]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
Fix missing pfctl(8) tunable.
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/cpuset.h>
34 #include <sys/interrupt.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/libkern.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/taskqueue.h>
46 #include <sys/unistd.h>
47 #include <machine/stdarg.h>
48
49 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
50 static void     *taskqueue_giant_ih;
51 static void     *taskqueue_ih;
52 static void      taskqueue_fast_enqueue(void *);
53 static void      taskqueue_swi_enqueue(void *);
54 static void      taskqueue_swi_giant_enqueue(void *);
55
56 struct taskqueue_busy {
57         struct task     *tb_running;
58         TAILQ_ENTRY(taskqueue_busy) tb_link;
59 };
60
61 struct task * const TB_DRAIN_WAITER = (struct task *)0x1;
62
63 struct taskqueue {
64         STAILQ_HEAD(, task)     tq_queue;
65         taskqueue_enqueue_fn    tq_enqueue;
66         void                    *tq_context;
67         char                    *tq_name;
68         TAILQ_HEAD(, taskqueue_busy) tq_active;
69         struct mtx              tq_mutex;
70         struct thread           **tq_threads;
71         int                     tq_tcount;
72         int                     tq_spin;
73         int                     tq_flags;
74         int                     tq_callouts;
75         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
76         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
77 };
78
79 #define TQ_FLAGS_ACTIVE         (1 << 0)
80 #define TQ_FLAGS_BLOCKED        (1 << 1)
81 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
82
83 #define DT_CALLOUT_ARMED        (1 << 0)
84 #define DT_DRAIN_IN_PROGRESS    (1 << 1)
85
86 #define TQ_LOCK(tq)                                                     \
87         do {                                                            \
88                 if ((tq)->tq_spin)                                      \
89                         mtx_lock_spin(&(tq)->tq_mutex);                 \
90                 else                                                    \
91                         mtx_lock(&(tq)->tq_mutex);                      \
92         } while (0)
93 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
94
95 #define TQ_UNLOCK(tq)                                                   \
96         do {                                                            \
97                 if ((tq)->tq_spin)                                      \
98                         mtx_unlock_spin(&(tq)->tq_mutex);               \
99                 else                                                    \
100                         mtx_unlock(&(tq)->tq_mutex);                    \
101         } while (0)
102 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
103
104 void
105 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
106     int priority, task_fn_t func, void *context)
107 {
108
109         TASK_INIT(&timeout_task->t, priority, func, context);
110         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
111             CALLOUT_RETURNUNLOCKED);
112         timeout_task->q = queue;
113         timeout_task->f = 0;
114 }
115
116 static __inline int
117 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
118     int t)
119 {
120         if (tq->tq_spin)
121                 return (msleep_spin(p, m, wm, t));
122         return (msleep(p, m, pri, wm, t));
123 }
124
125 static struct taskqueue *
126 _taskqueue_create(const char *name, int mflags,
127                  taskqueue_enqueue_fn enqueue, void *context,
128                  int mtxflags, const char *mtxname __unused)
129 {
130         struct taskqueue *queue;
131         char *tq_name;
132
133         tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
134         if (tq_name == NULL)
135                 return (NULL);
136
137         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
138         if (queue == NULL) {
139                 free(tq_name, M_TASKQUEUE);
140                 return (NULL);
141         }
142
143         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
144
145         STAILQ_INIT(&queue->tq_queue);
146         TAILQ_INIT(&queue->tq_active);
147         queue->tq_enqueue = enqueue;
148         queue->tq_context = context;
149         queue->tq_name = tq_name;
150         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
151         queue->tq_flags |= TQ_FLAGS_ACTIVE;
152         if (enqueue == taskqueue_fast_enqueue ||
153             enqueue == taskqueue_swi_enqueue ||
154             enqueue == taskqueue_swi_giant_enqueue ||
155             enqueue == taskqueue_thread_enqueue)
156                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
157         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
158
159         return (queue);
160 }
161
162 struct taskqueue *
163 taskqueue_create(const char *name, int mflags,
164                  taskqueue_enqueue_fn enqueue, void *context)
165 {
166
167         return _taskqueue_create(name, mflags, enqueue, context,
168                         MTX_DEF, name);
169 }
170
171 void
172 taskqueue_set_callback(struct taskqueue *queue,
173     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
174     void *context)
175 {
176
177         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
178             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
179             ("Callback type %d not valid, must be %d-%d", cb_type,
180             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
181         KASSERT((queue->tq_callbacks[cb_type] == NULL),
182             ("Re-initialization of taskqueue callback?"));
183
184         queue->tq_callbacks[cb_type] = callback;
185         queue->tq_cb_contexts[cb_type] = context;
186 }
187
188 /*
189  * Signal a taskqueue thread to terminate.
