]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
MFC r359170:
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/kthread.h>
39 #include <sys/libkern.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/taskqueue.h>
48 #include <sys/unistd.h>
49 #include <machine/stdarg.h>
50
51 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
52 static void     *taskqueue_giant_ih;
53 static void     *taskqueue_ih;
54 static void      taskqueue_fast_enqueue(void *);
55 static void      taskqueue_swi_enqueue(void *);
56 static void      taskqueue_swi_giant_enqueue(void *);
57
58 struct taskqueue_busy {
59         struct task             *tb_running;
60         u_int                    tb_seq;
61         LIST_ENTRY(taskqueue_busy) tb_link;
62 };
63
64 struct taskqueue {
65         STAILQ_HEAD(, task)     tq_queue;
66         LIST_HEAD(, taskqueue_busy) tq_active;
67         struct task             *tq_hint;
68         u_int                   tq_seq;
69         int                     tq_callouts;
70         struct mtx_padalign     tq_mutex;
71         taskqueue_enqueue_fn    tq_enqueue;
72         void                    *tq_context;
73         char                    *tq_name;
74         struct thread           **tq_threads;
75         int                     tq_tcount;
76         int                     tq_spin;
77         int                     tq_flags;
78         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
79         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
80 };
81
82 #define TQ_FLAGS_ACTIVE         (1 << 0)
83 #define TQ_FLAGS_BLOCKED        (1 << 1)
84 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
85
86 #define DT_CALLOUT_ARMED        (1 << 0)
87 #define DT_DRAIN_IN_PROGRESS    (1 << 1)
88
89 #define TQ_LOCK(tq)                                                     \
90         do {                                                            \
91                 if ((tq)->tq_spin)                                      \
92                         mtx_lock_spin(&(tq)->tq_mutex);                 \
93                 else                                                    \
94                         mtx_lock(&(tq)->tq_mutex);                      \
95         } while (0)
96 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
97
98 #define TQ_UNLOCK(tq)                                                   \
99         do {                                                            \
100                 if ((tq)->tq_spin)                                      \
101                         mtx_unlock_spin(&(tq)->tq_mutex);               \
102                 else                                                    \
103                         mtx_unlock(&(tq)->tq_mutex);                    \
104         } while (0)
105 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
106
107 void
108 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
109     int priority, task_fn_t func, void *context)
110 {
111
112         TASK_INIT(&timeout_task->t, priority, func, context);
113         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
114             CALLOUT_RETURNUNLOCKED);
115         timeout_task->q = queue;
116         timeout_task->f = 0;
117 }
118
119 static __inline int
120 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm)
121 {
122         if (tq->tq_spin)
123                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
124         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
125 }
126
127 static struct taskqueue *
128 _taskqueue_create(const char *name, int mflags,
129                  taskqueue_enqueue_fn enqueue, void *context,
130                  int mtxflags, const char *mtxname __unused)
131 {
132         struct taskqueue *queue;
133         char *tq_name;
134
135         tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
136         if (tq_name == NULL)
137                 return (NULL);
138
139         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
140         if (queue == NULL) {
141                 free(tq_name, M_TASKQUEUE);
142                 return (NULL);
143         }
144
145         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
146
147         STAILQ_INIT(&queue->tq_queue);
148         LIST_INIT(&queue->tq_active);
149         queue->tq_enqueue = enqueue;
150         queue->tq_context = context;
151         queue->tq_name = tq_name;
152         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
153         queue->tq_flags |= TQ_FLAGS_ACTIVE;
154         if (enqueue == taskqueue_fast_enqueue ||
155             enqueue == taskqueue_swi_enqueue ||
156             enqueue == taskqueue_swi_giant_enqueue ||
157             enqueue == taskqueue_thread_enqueue)
158                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
159         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
160
161         return (queue);
162 }
163
164 struct taskqueue *
165 taskqueue_create(const char *name, int mflags,
166                  taskqueue_enqueue_fn enqueue, void *context)
167 {
168
169         return _taskqueue_create(name, mflags, enqueue, context,
170                         MTX_DEF, name);
171 }
172
173 void
174 taskqueue_set_callback(struct taskqueue *queue,
175     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
176     void *context)
177 {
178
179         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
180             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
181             ("Callback type %d not valid, must be %d-%d", cb_type,
182             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
183         KASSERT((queue->tq_callbacks[cb_type] == NULL),
184             ("Re-initialization of taskqueue callback?"));
185
186         queue->tq_callbacks[cb_type] = callback;
187         queue->tq_cb_contexts[cb_type] = context;
188 }
189
190 /*
191  * Signal a taskqueue thread to terminate.
