]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
MFC r304021: Update iflib to support more NIC designs
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/cpuset.h>
34 #include <sys/interrupt.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/libkern.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/taskqueue.h>
46 #include <sys/unistd.h>
47 #include <machine/stdarg.h>
48
49 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
50 static void     *taskqueue_giant_ih;
51 static void     *taskqueue_ih;
52 static void      taskqueue_fast_enqueue(void *);
53 static void      taskqueue_swi_enqueue(void *);
54 static void      taskqueue_swi_giant_enqueue(void *);
55
56 struct taskqueue_busy {
57         struct task     *tb_running;
58         TAILQ_ENTRY(taskqueue_busy) tb_link;
59 };
60
61 struct task * const TB_DRAIN_WAITER = (struct task *)0x1;
62
63 struct taskqueue {
64         STAILQ_HEAD(, task)     tq_queue;
65         taskqueue_enqueue_fn    tq_enqueue;
66         void                    *tq_context;
67         char                    *tq_name;
68         TAILQ_HEAD(, taskqueue_busy) tq_active;
69         struct mtx              tq_mutex;
70         struct thread           **tq_threads;
71         int                     tq_tcount;
72         int                     tq_spin;
73         int                     tq_flags;
74         int                     tq_callouts;
75         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
76         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
77 };
78
79 #define TQ_FLAGS_ACTIVE         (1 << 0)
80 #define TQ_FLAGS_BLOCKED        (1 << 1)
81 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
82
83 #define DT_CALLOUT_ARMED        (1 << 0)
84
85 #define TQ_LOCK(tq)                                                     \
86         do {                                                            \
87                 if ((tq)->tq_spin)                                      \
88                         mtx_lock_spin(&(tq)->tq_mutex);                 \
89                 else                                                    \
90                         mtx_lock(&(tq)->tq_mutex);                      \
91         } while (0)
92 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
93
94 #define TQ_UNLOCK(tq)                                                   \
95         do {                                                            \
96                 if ((tq)->tq_spin)                                      \
97                         mtx_unlock_spin(&(tq)->tq_mutex);               \
98                 else                                                    \
99                         mtx_unlock(&(tq)->tq_mutex);                    \
100         } while (0)
101 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
102
103 void
104 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
105     int priority, task_fn_t func, void *context)
106 {
107
108         TASK_INIT(&timeout_task->t, priority, func, context);
109         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
110             CALLOUT_RETURNUNLOCKED);
111         timeout_task->q = queue;
112         timeout_task->f = 0;
113 }
114
115 static __inline int
116 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
117     int t)
118 {
119         if (tq->tq_spin)
120                 return (msleep_spin(p, m, wm, t));
121         return (msleep(p, m, pri, wm, t));
122 }
123
124 static struct taskqueue *
125 _taskqueue_create(const char *name, int mflags,
126                  taskqueue_enqueue_fn enqueue, void *context,
127                  int mtxflags, const char *mtxname __unused)
128 {
129         struct taskqueue *queue;
130         char *tq_name;
131
132         tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
133         if (tq_name == NULL)
134                 return (NULL);
135
136         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
137         if (queue == NULL) {
138                 free(tq_name, M_TASKQUEUE);
139                 return (NULL);
140         }
141
142         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
143
144         STAILQ_INIT(&queue->tq_queue);
145         TAILQ_INIT(&queue->tq_active);
146         queue->tq_enqueue = enqueue;
147         queue->tq_context = context;
148         queue->tq_name = tq_name;
149         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
150         queue->tq_flags |= TQ_FLAGS_ACTIVE;
151         if (enqueue == taskqueue_fast_enqueue ||
152             enqueue == taskqueue_swi_enqueue ||
153             enqueue == taskqueue_swi_giant_enqueue ||
154             enqueue == taskqueue_thread_enqueue)
155                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
156         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
157
158         return (queue);
159 }
160
161 struct taskqueue *
162 taskqueue_create(const char *name, int mflags,
163                  taskqueue_enqueue_fn enqueue, void *context)
164 {
165
166         return _taskqueue_create(name, mflags, enqueue, context,
167                         MTX_DEF, name);
168 }
169
170 void
171 taskqueue_set_callback(struct taskqueue *queue,
172     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
173     void *context)
174 {
175
176         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
177             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
178             ("Callback type %d not valid, must be %d-%d", cb_type,
179             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
180         KASSERT((queue->tq_callbacks[cb_type] == NULL),
181             ("Re-initialization of taskqueue callback?"));
182
183         queue->tq_callbacks[cb_type] = callback;
184         queue->tq_cb_contexts[cb_type] = context;
185 }
186
187 /*
188  * Signal a taskqueue thread to terminate.