190  */
191 static void
192 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
193 {
194
195         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
196                 wakeup(tq);
197                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
198         }
199 }
200
201 void
202 taskqueue_free(struct taskqueue *queue)
203 {
204
205         TQ_LOCK(queue);
206         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
207         taskqueue_terminate(queue->tq_threads, queue);
208         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
209         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
210         mtx_destroy(&queue->tq_mutex);
211         free(queue->tq_threads, M_TASKQUEUE);
212         free(queue->tq_name, M_TASKQUEUE);
213         free(queue, M_TASKQUEUE);
214 }
215
216 static int
217 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
218 {
219         struct task *ins;
220         struct task *prev;
221
222         KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
223         /*
224          * Count multiple enqueues.
225          */
226         if (task->ta_pending) {
227                 if (task->ta_pending < USHRT_MAX)
228                         task->ta_pending++;
229                 TQ_UNLOCK(queue);
230                 return (0);
231         }
232
233         /*
234          * Optimise the case when all tasks have the same priority.
235          */
236         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
237         if (!prev || prev->ta_priority >= task->ta_priority) {
238                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
239         } else {
240                 prev = NULL;
241                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
242                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
243                         if (ins->ta_priority < task->ta_priority)
244                                 break;
245
246                 if (prev)
247                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
248                 else
249                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
250         }
251
252         task->ta_pending = 1;
253         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
254                 TQ_UNLOCK(queue);
255         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
256                 queue->tq_enqueue(queue->tq_context);
257         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
258                 TQ_UNLOCK(queue);
259
260         /* Return with lock released. */
261         return (0);
262 }
263
264 int
265 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
266 {
267         int res;
268
269         TQ_LOCK(queue);
270         res = taskqueue_enqueue_locked(queue, task);
271         /* The lock is released inside. */
272
273         return (res);
274 }
275
276 static void
277 taskqueue_timeout_func(void *arg)
278 {
279         struct taskqueue *queue;
280         struct timeout_task *timeout_task;
281
282         timeout_task = arg;
283         queue = timeout_task->q;
284         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
285         timeout_task->f &= ~DT_CALLOUT_ARMED;
286         queue->tq_callouts--;
287         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
288         /* The lock is released inside. */
289 }
290
291 int
292 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
293     struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
294 {
295         int res;
296
297         TQ_LOCK(queue);
298         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
299             ("Migrated queue"));
300         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
301         timeout_task->q = queue;
302         res = timeout_task->t.ta_pending;
303         if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
304                 /* Do nothing */
305                 TQ_UNLOCK(queue);
306                 res = -1;
307         } else if (sbt == 0) {
308                 taskqueue_enqueue_locked(queue, &timeout_task->t);
309                 /* The lock is released inside. */
310         } else {
311                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
312                         res++;
313                 } else {
314                         queue->tq_callouts++;
315                         timeout_task->f |= DT_CALLOUT_ARMED;
316                         if (sbt < 0)
317                                 sbt = -sbt; /* Ignore overflow. */
318                 }
319                 if (sbt > 0) {
320                         callout_reset_sbt(&timeout_task->c, sbt, pr,
321                             taskqueue_timeout_func, timeout_task, flags);
322                 }
323                 TQ_UNLOCK(queue);
324         }
325         return (res);
326 }
327
328 int
329 taskqueue_enqueue_timeout(struct taskqueue *queue,
330     struct timeout_task *ttask, int ticks)
331 {
332
333         return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
334             0, 0));
335 }
336
337 static void
338 taskqueue_task_nop_fn(void *context, int pending)
339 {
340 }
341
342 /*
343  * Block until all currently queued tasks in this taskqueue
344  * have begun execution.  Tasks queued during execution of
345  * this function are ignored.
346  */
347 static int
348 taskqueue_drain_tq_queue(struct taskqueue *queue)
349 {
350         struct task t_barrier;
351
352         if (STAILQ_EMPTY(&queue->tq_queue))
353                 return (0);
354
355         /*
356          * Enqueue our barrier after all current tasks, but with
357          * the highest priority so that newly queued tasks cannot
358          * pass it.  Because of the high priority, we can not use
359          * taskqueue_enqueue_locked directly (which drops the lock
360          * anyway) so just insert it at tail while we have the
361          * queue lock.
