]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
Merge from head
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/cpuset.h>
34 #include <sys/interrupt.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/taskqueue.h>
44 #include <sys/unistd.h>
45 #include <machine/stdarg.h>
46
47 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
48 static void     *taskqueue_giant_ih;
49 static void     *taskqueue_ih;
50 static void      taskqueue_fast_enqueue(void *);
51 static void      taskqueue_swi_enqueue(void *);
52 static void      taskqueue_swi_giant_enqueue(void *);
53
54 struct taskqueue_busy {
55         struct task     *tb_running;
56         TAILQ_ENTRY(taskqueue_busy) tb_link;
57 };
58
59 struct taskqueue {
60         STAILQ_HEAD(, task)     tq_queue;
61         taskqueue_enqueue_fn    tq_enqueue;
62         void                    *tq_context;
63         TAILQ_HEAD(, taskqueue_busy) tq_active;
64         struct mtx              tq_mutex;
65         struct thread           **tq_threads;
66         int                     tq_tcount;
67         int                     tq_spin;
68         int                     tq_flags;
69         int                     tq_callouts;
70         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
71         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
72 };
73
74 #define TQ_FLAGS_ACTIVE         (1 << 0)
75 #define TQ_FLAGS_BLOCKED        (1 << 1)
76 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
77
78 #define DT_CALLOUT_ARMED        (1 << 0)
79
80 #define TQ_LOCK(tq)                                                     \
81         do {                                                            \
82                 if ((tq)->tq_spin)                                      \
83                         mtx_lock_spin(&(tq)->tq_mutex);                 \
84                 else                                                    \
85                         mtx_lock(&(tq)->tq_mutex);                      \
86         } while (0)
87 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
88
89 #define TQ_UNLOCK(tq)                                                   \
90         do {                                                            \
91                 if ((tq)->tq_spin)                                      \
92                         mtx_unlock_spin(&(tq)->tq_mutex);               \
93                 else                                                    \
94                         mtx_unlock(&(tq)->tq_mutex);                    \
95         } while (0)
96 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
97
98 void
99 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
100     int priority, task_fn_t func, void *context)
101 {
102
103         TASK_INIT(&timeout_task->t, priority, func, context);
104         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
105             CALLOUT_RETURNUNLOCKED);
106         timeout_task->q = queue;
107         timeout_task->f = 0;
108 }
109
110 static __inline int
111 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
112     int t)
113 {
114         if (tq->tq_spin)
115                 return (msleep_spin(p, m, wm, t));
116         return (msleep(p, m, pri, wm, t));
117 }
118
119 static struct taskqueue *
120 _taskqueue_create(const char *name __unused, int mflags,
121                  taskqueue_enqueue_fn enqueue, void *context,
122                  int mtxflags, const char *mtxname)
123 {
124         struct taskqueue *queue;
125
126         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
127         if (!queue)
128                 return NULL;
129
130         STAILQ_INIT(&queue->tq_queue);
131         TAILQ_INIT(&queue->tq_active);
132         queue->tq_enqueue = enqueue;
133         queue->tq_context = context;
134         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
135         queue->tq_flags |= TQ_FLAGS_ACTIVE;
136         if (enqueue == taskqueue_fast_enqueue ||
137             enqueue == taskqueue_swi_enqueue ||
138             enqueue == taskqueue_swi_giant_enqueue ||
139             enqueue == taskqueue_thread_enqueue)
140                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
141         mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
142
143         return queue;
144 }
145
146 struct taskqueue *
147 taskqueue_create(const char *name, int mflags,
148                  taskqueue_enqueue_fn enqueue, void *context)
149 {
150         return _taskqueue_create(name, mflags, enqueue, context,
151                         MTX_DEF, "taskqueue");
152 }
153
154 void
155 taskqueue_set_callback(struct taskqueue *queue,
156     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
157     void *context)
158 {
159
160         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
161             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
162             ("Callback type %d not valid, must be %d-%d", cb_type,
163             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
164         KASSERT((queue->tq_callbacks[cb_type] == NULL),
165             ("Re-initialization of taskqueue callback?"));
166
167         queue->tq_callbacks[cb_type] = callback;
168         queue->tq_cb_contexts[cb_type] = context;
169 }
170
171 /*
172  * Signal a taskqueue thread to terminate.
173  */
174 static void
175 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
176 {
177
178         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
179                 wakeup(tq);
180                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
181         }
182 }
183
184 void
185 taskqueue_free(struct taskqueue *queue)
186 {
187
188         TQ_LOCK(queue);
189         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
190         taskqueue_terminate(queue->tq_threads, queue);
191         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
192         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
193         mtx_destroy(&queue->tq_mutex);
194         free(queue->tq_threads, M_TASKQUEUE);
195         free(queue, M_TASKQUEUE);
196 }
197
198 static int
199 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
200 {
201         struct task *ins;
202         struct task *prev;
203
204         /*
205          * Count multiple enqueues.