189  */
190 static void
191 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
192 {
193
194         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
195                 wakeup(tq);
196                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
197         }
198 }
199
200 void
201 taskqueue_free(struct taskqueue *queue)
202 {
203
204         TQ_LOCK(queue);
205         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
206         taskqueue_terminate(queue->tq_threads, queue);
207         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
208         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
209         mtx_destroy(&queue->tq_mutex);
210         free(queue->tq_threads, M_TASKQUEUE);
211         free(queue->tq_name, M_TASKQUEUE);
212         free(queue, M_TASKQUEUE);
213 }
214
215 static int
216 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
217 {
218         struct task *ins;
219         struct task *prev;
220
221         KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
222         /*
223          * Count multiple enqueues.
224          */
225         if (task->ta_pending) {
226                 if (task->ta_pending < USHRT_MAX)
227                         task->ta_pending++;
228                 TQ_UNLOCK(queue);
229                 return (0);
230         }
231
232         /*
233          * Optimise the case when all tasks have the same priority.
234          */
235         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
236         if (!prev || prev->ta_priority >= task->ta_priority) {
237                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
238         } else {
239                 prev = NULL;
240                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
241                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
242                         if (ins->ta_priority < task->ta_priority)
243                                 break;
244
245                 if (prev)
246                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
247                 else
248                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
249         }
250
251         task->ta_pending = 1;
252         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
253                 TQ_UNLOCK(queue);
254         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
255                 queue->tq_enqueue(queue->tq_context);
256         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
257                 TQ_UNLOCK(queue);
258
259         /* Return with lock released. */
260         return (0);
261 }
262
263 int
264 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
265 {
266         int res;
267
268         TQ_LOCK(queue);
269         res = taskqueue_enqueue_locked(queue, task);
270         /* The lock is released inside. */
271
272         return (res);
273 }
274
275 static void
276 taskqueue_timeout_func(void *arg)
277 {
278         struct taskqueue *queue;
279         struct timeout_task *timeout_task;
280
281         timeout_task = arg;
282         queue = timeout_task->q;
283         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
284         timeout_task->f &= ~DT_CALLOUT_ARMED;
285         queue->tq_callouts--;
286         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
287         /* The lock is released inside. */
288 }
289
290 int
291 taskqueue_enqueue_timeout(struct taskqueue *queue,
292     struct timeout_task *timeout_task, int ticks)
293 {
294         int res;
295
296         TQ_LOCK(queue);
297         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
298             ("Migrated queue"));
299         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
300         timeout_task->q = queue;
301         res = timeout_task->t.ta_pending;
302         if (ticks == 0) {
303                 taskqueue_enqueue_locked(queue, &timeout_task->t);
304                 /* The lock is released inside. */
305         } else {
306                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
307                         res++;
308                 } else {
309                         queue->tq_callouts++;
310                         timeout_task->f |= DT_CALLOUT_ARMED;
311                         if (ticks < 0)
312                                 ticks = -ticks; /* Ignore overflow. */
313                 }
314                 if (ticks > 0) {
315                         callout_reset(&timeout_task->c, ticks,
316                             taskqueue_timeout_func, timeout_task);
317                 }
318                 TQ_UNLOCK(queue);
319         }
320         return (res);
321 }
322
323 static void
324 taskqueue_task_nop_fn(void *context, int pending)
325 {
326 }
327
328 /*
329  * Block until all currently queued tasks in this taskqueue
330  * have begun execution.  Tasks queued during execution of
331  * this function are ignored.