362          */
363         TASK_INIT(&t_barrier, USHRT_MAX, taskqueue_task_nop_fn, &t_barrier);
364         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
365         t_barrier.ta_pending = 1;
366
367         /*
368          * Once the barrier has executed, all previously queued tasks
369          * have completed or are currently executing.
370          */
371         while (t_barrier.ta_pending != 0)
372                 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
373         return (1);
374 }
375
376 /*
377  * Block until all currently executing tasks for this taskqueue
378  * complete.  Tasks that begin execution during the execution
379  * of this function are ignored.
380  */
381 static int
382 taskqueue_drain_tq_active(struct taskqueue *queue)
383 {
384         struct taskqueue_busy tb_marker, *tb_first;
385
386         if (TAILQ_EMPTY(&queue->tq_active))
387                 return (0);
388
389         /* Block taskq_terminate().*/
390         queue->tq_callouts++;
391
392         /*
393          * Wait for all currently executing taskqueue threads
394          * to go idle.
395          */
396         tb_marker.tb_running = TB_DRAIN_WAITER;
397         TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
398         while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
399                 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
400         TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
401
402         /*
403          * Wakeup any other drain waiter that happened to queue up
404          * without any intervening active thread.
405          */
406         tb_first = TAILQ_FIRST(&queue->tq_active);
407         if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
408                 wakeup(tb_first);
409
410         /* Release taskqueue_terminate(). */
411         queue->tq_callouts--;
412         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
413                 wakeup_one(queue->tq_threads);
414         return (1);
415 }
416
417 void
418 taskqueue_block(struct taskqueue *queue)
419 {
420
421         TQ_LOCK(queue);
422         queue->tq_flags |= TQ_FLAGS_BLOCKED;
423         TQ_UNLOCK(queue);
424 }
425
426 void
427 taskqueue_unblock(struct taskqueue *queue)
428 {
429
430         TQ_LOCK(queue);
431         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
432         if (!STAILQ_EMPTY(&queue->tq_queue))
433                 queue->tq_enqueue(queue->tq_context);
434         TQ_UNLOCK(queue);
435 }
436
437 static void
438 taskqueue_run_locked(struct taskqueue *queue)
439 {
440         struct taskqueue_busy tb;
441         struct taskqueue_busy *tb_first;
442         struct task *task;
443         int pending;
444
445         KASSERT(queue != NULL, ("tq is NULL"));
446         TQ_ASSERT_LOCKED(queue);
447         tb.tb_running = NULL;
448
449         while (STAILQ_FIRST(&queue->tq_queue)) {
450                 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
451
452                 /*
453                  * Carefully remove the first task from the queue and
454                  * zero its pending count.
455                  */
456                 task = STAILQ_FIRST(&queue->tq_queue);
457                 KASSERT(task != NULL, ("task is NULL"));
458                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
459                 pending = task->ta_pending;
460                 task->ta_pending = 0;
461                 tb.tb_running = task;
462                 TQ_UNLOCK(queue);
463
464                 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
465                 task->ta_func(task->ta_context, pending);
466
467                 TQ_LOCK(queue);
468                 tb.tb_running = NULL;
469                 wakeup(task);
470
471                 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
472                 tb_first = TAILQ_FIRST(&queue->tq_active);
473                 if (tb_first != NULL &&
474                     tb_first->tb_running == TB_DRAIN_WAITER)
475                         wakeup(tb_first);
476         }
477 }
478
479 void
480 taskqueue_run(struct taskqueue *queue)
481 {
482
483         TQ_LOCK(queue);
484         taskqueue_run_locked(queue);
485         TQ_UNLOCK(queue);
486 }
487
488 static int
489 task_is_running(struct taskqueue *queue, struct task *task)
490 {
491         struct taskqueue_busy *tb;
492
493         TQ_ASSERT_LOCKED(queue);
494         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
495                 if (tb->tb_running == task)
496                         return (1);
497         }
498         return (0);
499 }
500
501 /*
502  * Only use this function in single threaded contexts. It returns
503  * non-zero if the given task is either pending or running. Else the
504  * task is idle and can be queued again or freed.