206          */
207         if (task->ta_pending) {
208                 if (task->ta_pending < USHRT_MAX)
209                         task->ta_pending++;
210                 TQ_UNLOCK(queue);
211                 return (0);
212         }
213
214         /*
215          * Optimise the case when all tasks have the same priority.
216          */
217         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
218         if (!prev || prev->ta_priority >= task->ta_priority) {
219                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
220         } else {
221                 prev = NULL;
222                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
223                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
224                         if (ins->ta_priority < task->ta_priority)
225                                 break;
226
227                 if (prev)
228                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
229                 else
230                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
231         }
232
233         task->ta_pending = 1;
234         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
235                 TQ_UNLOCK(queue);
236         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
237                 queue->tq_enqueue(queue->tq_context);
238         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
239                 TQ_UNLOCK(queue);
240
241         /* Return with lock released. */
242         return (0);
243 }
244 int
245 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
246 {
247         int res;
248
249         TQ_LOCK(queue);
250         res = taskqueue_enqueue_locked(queue, task);
251         /* The lock is released inside. */
252
253         return (res);
254 }
255
256 static void
257 taskqueue_timeout_func(void *arg)
258 {
259         struct taskqueue *queue;
260         struct timeout_task *timeout_task;
261
262         timeout_task = arg;
263         queue = timeout_task->q;
264         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
265         timeout_task->f &= ~DT_CALLOUT_ARMED;
266         queue->tq_callouts--;
267         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
268         /* The lock is released inside. */
269 }
270
271 int
272 taskqueue_enqueue_timeout(struct taskqueue *queue,
273     struct timeout_task *timeout_task, int ticks)
274 {
275         int res;
276
277         TQ_LOCK(queue);
278         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
279             ("Migrated queue"));
280         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
281         timeout_task->q = queue;
282         res = timeout_task->t.ta_pending;
283         if (ticks == 0) {
284                 taskqueue_enqueue_locked(queue, &timeout_task->t);
285                 /* The lock is released inside. */
286         } else {
287                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
288                         res++;
289                 } else {
290                         queue->tq_callouts++;
291                         timeout_task->f |= DT_CALLOUT_ARMED;
292                         if (ticks < 0)
293                                 ticks = -ticks; /* Ignore overflow. */
294                 }
295                 if (ticks > 0) {
296                         callout_reset(&timeout_task->c, ticks,
297                             taskqueue_timeout_func, timeout_task);
298                 }
299                 TQ_UNLOCK(queue);
300         }
301         return (res);
302 }
303
304 static void
305 taskqueue_drain_running(struct taskqueue *queue)
306 {
307
308         while (!TAILQ_EMPTY(&queue->tq_active))
309                 TQ_SLEEP(queue, &queue->tq_active, &queue->tq_mutex,
310                     PWAIT, "-", 0);
311 }
312
313 void
314 taskqueue_block(struct taskqueue *queue)
315 {
316
317         TQ_LOCK(queue);
318         queue->tq_flags |= TQ_FLAGS_BLOCKED;
319         TQ_UNLOCK(queue);
320 }
321
322 void
323 taskqueue_unblock(struct taskqueue *queue)
324 {
325
326         TQ_LOCK(queue);
327         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
328         if (!STAILQ_EMPTY(&queue->tq_queue))
329                 queue->tq_enqueue(queue->tq_context);
330         TQ_UNLOCK(queue);
331 }
332
333 static void
334 taskqueue_run_locked(struct taskqueue *queue)
335 {
336         struct taskqueue_busy tb;
337         struct task *task;
338         int pending;
339
340         TQ_ASSERT_LOCKED(queue);
341         tb.tb_running = NULL;
342         TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
343
344         while (STAILQ_FIRST(&queue->tq_queue)) {
345                 /*
346                  * Carefully remove the first task from the queue and
347                  * zero its pending count.