332  */
333 static void
334 taskqueue_drain_tq_queue(struct taskqueue *queue)
335 {
336         struct task t_barrier;
337
338         if (STAILQ_EMPTY(&queue->tq_queue))
339                 return;
340
341         /*
342          * Enqueue our barrier after all current tasks, but with
343          * the highest priority so that newly queued tasks cannot
344          * pass it.  Because of the high priority, we can not use
345          * taskqueue_enqueue_locked directly (which drops the lock
346          * anyway) so just insert it at tail while we have the
347          * queue lock.
348          */
349         TASK_INIT(&t_barrier, USHRT_MAX, taskqueue_task_nop_fn, &t_barrier);
350         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
351         t_barrier.ta_pending = 1;
352
353         /*
354          * Once the barrier has executed, all previously queued tasks
355          * have completed or are currently executing.
356          */
357         while (t_barrier.ta_pending != 0)
358                 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
359 }
360
361 /*
362  * Block until all currently executing tasks for this taskqueue
363  * complete.  Tasks that begin execution during the execution
364  * of this function are ignored.
365  */
366 static void
367 taskqueue_drain_tq_active(struct taskqueue *queue)
368 {
369         struct taskqueue_busy tb_marker, *tb_first;
370
371         if (TAILQ_EMPTY(&queue->tq_active))
372                 return;
373
374         /* Block taskq_terminate().*/
375         queue->tq_callouts++;
376
377         /*
378          * Wait for all currently executing taskqueue threads
379          * to go idle.
380          */
381         tb_marker.tb_running = TB_DRAIN_WAITER;
382         TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
383         while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
384                 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
385         TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
386
387         /*
388          * Wakeup any other drain waiter that happened to queue up
389          * without any intervening active thread.
390          */
391         tb_first = TAILQ_FIRST(&queue->tq_active);
392         if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
393                 wakeup(tb_first);
394
395         /* Release taskqueue_terminate(). */
396         queue->tq_callouts--;
397         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
398                 wakeup_one(queue->tq_threads);
399 }
400
401 void
402 taskqueue_block(struct taskqueue *queue)
403 {
404
405         TQ_LOCK(queue);
406         queue->tq_flags |= TQ_FLAGS_BLOCKED;
407         TQ_UNLOCK(queue);
408 }
409
410 void
411 taskqueue_unblock(struct taskqueue *queue)
412 {
413
414         TQ_LOCK(queue);
415         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
416         if (!STAILQ_EMPTY(&queue->tq_queue))
417                 queue->tq_enqueue(queue->tq_context);
418         TQ_UNLOCK(queue);
419 }
420
421 static void
422 taskqueue_run_locked(struct taskqueue *queue)
423 {
424         struct taskqueue_busy tb;
425         struct taskqueue_busy *tb_first;
426         struct task *task;
427         int pending;
428
429         KASSERT(queue != NULL, ("tq is NULL"));
430         TQ_ASSERT_LOCKED(queue);
431         tb.tb_running = NULL;
432
433         while (STAILQ_FIRST(&queue->tq_queue)) {
434                 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
435
436                 /*
437                  * Carefully remove the first task from the queue and
438                  * zero its pending count.