192  */
193 static void
194 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
195 {
196
197         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
198                 wakeup(tq);
199                 TQ_SLEEP(tq, pp, "tq_destroy");
200         }
201 }
202
203 void
204 taskqueue_free(struct taskqueue *queue)
205 {
206
207         TQ_LOCK(queue);
208         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
209         taskqueue_terminate(queue->tq_threads, queue);
210         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
211         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
212         mtx_destroy(&queue->tq_mutex);
213         free(queue->tq_threads, M_TASKQUEUE);
214         free(queue->tq_name, M_TASKQUEUE);
215         free(queue, M_TASKQUEUE);
216 }
217
218 static int
219 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
220 {
221         struct task *ins;
222         struct task *prev;
223
224         KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
225         /*
226          * Count multiple enqueues.
227          */
228         if (task->ta_pending) {
229                 if (task->ta_pending < USHRT_MAX)
230                         task->ta_pending++;
231                 TQ_UNLOCK(queue);
232                 return (0);
233         }
234
235         /*
236          * Optimise cases when all tasks use small set of priorities.
237          * In case of only one priority we always insert at the end.
238          * In case of two tq_hint typically gives the insertion point.
239          * In case of more then two tq_hint should halve the search.
240          */
241         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
242         if (!prev || prev->ta_priority >= task->ta_priority) {
243                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
244         } else {
245                 prev = queue->tq_hint;
246                 if (prev && prev->ta_priority >= task->ta_priority) {
247                         ins = STAILQ_NEXT(prev, ta_link);
248                 } else {
249                         prev = NULL;
250                         ins = STAILQ_FIRST(&queue->tq_queue);
251                 }
252                 for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link))
253                         if (ins->ta_priority < task->ta_priority)
254                                 break;
255
256                 if (prev) {
257                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
258                         queue->tq_hint = task;
259                 } else
260                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
261         }
262
263         task->ta_pending = 1;
264         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
265                 TQ_UNLOCK(queue);
266         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
267                 queue->tq_enqueue(queue->tq_context);
268         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
269                 TQ_UNLOCK(queue);
270
271         /* Return with lock released. */
272         return (0);
273 }
274
275 int
276 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
277 {
278         int res;
279
280         TQ_LOCK(queue);
281         res = taskqueue_enqueue_locked(queue, task);
282         /* The lock is released inside. */
283
284         return (res);
285 }
286
287 static void
288 taskqueue_timeout_func(void *arg)
289 {
290         struct taskqueue *queue;
291         struct timeout_task *timeout_task;
292
293         timeout_task = arg;
294         queue = timeout_task->q;
295         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
296         timeout_task->f &= ~DT_CALLOUT_ARMED;
297         queue->tq_callouts--;
298         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
299         /* The lock is released inside. */
300 }
301
302 int
303 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
304     struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
305 {
306         int res;
307
308         TQ_LOCK(queue);
309         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
310             ("Migrated queue"));
311         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
312         timeout_task->q = queue;
313         res = timeout_task->t.ta_pending;
314         if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
315                 /* Do nothing */
316                 TQ_UNLOCK(queue);
317                 res = -1;
318         } else if (sbt == 0) {
319                 taskqueue_enqueue_locked(queue, &timeout_task->t);
320                 /* The lock is released inside. */
321         } else {
322                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
323                         res++;
324                 } else {
325                         queue->tq_callouts++;
326                         timeout_task->f |= DT_CALLOUT_ARMED;
327                         if (sbt < 0)
328                                 sbt = -sbt; /* Ignore overflow. */
329                 }
330                 if (sbt > 0) {
331                         callout_reset_sbt(&timeout_task->c, sbt, pr,
332                             taskqueue_timeout_func, timeout_task, flags);
333                 }
334                 TQ_UNLOCK(queue);
335         }
336         return (res);
337 }
338
339 int
340 taskqueue_enqueue_timeout(struct taskqueue *queue,
341     struct timeout_task *ttask, int ticks)
342 {
343
344         return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
345             0, 0));
346 }
347
348 static void
349 taskqueue_task_nop_fn(void *context, int pending)
350 {
351 }
352
353 /*
354  * Block until all currently queued tasks in this taskqueue
355  * have begun execution.  Tasks queued during execution of
356  * this function are ignored.