348                  */
349                 task = STAILQ_FIRST(&queue->tq_queue);
350                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
351                 pending = task->ta_pending;
352                 task->ta_pending = 0;
353                 tb.tb_running = task;
354                 TQ_UNLOCK(queue);
355
356                 task->ta_func(task->ta_context, pending);
357
358                 TQ_LOCK(queue);
359                 tb.tb_running = NULL;
360                 wakeup(task);
361         }
362         TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
363         if (TAILQ_EMPTY(&queue->tq_active))
364                 wakeup(&queue->tq_active);
365 }
366
367 void
368 taskqueue_run(struct taskqueue *queue)
369 {
370
371         TQ_LOCK(queue);
372         taskqueue_run_locked(queue);
373         TQ_UNLOCK(queue);
374 }
375
376 static int
377 task_is_running(struct taskqueue *queue, struct task *task)
378 {
379         struct taskqueue_busy *tb;
380
381         TQ_ASSERT_LOCKED(queue);
382         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
383                 if (tb->tb_running == task)
384                         return (1);
385         }
386         return (0);
387 }
388
389 static int
390 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
391     u_int *pendp)
392 {
393
394         if (task->ta_pending > 0)
395                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
396         if (pendp != NULL)
397                 *pendp = task->ta_pending;
398         task->ta_pending = 0;
399         return (task_is_running(queue, task) ? EBUSY : 0);
400 }
401
402 int
403 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
404 {
405         int error;
406
407         TQ_LOCK(queue);
408         error = taskqueue_cancel_locked(queue, task, pendp);
409         TQ_UNLOCK(queue);
410
411         return (error);
412 }
413
414 int
415 taskqueue_cancel_timeout(struct taskqueue *queue,
416     struct timeout_task *timeout_task, u_int *pendp)
417 {
418         u_int pending, pending1;
419         int error;
420
421         TQ_LOCK(queue);
422         pending = !!callout_stop(&timeout_task->c);
423         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
424         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
425                 timeout_task->f &= ~DT_CALLOUT_ARMED;
426                 queue->tq_callouts--;
427         }
428         TQ_UNLOCK(queue);
429
430         if (pendp != NULL)
431                 *pendp = pending + pending1;
432         return (error);
433 }
434
435 void
436 taskqueue_drain(struct taskqueue *queue, struct task *task)
437 {
438
439         if (!queue->tq_spin)
440                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
441
442         TQ_LOCK(queue);
443         while (task->ta_pending != 0 || task_is_running(queue, task))
444                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
445         TQ_UNLOCK(queue);
446 }
447
448 void
449 taskqueue_drain_all(struct taskqueue *queue)
450 {
451         struct task *task;
452
453         if (!queue->tq_spin)
454                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
455
456         TQ_LOCK(queue);
457         task = STAILQ_LAST(&queue->tq_queue, task, ta_link);
458         if (task != NULL)
459                 while (task->ta_pending != 0)
460                         TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
461         taskqueue_drain_running(queue);
462         KASSERT(STAILQ_EMPTY(&queue->tq_queue),
463             ("taskqueue queue is not empty after draining"));
464         TQ_UNLOCK(queue);
465 }
466
467 void
468 taskqueue_drain_timeout(struct taskqueue *queue,
469     struct timeout_task *timeout_task)
470 {
471
472         callout_drain(&timeout_task->c);
473         taskqueue_drain(queue, &timeout_task->t);
474 }
475
476 static void
477 taskqueue_swi_enqueue(void *context)
478 {
479         swi_sched(taskqueue_ih, 0);
480 }
481
482 static void
483 taskqueue_swi_run(void *dummy)
484 {
485         taskqueue_run(taskqueue_swi);
486 }
487
488 static void
489 taskqueue_swi_giant_enqueue(void *context)
490 {
491         swi_sched(taskqueue_giant_ih, 0);
492 }
493
494 static void
495 taskqueue_swi_giant_run(void *dummy)
496 {
497         taskqueue_run(taskqueue_swi_giant);
498 }
499
500 static int
501 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
502     cpuset_t *mask, const char *ktname)
503 {
504         struct thread *td;
505         struct taskqueue *tq;
506         int i, error;
507
508         if (count <= 0)
509                 return (EINVAL);
510
511         tq = *tqp;
512
513         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
514             M_NOWAIT | M_ZERO);
515         if (tq->tq_threads == NULL) {
516                 printf("%s: no memory for %s threads\n", __func__, ktname);
517                 return (ENOMEM);
518         }
519
520         for (i = 0; i < count; i++) {
521                 if (count == 1)
522                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
523                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
524                 else
525                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
526                             &tq->tq_threads[i], RFSTOPPED, 0,
527                             "%s_%d", ktname, i);
528                 if (error) {
529                         /* should be ok to continue, taskqueue_free will dtrt */
530                         printf("%s: kthread_add(%s): error %d", __func__,
531                             ktname, error);
532                         tq->tq_threads[i] = NULL;               /* paranoid */
533                 } else
534                         tq->tq_tcount++;
535         }
536         for (i = 0; i < count; i++) {
537                 if (tq->tq_threads[i] == NULL)
538                         continue;
539                 td = tq->tq_threads[i];
540                 if (mask) {
541                         error = cpuset_setthread(td->td_tid, mask);
542                         /*
543                          * Failing to pin is rarely an actual fatal error;
544                          * it'll just affect performance.