439                  */
440                 task = STAILQ_FIRST(&queue->tq_queue);
441                 KASSERT(task != NULL, ("task is NULL"));
442                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
443                 pending = task->ta_pending;
444                 task->ta_pending = 0;
445                 tb.tb_running = task;
446                 TQ_UNLOCK(queue);
447
448                 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
449                 task->ta_func(task->ta_context, pending);
450
451                 TQ_LOCK(queue);
452                 tb.tb_running = NULL;
453                 wakeup(task);
454
455                 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
456                 tb_first = TAILQ_FIRST(&queue->tq_active);
457                 if (tb_first != NULL &&
458                     tb_first->tb_running == TB_DRAIN_WAITER)
459                         wakeup(tb_first);
460         }
461 }
462
463 void
464 taskqueue_run(struct taskqueue *queue)
465 {
466
467         TQ_LOCK(queue);
468         taskqueue_run_locked(queue);
469         TQ_UNLOCK(queue);
470 }
471
472 static int
473 task_is_running(struct taskqueue *queue, struct task *task)
474 {
475         struct taskqueue_busy *tb;
476
477         TQ_ASSERT_LOCKED(queue);
478         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
479                 if (tb->tb_running == task)
480                         return (1);
481         }
482         return (0);
483 }
484
485 static int
486 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
487     u_int *pendp)
488 {
489
490         if (task->ta_pending > 0)
491                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
492         if (pendp != NULL)
493                 *pendp = task->ta_pending;
494         task->ta_pending = 0;
495         return (task_is_running(queue, task) ? EBUSY : 0);
496 }
497
498 int
499 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
500 {
501         int error;
502
503         TQ_LOCK(queue);
504         error = taskqueue_cancel_locked(queue, task, pendp);
505         TQ_UNLOCK(queue);
506
507         return (error);
508 }
509
510 int
511 taskqueue_cancel_timeout(struct taskqueue *queue,
512     struct timeout_task *timeout_task, u_int *pendp)
513 {
514         u_int pending, pending1;
515         int error;
516
517         TQ_LOCK(queue);
518         pending = !!(callout_stop(&timeout_task->c) > 0);
519         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
520         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
521                 timeout_task->f &= ~DT_CALLOUT_ARMED;
522                 queue->tq_callouts--;
523         }
524         TQ_UNLOCK(queue);
525
526         if (pendp != NULL)
527                 *pendp = pending + pending1;
528         return (error);
529 }
530
531 void
532 taskqueue_drain(struct taskqueue *queue, struct task *task)
533 {
534
535         if (!queue->tq_spin)
536                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
537
538         TQ_LOCK(queue);
539         while (task->ta_pending != 0 || task_is_running(queue, task))
540                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
541         TQ_UNLOCK(queue);
542 }
543
544 void
545 taskqueue_drain_all(struct taskqueue *queue)
546 {
547
548         if (!queue->tq_spin)
549                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
550
551         TQ_LOCK(queue);
552         taskqueue_drain_tq_queue(queue);
553         taskqueue_drain_tq_active(queue);
554         TQ_UNLOCK(queue);
555 }
556
557 void
558 taskqueue_drain_timeout(struct taskqueue *queue,
559     struct timeout_task *timeout_task)
560 {
561
562         callout_drain(&timeout_task->c);
563         taskqueue_drain(queue, &timeout_task->t);
564 }
565
566 static void
567 taskqueue_swi_enqueue(void *context)
568 {
569         swi_sched(taskqueue_ih, 0);
570 }
571
572 static void
573 taskqueue_swi_run(void *dummy)
574 {
575         taskqueue_run(taskqueue_swi);
576 }
577
578 static void
579 taskqueue_swi_giant_enqueue(void *context)
580 {
581         swi_sched(taskqueue_giant_ih, 0);
582 }
583
584 static void
585 taskqueue_swi_giant_run(void *dummy)
586 {
587         taskqueue_run(taskqueue_swi_giant);
588 }
589
590 static int
591 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
592     cpuset_t *mask, const char *name, va_list ap)
593 {
594         char ktname[MAXCOMLEN + 1];
595         struct thread *td;
596         struct taskqueue *tq;
597         int i, error;
598
599         if (count <= 0)
600                 return (EINVAL);
601
602         vsnprintf(ktname, sizeof(ktname), name, ap);
603         tq = *tqp;
604
605         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
606             M_NOWAIT | M_ZERO);
607         if (tq->tq_threads == NULL) {
608                 printf("%s: no memory for %s threads\n", __func__, ktname);
609                 return (ENOMEM);
610         }
611
612         for (i = 0; i < count; i++) {
613                 if (count == 1)
614                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
615                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
616                 else
617                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
618                             &tq->tq_threads[i], RFSTOPPED, 0,
619                             "%s_%d", ktname, i);
620                 if (error) {
621                         /* should be ok to continue, taskqueue_free will dtrt */
622                         printf("%s: kthread_add(%s): error %d", __func__,
623                             ktname, error);
624                         tq->tq_threads[i] = NULL;               /* paranoid */
625                 } else
626                         tq->tq_tcount++;
627         }
628         for (i = 0; i < count; i++) {
629                 if (tq->tq_threads[i] == NULL)
630                         continue;
631                 td = tq->tq_threads[i];
632                 if (mask) {
633                         error = cpuset_setthread(td->td_tid, mask);
634                         /*
635                          * Failing to pin is rarely an actual fatal error;
636                          * it'll just affect performance.
