_pending;
463                 task->ta_pending = 0;
464                 tb.tb_running = task;
465                 tb.tb_seq = ++queue->tq_seq;
466                 TQ_UNLOCK(queue);
467
468                 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
469                 if (!in_net_epoch && TASK_IS_NET(task)) {
470                         in_net_epoch = true;
471                         NET_EPOCH_ENTER(et);
472                 } else if (in_net_epoch && !TASK_IS_NET(task)) {
473                         NET_EPOCH_EXIT(et);
474                         in_net_epoch = false;
475                 }
476                 task->ta_func(task->ta_context, pending);
477
478                 TQ_LOCK(queue);
479                 wakeup(task);
480         }
481         if (in_net_epoch)
482                 NET_EPOCH_EXIT(et);
483         LIST_REMOVE(&tb, tb_link);
484 }
485
486 void
487 taskqueue_run(struct taskqueue *queue)
488 {
489
490         TQ_LOCK(queue);
491         taskqueue_run_locked(queue);
492         TQ_UNLOCK(queue);
493 }
494
495 static int
496 task_is_running(struct taskqueue *queue, struct task *task)
497 {
498         struct taskqueue_busy *tb;
499
500         TQ_ASSERT_LOCKED(queue);
501         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
502                 if (tb->tb_running == task)
503                         return (1);
504         }
505         return (0);
506 }
507
508 /*
509  * Only use this function in single threaded contexts. It returns
510  * non-zero if the given task is either pending or running. Else the
511  * task is idle and can be queued again or freed.
512  */
513 int
514 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
515 {
516         int retval;
517
518         TQ_LOCK(queue);
519         retval = task->ta_pending > 0 || task_is_running(queue, task);
520         TQ_UNLOCK(queue);
521
522         return (retval);
523 }
524
525 static int
526 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
527     u_int *pendp)
528 {
529
530         if (task->ta_pending > 0) {
531                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
532                 if (queue->tq_hint == task)
533                         queue->tq_hint = NULL;
534         }
535         if (pendp != NULL)
536                 *pendp = task->ta_pending;
537         task->ta_pending = 0;
538         return (task_is_running(queue, task) ? EBUSY : 0);
539 }
540
541 int
542 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
543 {
544         int error;
545
546         TQ_LOCK(queue);
547         error = taskqueue_cancel_locked(queue, task, pendp);
548         TQ_UNLOCK(queue);
549
550         return (error);
551 }
552
553 int
554 taskqueue_cancel_timeout(struct taskqueue *queue,
555     struct timeout_task *timeout_task, u_int *pendp)
556 {
557         u_int pending, pending1;
558         int error;
559
560         TQ_LOCK(queue);
561         pending = !!(callout_stop(&timeout_task->c) > 0);
562         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
563         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
564                 timeout_task->f &= ~DT_CALLOUT_ARMED;
565                 queue->tq_callouts--;
566         }
567         TQ_UNLOCK(queue);
568
569         if (pendp != NULL)
570                 *pendp = pending + pending1;
571         return (error);
572 }
573
574 void
575 taskqueue_drain(struct taskqueue *queue, struct task *task)
576 {
577
578         if (!queue->tq_spin)
579                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
580
581         TQ_LOCK(queue);
582         while (task->ta_pending != 0 || task_is_running(queue, task))
583                 TQ_SLEEP(queue, task, "tq_drain");
584         TQ_UNLOCK(queue);
585 }
586
587 void
588 taskqueue_drain_all(struct taskqueue *queue)
589 {
590
591         if (!queue->tq_spin)
592                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
593
594         TQ_LOCK(queue);
595         (void)taskqueue_drain_tq_queue(queue);
596         (void)taskqueue_drain_tq_active(queue);
597         TQ_UNLOCK(queue);
598 }
599
600 void
601 taskqueue_drain_timeout(struct taskqueue *queue,
602     struct timeout_task *timeout_task)
603 {
604
605         /*
606          * Set flag to prevent timer from re-starting during drain:
607          */
608         TQ_LOCK(queue);
609         KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
610             ("Drain already in progress"));
611         timeout_task->f |= DT_DRAIN_IN_PROGRESS;
612         TQ_UNLOCK(queue);
613
614         callout_drain(&timeout_task->c);
615         taskqueue_drain(queue, &timeout_task->t);
616
617         /*
618          * Clear flag to allow timer to re-start:
619          */
620         TQ_LOCK(queue);
621         timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
622         TQ_UNLOCK(queue);
623 }
624
625 void
626 taskqueue_quiesce(struct taskqueue *queue)
627 {
628         int ret;
629
630         TQ_LOCK(queue);
631         do {
632                 ret = taskqueue_drain_tq_queue(queue);
633                 if (ret == 0)
634                         ret = taskqueue_drain_tq_active(queue);
635         } while (ret != 0);
636         TQ_UNLOCK(queue);
637 }
638
639 static void
640 taskqueue_swi_enqueue(void *context)
641 {
642         swi_sched(taskqueue_ih, 0);
643 }
644
645 static void
646 taskqueue_swi_run(void *dummy)
647 {
648         taskqueue_run(taskqueue_swi);
649 }
650
651 static void
652 taskqueue_swi_giant_enqueue(void *context)
653 {
654         swi_sched(taskqueue_giant_ih, 0);
655 }
656
657 static void
658 taskqueue_swi_giant_run(void *dummy)
659 {
660         taskqueue_run(taskqueue_swi_giant);
661 }
662
663 static int
664 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
665     cpuset_t *mask, struct proc *p, const char *name, va_list ap)
666 {
667         char ktname[MAXCOMLEN + 1];
668         struct thread *td;
669         struct taskqueue *tq;
670         int i, error;
671
672         if (count <= 0)
673                 return (EINVAL);
674
675         vsnprintf(ktname, sizeof(ktname), name, ap);
676         tq = *tqp;
677
678         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
679             M_NOWAIT | M_ZERO);
680         if (tq->tq_threads == NULL) {
681                 printf("%s: no memory for %s threads\n", __func__, ktname);
682                 return (ENOMEM);
683         }
684
685         for (i = 0; i < count; i++) {
686                 if (count == 1)
687                         error = kthread_add(taskqueue_thread_loop, tqp, p,
688                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
689                 else
690                         error = kthread_add(taskqueue_thread_loop, tqp, p,
691                             &tq->tq_threads[i], RFSTOPPED, 0,
692                             "%s_%d", ktname, i);
693                 if (error) {
694                         /* should be ok to continue, taskqueue_free will dtrt */
695                         printf("%s: kthread_add(%s): error %d", __func__,
696                             ktname, error);
697                         tq->tq_threads[i] = NULL;               /* paranoid */
698                 } else
699                         tq->tq_tcount++;
700         }
701         if (tq->tq_tcount == 0) {
702                 free(tq->tq_threads, M_TASKQUEUE);
703                 tq->tq_threads = NULL;
704                 return (ENOMEM);
705         }
706         for (i = 0; i < count; i++) {
707                 if (tq->tq_threads[i] == NULL)
708                         continue;
709                 td = tq->tq_threads[i];
710                 if (mask) {
711                         error = cpuset_setthread(td->td_tid, mask);
712                         /*
713                          * Failing to pin is rarely an actual fatal error;
714                          * it'll just affect performance.