505  */
506 int
507 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
508 {
509         int retval;
510
511         TQ_LOCK(queue);
512         retval = task->ta_pending > 0 || task_is_running(queue, task);
513         TQ_UNLOCK(queue);
514
515         return (retval);
516 }
517
518 static int
519 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
520     u_int *pendp)
521 {
522
523         if (task->ta_pending > 0)
524                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
525         if (pendp != NULL)
526                 *pendp = task->ta_pending;
527         task->ta_pending = 0;
528         return (task_is_running(queue, task) ? EBUSY : 0);
529 }
530
531 int
532 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
533 {
534         int error;
535
536         TQ_LOCK(queue);
537         error = taskqueue_cancel_locked(queue, task, pendp);
538         TQ_UNLOCK(queue);
539
540         return (error);
541 }
542
543 int
544 taskqueue_cancel_timeout(struct taskqueue *queue,
545     struct timeout_task *timeout_task, u_int *pendp)
546 {
547         u_int pending, pending1;
548         int error;
549
550         TQ_LOCK(queue);
551         pending = !!(callout_stop(&timeout_task->c) > 0);
552         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
553         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
554                 timeout_task->f &= ~DT_CALLOUT_ARMED;
555                 queue->tq_callouts--;
556         }
557         TQ_UNLOCK(queue);
558
559         if (pendp != NULL)
560                 *pendp = pending + pending1;
561         return (error);
562 }
563
564 void
565 taskqueue_drain(struct taskqueue *queue, struct task *task)
566 {
567
568         if (!queue->tq_spin)
569                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
570
571         TQ_LOCK(queue);
572         while (task->ta_pending != 0 || task_is_running(queue, task))
573                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
574         TQ_UNLOCK(queue);
575 }
576
577 void
578 taskqueue_drain_all(struct taskqueue *queue)
579 {
580
581         if (!queue->tq_spin)
582                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
583
584         TQ_LOCK(queue);
585         (void)taskqueue_drain_tq_queue(queue);
586         (void)taskqueue_drain_tq_active(queue);
587         TQ_UNLOCK(queue);
588 }
589
590 void
591 taskqueue_drain_timeout(struct taskqueue *queue,
592     struct timeout_task *timeout_task)
593 {
594
595         /*
596          * Set flag to prevent timer from re-starting during drain:
597          */
598         TQ_LOCK(queue);
599         KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
600             ("Drain already in progress"));
601         timeout_task->f |= DT_DRAIN_IN_PROGRESS;
602         TQ_UNLOCK(queue);
603
604         callout_drain(&timeout_task->c);
605         taskqueue_drain(queue, &timeout_task->t);
606
607         /*
608          * Clear flag to allow timer to re-start:
609          */
610         TQ_LOCK(queue);
611         timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
612         TQ_UNLOCK(queue);
613 }
614
615 void
616 taskqueue_quiesce(struct taskqueue *queue)
617 {
618         int ret;
619
620         TQ_LOCK(queue);
621         do {
622                 ret = taskqueue_drain_tq_queue(queue);
623                 if (ret == 0)
624                         ret = taskqueue_drain_tq_active(queue);
625         } while (ret != 0);
626         TQ_UNLOCK(queue);
627 }
628
629 static void
630 taskqueue_swi_enqueue(void *context)
631 {
632         swi_sched(taskqueue_ih, 0);
633 }
634
635 static void
636 taskqueue_swi_run(void *dummy)
637 {
638         taskqueue_run(taskqueue_swi);
639 }
640
641 static void
642 taskqueue_swi_giant_enqueue(void *context)
643 {
644         swi_sched(taskqueue_giant_ih, 0);
645 }
646
647 static void
648 taskqueue_swi_giant_run(void *dummy)
649 {
650         taskqueue_run(taskqueue_swi_giant);
651 }
652
653 static int
654 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
655     cpuset_t *mask, const char *name, va_list ap)
656 {
657         char ktname[MAXCOMLEN + 1];
658         struct thread *td;
659         struct taskqueue *tq;
660         int i, error;
661
662         if (count <= 0)
663                 return (EINVAL);
664
665         vsnprintf(ktname, sizeof(ktname), name, ap);
666         tq = *tqp;
667
668         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
669             M_NOWAIT | M_ZERO);
670         if (tq->tq_threads == NULL) {
671                 printf("%s: no memory for %s threads\n", __func__, ktname);
672                 return (ENOMEM);
673         }
674
675         for (i = 0; i < count; i++) {
676                 if (count == 1)
677                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
678                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
679                 else
680                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
681                             &tq->tq_threads[i], RFSTOPPED, 0,
682                             "%s_%d", ktname, i);
683                 if (error) {
684                         /* should be ok to continue, taskqueue_free will dtrt */
685                         printf("%s: kthread_add(%s): error %d", __func__,
686                             ktname, error);
687                         tq->tq_threads[i] = NULL;               /* paranoid */
688                 } else
689                         tq->tq_tcount++;
690         }
691         if (tq->tq_tcount == 0) {
692                 free(tq->tq_threads, M_TASKQUEUE);
693                 tq->tq_threads = NULL;
694                 return (ENOMEM);
695         }
696         for (i = 0; i < count; i++) {
697                 if (tq->tq_threads[i] == NULL)
698                         continue;
699                 td = tq->tq_threads[i];
700                 if (mask) {
701                         error = cpuset_setthread(td->td_tid, mask);
702                         /*
703                          * Failing to pin is rarely an actual fatal error;
704                          * it'll just affect performance.