637                          */
638                         if (error)
639                                 printf("%s: curthread=%llu: can't pin; "
640                                     "error=%d\n",
641                                     __func__,
642                                     (unsigned long long) td->td_tid,
643                                     error);
644                 }
645                 thread_lock(td);
646                 sched_prio(td, pri);
647                 sched_add(td, SRQ_BORING);
648                 thread_unlock(td);
649         }
650
651         return (0);
652 }
653
654 int
655 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
656     const char *name, ...)
657 {
658         va_list ap;
659         int error;
660
661         va_start(ap, name);
662         error = _taskqueue_start_threads(tqp, count, pri, NULL, name, ap);
663         va_end(ap);
664         return (error);
665 }
666
667 int
668 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
669     cpuset_t *mask, const char *name, ...)
670 {
671         va_list ap;
672         int error;
673
674         va_start(ap, name);
675         error = _taskqueue_start_threads(tqp, count, pri, mask, name, ap);
676         va_end(ap);
677         return (error);
678 }
679
680 static inline void
681 taskqueue_run_callback(struct taskqueue *tq,
682     enum taskqueue_callback_type cb_type)
683 {
684         taskqueue_callback_fn tq_callback;
685
686         TQ_ASSERT_UNLOCKED(tq);
687         tq_callback = tq->tq_callbacks[cb_type];
688         if (tq_callback != NULL)
689                 tq_callback(tq->tq_cb_contexts[cb_type]);
690 }
691
692 void
693 taskqueue_thread_loop(void *arg)
694 {
695         struct taskqueue **tqp, *tq;
696
697         tqp = arg;
698         tq = *tqp;
699         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
700         TQ_LOCK(tq);
701         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
702                 /* XXX ? */
703                 taskqueue_run_locked(tq);
704                 /*
705                  * Because taskqueue_run() can drop tq_mutex, we need to
706                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
707                  * meantime, which means we missed a wakeup.
708                  */
709                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
710                         break;
711                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
712         }
713         taskqueue_run_locked(tq);
714         /*
715          * This thread is on its way out, so just drop the lock temporarily
716          * in order to call the shutdown callback.  This allows the callback
717          * to look at the taskqueue, even just before it dies.
718          */
719         TQ_UNLOCK(tq);
720         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
721         TQ_LOCK(tq);
722
723         /* rendezvous with thread that asked us to terminate */
724         tq->tq_tcount--;
725         wakeup_one(tq->tq_threads);
726         TQ_UNLOCK(tq);
727         kthread_exit();
728 }
729
730 void
731 taskqueue_thread_enqueue(void *context)
732 {
733         struct taskqueue **tqp, *tq;
734
735         tqp = context;
736         tq = *tqp;
737         wakeup_one(tq);
738 }
739
740 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
741                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
742                      INTR_MPSAFE, &taskqueue_ih));
743
744 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
745                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
746                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
747
748 TASKQUEUE_DEFINE_THREAD(thread);
749
750 struct taskqueue *
751 taskqueue_create_fast(const char *name, int mflags,
752                  taskqueue_enqueue_fn enqueue, void *context)
753 {
754         return _taskqueue_create(name, mflags, enqueue, context,
755                         MTX_SPIN, "fast_taskqueue");
756 }
757
758 static void     *taskqueue_fast_ih;
759
760 static void
761 taskqueue_fast_enqueue(void *context)
762 {
763         swi_sched(taskqueue_fast_ih, 0);
764 }
765
766 static void
767 taskqueue_fast_run(void *dummy)
768 {
769         taskqueue_run(taskqueue_fast);
770 }
771
772 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
773         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
774         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
775
776 int
777 taskqueue_member(struct taskqueue *queue, struct thread *td)
778 {
779         int i, j, ret = 0;
780
781         for (i = 0, j = 0; ; i++) {
782                 if (queue->tq_threads[i] == NULL)
783                         continue;
784                 if (queue->tq_threads[i] == td) {
785                         ret = 1;
786                         break;
787                 }
788                 if (++j >= queue->tq_tcount)
789                         break;
790         }
791         return (ret);
792 }