357  */
358 static int
359 taskqueue_drain_tq_queue(struct taskqueue *queue)
360 {
361         struct task t_barrier;
362
363         if (STAILQ_EMPTY(&queue->tq_queue))
364                 return (0);
365
366         /*
367          * Enqueue our barrier after all current tasks, but with
368          * the highest priority so that newly queued tasks cannot
369          * pass it.  Because of the high priority, we can not use
370          * taskqueue_enqueue_locked directly (which drops the lock
371          * anyway) so just insert it at tail while we have the
372          * queue lock.
373          */
374         TASK_INIT(&t_barrier, USHRT_MAX, taskqueue_task_nop_fn, &t_barrier);
375         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
376         queue->tq_hint = &t_barrier;
377         t_barrier.ta_pending = 1;
378
379         /*
380          * Once the barrier has executed, all previously queued tasks
381          * have completed or are currently executing.
382          */
383         while (t_barrier.ta_pending != 0)
384                 TQ_SLEEP(queue, &t_barrier, "tq_qdrain");
385         return (1);
386 }
387
388 /*
389  * Block until all currently executing tasks for this taskqueue
390  * complete.  Tasks that begin execution during the execution
391  * of this function are ignored.
392  */
393 static int
394 taskqueue_drain_tq_active(struct taskqueue *queue)
395 {
396         struct taskqueue_busy *tb;
397         u_int seq;
398
399         if (LIST_EMPTY(&queue->tq_active))
400                 return (0);
401
402         /* Block taskq_terminate().*/
403         queue->tq_callouts++;
404
405         /* Wait for any active task with sequence from the past. */
406         seq = queue->tq_seq;
407 restart:
408         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
409                 if ((int)(tb->tb_seq - seq) <= 0) {
410                         TQ_SLEEP(queue, tb->tb_running, "tq_adrain");
411                         goto restart;
412                 }
413         }
414
415         /* Release taskqueue_terminate(). */
416         queue->tq_callouts--;
417         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
418                 wakeup_one(queue->tq_threads);
419         return (1);
420 }
421
422 void
423 taskqueue_block(struct taskqueue *queue)
424 {
425
426         TQ_LOCK(queue);
427         queue->tq_flags |= TQ_FLAGS_BLOCKED;
428         TQ_UNLOCK(queue);
429 }
430
431 void
432 taskqueue_unblock(struct taskqueue *queue)
433 {
434
435         TQ_LOCK(queue);
436         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
437         if (!STAILQ_EMPTY(&queue->tq_queue))
438                 queue->tq_enqueue(queue->tq_context);
439         TQ_UNLOCK(queue);
440 }
441
442 static void
443 taskqueue_run_locked(struct taskqueue *queue)
444 {
445         struct taskqueue_busy tb;
446         struct task *task;
447         int pending;
448
449         KASSERT(queue != NULL, ("tq is NULL"));
450         TQ_ASSERT_LOCKED(queue);
451         tb.tb_running = NULL;
452         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
453
454         while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
455                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
456                 if (queue->tq_hint == task)
457                         queue->tq_hint = NULL;
458                 pending = task->ta_pending;
459                 task->ta_pending = 0;
460                 tb.tb_running = task;
461                 tb.tb_seq = ++queue->tq_seq;
462                 TQ_UNLOCK(queue);
463
464                 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
465                 task->ta_func(task->ta_context, pending);
466
467                 TQ_LOCK(queue);
468                 wakeup(task);
469         }
470         LIST_REMOVE(&tb, tb_link);
471 }
472
473 void
474 taskqueue_run(struct taskqueue *queue)
475 {
476
477         TQ_LOCK(queue);
478         taskqueue_run_locked(queue);
479         TQ_UNLOCK(queue);
480 }
481
482 static int
483 task_is_running(struct taskqueue *queue, struct task *task)
484 {
485         struct taskqueue_busy *tb;
486
487         TQ_ASSERT_LOCKED(queue);
488         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
489                 if (tb->tb_running == task)
490                         return (1);
491         }
492         return (0);
493 }
494
495 /*
496  * Only use this function in single threaded contexts. It returns
497  * non-zero if the given task is either pending or running. Else the
498  * task is idle and can be queued again or freed.