545                          */
546                         if (error)
547                                 printf("%s: curthread=%llu: can't pin; "
548                                     "error=%d\n",
549                                     __func__,
550                                     (unsigned long long) td->td_tid,
551                                     error);
552                 }
553                 thread_lock(td);
554                 sched_prio(td, pri);
555                 sched_add(td, SRQ_BORING);
556                 thread_unlock(td);
557         }
558
559         return (0);
560 }
561
562 int
563 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
564     const char *name, ...)
565 {
566         char ktname[MAXCOMLEN + 1];
567         va_list ap;
568
569         va_start(ap, name);
570         vsnprintf(ktname, sizeof(ktname), name, ap);
571         va_end(ap);
572
573         return (_taskqueue_start_threads(tqp, count, pri, NULL, ktname));
574 }
575
576 int
577 taskqueue_start_threads_pinned(struct taskqueue **tqp, int count, int pri,
578     int cpu_id, const char *name, ...)
579 {
580         char ktname[MAXCOMLEN + 1];
581         va_list ap;
582         cpuset_t mask;
583
584         va_start(ap, name);
585         vsnprintf(ktname, sizeof(ktname), name, ap);
586         va_end(ap);
587
588         /*
589          * In case someone passes in NOCPU, just fall back to the
590          * default behaviour of "don't pin".
591          */
592         if (cpu_id != NOCPU) {
593                 CPU_ZERO(&mask);
594                 CPU_SET(cpu_id, &mask);
595         }
596
597         return (_taskqueue_start_threads(tqp, count, pri,
598             cpu_id == NOCPU ? NULL : &mask, ktname));
599 }
600
601 static inline void
602 taskqueue_run_callback(struct taskqueue *tq,
603     enum taskqueue_callback_type cb_type)
604 {
605         taskqueue_callback_fn tq_callback;
606
607         TQ_ASSERT_UNLOCKED(tq);
608         tq_callback = tq->tq_callbacks[cb_type];
609         if (tq_callback != NULL)
610                 tq_callback(tq->tq_cb_contexts[cb_type]);
611 }
612
613 void
614 taskqueue_thread_loop(void *arg)
615 {
616         struct taskqueue **tqp, *tq;
617
618         tqp = arg;
619         tq = *tqp;
620         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
621         TQ_LOCK(tq);
622         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
623                 taskqueue_run_locked(tq);
624                 /*
625                  * Because taskqueue_run() can drop tq_mutex, we need to
626                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
627                  * meantime, which means we missed a wakeup.
628                  */
629                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
630                         break;
631                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
632         }
633         taskqueue_run_locked(tq);
634
635         /*
636          * This thread is on its way out, so just drop the lock temporarily
637          * in order to call the shutdown callback.  This allows the callback
638          * to look at the taskqueue, even just before it dies.
639          */
640         TQ_UNLOCK(tq);
641         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
642         TQ_LOCK(tq);
643
644         /* rendezvous with thread that asked us to terminate */
645         tq->tq_tcount--;
646         wakeup_one(tq->tq_threads);
647         TQ_UNLOCK(tq);
648         kthread_exit();
649 }
650
651 void
652 taskqueue_thread_enqueue(void *context)
653 {
654         struct taskqueue **tqp, *tq;
655
656         tqp = context;
657         tq = *tqp;
658
659         wakeup_one(tq);
660 }
661
662 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
663                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
664                      INTR_MPSAFE, &taskqueue_ih)); 
665
666 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
667                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
668                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 
669
670 TASKQUEUE_DEFINE_THREAD(thread);
671
672 struct taskqueue *
673 taskqueue_create_fast(const char *name, int mflags,
674                  taskqueue_enqueue_fn enqueue, void *context)
675 {
676         return _taskqueue_create(name, mflags, enqueue, context,
677                         MTX_SPIN, "fast_taskqueue");
678 }
679
680 /* NB: for backwards compatibility */
681 int
682 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
683 {
684         return taskqueue_enqueue(queue, task);
685 }
686
687 static void     *taskqueue_fast_ih;
688
689 static void
690 taskqueue_fast_enqueue(void *context)
691 {
692         swi_sched(taskqueue_fast_ih, 0);
693 }
694
695 static void
696 taskqueue_fast_run(void *dummy)
697 {
698         taskqueue_run(taskqueue_fast);
699 }
700
701 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
702         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
703         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
704
705 int
706 taskqueue_member(struct taskqueue *queue, struct thread *td)
707 {
708         int i, j, ret = 0;
709
710         for (i = 0, j = 0; ; i++) {
711                 if (queue->tq_threads[i] == NULL)
712                         continue;
713                 if (queue->tq_threads[i] == td) {
714                         ret = 1;
715                         break;
716                 }
717                 if (++j >= queue->tq_tcount)
718                         break;
719         }
720         return (ret);
721 }