705                          */
706                         if (error)
707                                 printf("%s: curthread=%llu: can't pin; "
708                                     "error=%d\n",
709                                     __func__,
710                                     (unsigned long long) td->td_tid,
711                                     error);
712                 }
713                 thread_lock(td);
714                 sched_prio(td, pri);
715                 sched_add(td, SRQ_BORING);
716                 thread_unlock(td);
717         }
718
719         return (0);
720 }
721
722 int
723 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
724     const char *name, ...)
725 {
726         va_list ap;
727         int error;
728
729         va_start(ap, name);
730         error = _taskqueue_start_threads(tqp, count, pri, NULL, name, ap);
731         va_end(ap);
732         return (error);
733 }
734
735 int
736 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
737     cpuset_t *mask, const char *name, ...)
738 {
739         va_list ap;
740         int error;
741
742         va_start(ap, name);
743         error = _taskqueue_start_threads(tqp, count, pri, mask, name, ap);
744         va_end(ap);
745         return (error);
746 }
747
748 static inline void
749 taskqueue_run_callback(struct taskqueue *tq,
750     enum taskqueue_callback_type cb_type)
751 {
752         taskqueue_callback_fn tq_callback;
753
754         TQ_ASSERT_UNLOCKED(tq);
755         tq_callback = tq->tq_callbacks[cb_type];
756         if (tq_callback != NULL)
757                 tq_callback(tq->tq_cb_contexts[cb_type]);
758 }
759
760 void
761 taskqueue_thread_loop(void *arg)
762 {
763         struct taskqueue **tqp, *tq;
764
765         tqp = arg;
766         tq = *tqp;
767         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
768         TQ_LOCK(tq);
769         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
770                 /* XXX ? */
771                 taskqueue_run_locked(tq);
772                 /*
773                  * Because taskqueue_run() can drop tq_mutex, we need to
774                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
775                  * meantime, which means we missed a wakeup.
776                  */
777                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
778                         break;
779                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
780         }
781         taskqueue_run_locked(tq);
782         /*
783          * This thread is on its way out, so just drop the lock temporarily
784          * in order to call the shutdown callback.  This allows the callback
785          * to look at the taskqueue, even just before it dies.
786          */
787         TQ_UNLOCK(tq);
788         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
789         TQ_LOCK(tq);
790
791         /* rendezvous with thread that asked us to terminate */
792         tq->tq_tcount--;
793         wakeup_one(tq->tq_threads);
794         TQ_UNLOCK(tq);
795         kthread_exit();
796 }
797
798 void
799 taskqueue_thread_enqueue(void *context)
800 {
801         struct taskqueue **tqp, *tq;
802
803         tqp = context;
804         tq = *tqp;
805         wakeup_one(tq);
806 }
807
808 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
809                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
810                      INTR_MPSAFE, &taskqueue_ih));
811
812 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
813                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
814                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
815
816 TASKQUEUE_DEFINE_THREAD(thread);
817
818 struct taskqueue *
819 taskqueue_create_fast(const char *name, int mflags,
820                  taskqueue_enqueue_fn enqueue, void *context)
821 {
822         return _taskqueue_create(name, mflags, enqueue, context,
823                         MTX_SPIN, "fast_taskqueue");
824 }
825
826 static void     *taskqueue_fast_ih;
827
828 static void
829 taskqueue_fast_enqueue(void *context)
830 {
831         swi_sched(taskqueue_fast_ih, 0);
832 }
833
834 static void
835 taskqueue_fast_run(void *dummy)
836 {
837         taskqueue_run(taskqueue_fast);
838 }
839
840 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
841         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
842         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
843
844 int
845 taskqueue_member(struct taskqueue *queue, struct thread *td)
846 {
847         int i, j, ret = 0;
848
849         for (i = 0, j = 0; ; i++) {
850                 if (queue->tq_threads[i] == NULL)
851                         continue;
852                 if (queue->tq_threads[i] == td) {
853                         ret = 1;
854                         break;
855                 }
856                 if (++j >= queue->tq_tcount)
857                         break;
858         }
859         return (ret);
860 }