715                          */
716                         if (error)
717                                 printf("%s: curthread=%llu: can't pin; "
718                                     "error=%d\n",
719                                     __func__,
720                                     (unsigned long long) td->td_tid,
721                                     error);
722                 }
723                 thread_lock(td);
724                 sched_prio(td, pri);
725                 sched_add(td, SRQ_BORING);
726         }
727
728         return (0);
729 }
730
731 int
732 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
733     const char *name, ...)
734 {
735         va_list ap;
736         int error;
737
738         va_start(ap, name);
739         error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
740         va_end(ap);
741         return (error);
742 }
743
744 int
745 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
746     struct proc *proc, const char *name, ...)
747 {
748         va_list ap;
749         int error;
750
751         va_start(ap, name);
752         error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
753         va_end(ap);
754         return (error);
755 }
756
757 int
758 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
759     cpuset_t *mask, const char *name, ...)
760 {
761         va_list ap;
762         int error;
763
764         va_start(ap, name);
765         error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
766         va_end(ap);
767         return (error);
768 }
769
770 static inline void
771 taskqueue_run_callback(struct taskqueue *tq,
772     enum taskqueue_callback_type cb_type)
773 {
774         taskqueue_callback_fn tq_callback;
775
776         TQ_ASSERT_UNLOCKED(tq);
777         tq_callback = tq->tq_callbacks[cb_type];
778         if (tq_callback != NULL)
779                 tq_callback(tq->tq_cb_contexts[cb_type]);
780 }
781
782 void
783 taskqueue_thread_loop(void *arg)
784 {
785         struct taskqueue **tqp, *tq;
786
787         tqp = arg;
788         tq = *tqp;
789         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
790         TQ_LOCK(tq);
791         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
792                 /* XXX ? */
793                 taskqueue_run_locked(tq);
794                 /*
795                  * Because taskqueue_run() can drop tq_mutex, we need to
796                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
797                  * meantime, which means we missed a wakeup.
798                  */
799                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
800                         break;
801                 TQ_SLEEP(tq, tq, "-");
802         }
803         taskqueue_run_locked(tq);
804         /*
805          * This thread is on its way out, so just drop the lock temporarily
806          * in order to call the shutdown callback.  This allows the callback
807          * to look at the taskqueue, even just before it dies.
808          */
809         TQ_UNLOCK(tq);
810         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
811         TQ_LOCK(tq);
812
813         /* rendezvous with thread that asked us to terminate */
814         tq->tq_tcount--;
815         wakeup_one(tq->tq_threads);
816         TQ_UNLOCK(tq);
817         kthread_exit();
818 }
819
820 void
821 taskqueue_thread_enqueue(void *context)
822 {
823         struct taskqueue **tqp, *tq;
824
825         tqp = context;
826         tq = *tqp;
827         wakeup_any(tq);
828 }
829
830 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
831                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
832                      INTR_MPSAFE, &taskqueue_ih));
833
834 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
835                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
836                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
837
838 TASKQUEUE_DEFINE_THREAD(thread);
839
840 struct taskqueue *
841 taskqueue_create_fast(const char *name, int mflags,
842                  taskqueue_enqueue_fn enqueue, void *context)
843 {
844         return _taskqueue_create(name, mflags, enqueue, context,
845                         MTX_SPIN, "fast_taskqueue");
846 }
847
848 static void     *taskqueue_fast_ih;
849
850 static void
851 taskqueue_fast_enqueue(void *context)
852 {
853         swi_sched(taskqueue_fast_ih, 0);
854 }
855
856 static void
857 taskqueue_fast_run(void *dummy)
858 {
859         taskqueue_run(taskqueue_fast);
860 }
861
862 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
863         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
864         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
865
866 int
867 taskqueue_member(struct taskqueue *queue, struct thread *td)
868 {
869         int i, j, ret = 0;
870
871         for (i = 0, j = 0; ; i++) {
872                 if (queue->tq_threads[i] == NULL)
873                         continue;
874                 if (queue->tq_threads[i] == td) {
875                         ret = 1;
876                         break;
877                 }
878                 if (++j >= queue->tq_tcount)
879                         break;
880         }
881         return (ret);
882 }