499  */
500 int
501 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
502 {
503         int retval;
504
505         TQ_LOCK(queue);
506         retval = task->ta_pending > 0 || task_is_running(queue, task);
507         TQ_UNLOCK(queue);
508
509         return (retval);
510 }
511
512 static int
513 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
514     u_int *pendp)
515 {
516
517         if (task->ta_pending > 0) {
518                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
519                 if (queue->tq_hint == task)
520                         queue->tq_hint = NULL;
521         }
522         if (pendp != NULL)
523                 *pendp = task->ta_pending;
524         task->ta_pending = 0;
525         return (task_is_running(queue, task) ? EBUSY : 0);
526 }
527
528 int
529 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
530 {
531         int error;
532
533         TQ_LOCK(queue);
534         error = taskqueue_cancel_locked(queue, task, pendp);
535         TQ_UNLOCK(queue);
536
537         return (error);
538 }
539
540 int
541 taskqueue_cancel_timeout(struct taskqueue *queue,
542     struct timeout_task *timeout_task, u_int *pendp)
543 {
544         u_int pending, pending1;
545         int error;
546
547         TQ_LOCK(queue);
548         pending = !!(callout_stop(&timeout_task->c) > 0);
549         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
550         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
551                 timeout_task->f &= ~DT_CALLOUT_ARMED;
552                 queue->tq_callouts--;
553         }
554         TQ_UNLOCK(queue);
555
556         if (pendp != NULL)
557                 *pendp = pending + pending1;
558         return (error);
559 }
560
561 void
562 taskqueue_drain(struct taskqueue *queue, struct task *task)
563 {
564
565         if (!queue->tq_spin)
566                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
567
568         TQ_LOCK(queue);
569         while (task->ta_pending != 0 || task_is_running(queue, task))
570                 TQ_SLEEP(queue, task, "tq_drain");
571         TQ_UNLOCK(queue);
572 }
573
574 void
575 taskqueue_drain_all(struct taskqueue *queue)
576 {
577
578         if (!queue->tq_spin)
579                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
580
581         TQ_LOCK(queue);
582         (void)taskqueue_drain_tq_queue(queue);
583         (void)taskqueue_drain_tq_active(queue);
584         TQ_UNLOCK(queue);
585 }
586
587 void
588 taskqueue_drain_timeout(struct taskqueue *queue,
589     struct timeout_task *timeout_task)
590 {
591
592         /*
593          * Set flag to prevent timer from re-starting during drain:
594          */
595         TQ_LOCK(queue);
596         KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
597             ("Drain already in progress"));
598         timeout_task->f |= DT_DRAIN_IN_PROGRESS;
599         TQ_UNLOCK(queue);
600
601         callout_drain(&timeout_task->c);
602         taskqueue_drain(queue, &timeout_task->t);
603
604         /*
605          * Clear flag to allow timer to re-start:
606          */
607         TQ_LOCK(queue);
608         timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
609         TQ_UNLOCK(queue);
610 }
611
612 void
613 taskqueue_quiesce(struct taskqueue *queue)
614 {
615         int ret;
616
617         TQ_LOCK(queue);
618         do {
619                 ret = taskqueue_drain_tq_queue(queue);
620                 if (ret == 0)
621                         ret = taskqueue_drain_tq_active(queue);
622         } while (ret != 0);
623         TQ_UNLOCK(queue);
624 }
625
626 static void
627 taskqueue_swi_enqueue(void *context)
628 {
629         swi_sched(taskqueue_ih, 0);
630 }
631
632 static void
633 taskqueue_swi_run(void *dummy)
634 {
635         taskqueue_run(taskqueue_swi);
636 }
637
638 static void
639 taskqueue_swi_giant_enqueue(void *context)
640 {
641         swi_sched(taskqueue_giant_ih, 0);
642 }
643
644 static void
645 taskqueue_swi_giant_run(void *dummy)
646 {
647         taskqueue_run(taskqueue_swi_giant);
648 }
649
650 static int
651 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
652     cpuset_t *mask, struct proc *p, const char *name, va_list ap)
653 {
654         char ktname[MAXCOMLEN + 1];
655         struct thread *td;
656         struct taskqueue *tq;
657         int i, error;
658
659         if (count <= 0)
660                 return (EINVAL);
661
662         vsnprintf(ktname, sizeof(ktname), name, ap);
663         tq = *tqp;
664
665         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
666             M_NOWAIT | M_ZERO);
667         if (tq->tq_threads == NULL) {
668                 printf("%s: no memory for %s threads\n", __func__, ktname);
669                 return (ENOMEM);
670         }
671
672         for (i = 0; i < count; i++) {
673                 if (count == 1)
674                         error = kthread_add(taskqueue_thread_loop, tqp, p,
675                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
676                 else
677                         error = kthread_add(taskqueue_thread_loop, tqp, p,
678                             &tq->tq_threads[i], RFSTOPPED, 0,
679                             "%s_%d", ktname, i);
680                 if (error) {
681                         /* should be ok to continue, taskqueue_free will dtrt */
682                         printf("%s: kthread_add(%s): error %d", __func__,
683                             ktname, error);
684                         tq->tq_threads[i] = NULL;               /* paranoid */
685                 } else
686                         tq->tq_tcount++;
687         }
688         if (tq->tq_tcount == 0) {
689                 free(tq->tq_threads, M_TASKQUEUE);
690                 tq->tq_threads = NULL;
691                 return (ENOMEM);
692         }
693         for (i = 0; i < count; i++) {
694                 if (tq->tq_threads[i] == NULL)
695                         continue;
696                 td = tq->tq_threads[i];
697                 if (mask) {
698                         error = cpuset_setthread(td->td_tid, mask);
699                         /*
700                          * Failing to pin is rarely an actual fatal error;
701                          * it'll just affect performance.
702                          */
703                         if (error)
704                                 printf("%s: curthread=%llu: can't pin; "
705                                     "error=%d\n",
706                                     __func__,
707                                     (unsigned long long) td->td_tid,
708                                     error);
709                 }
710                 thread_lock(td);
711                 sched_prio(td, pri);
712                 sched_add(td, SRQ_BORING);
713                 thread_unlock(td);
714         }
715
716         return (0);
717 }
718
719 int
720 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
721     const char *name, ...)
722 {
723         va_list ap;
724         int error;
725
726         va_start(ap, name);
727         error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
728         va_end(ap);
729         return (error);
730 }
731
732 int
733 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
734     struct proc *proc, const char *name, ...)
735 {
736         va_list ap;
737         int error;
738
739         va_start(ap, name);
740         error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
741         va_end(ap);
742         return (error);
743 }
744
745 int
746 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
747     cpuset_t *mask, const char *name, ...)
748 {
749         va_list ap;
750         int error;
751
752         va_start(ap, name);
753         error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
754         va_end(ap);
755         return (error);
756 }
757
758 static inline void
759 taskqueue_run_callback(struct taskqueue *tq,
760     enum taskqueue_callback_type cb_type)
761 {
762         taskqueue_callback_fn tq_callback;
763
764         TQ_ASSERT_UNLOCKED(tq);
765         tq_callback = tq->tq_callbacks[cb_type];
766         if (tq_callback != NULL)
767                 tq_callback(tq->tq_cb_contexts[cb_type]);
768 }
769
770 void
771 taskqueue_thread_loop(void *arg)
772 {
773         struct taskqueue **tqp, *tq;
774
775         tqp = arg;
776         tq = *tqp;
777         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
778         TQ_LOCK(tq);
779         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
780                 /* XXX ? */
781                 taskqueue_run_locked(tq);
782                 /*
783                  * Because taskqueue_run() can drop tq_mutex, we need to
784                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
785                  * meantime, which means we missed a wakeup.
786                  */
787                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
788                         break;
789                 TQ_SLEEP(tq, tq, "-");
790         }
791         taskqueue_run_locked(tq);
792         /*
793          * This thread is on its way out, so just drop the lock temporarily
794          * in order to call the shutdown callback.  This allows the callback
795          * to look at the taskqueue, even just before it dies.
796          */
797         TQ_UNLOCK(tq);
798         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
799         TQ_LOCK(tq);
800
801         /* rendezvous with thread that asked us to terminate */
802         tq->tq_tcount--;
803         wakeup_one(tq->tq_threads);
804         TQ_UNLOCK(tq);
805         kthread_exit();
806 }
807
808 void
809 taskqueue_thread_enqueue(void *context)
810 {
811         struct taskqueue **tqp, *tq;
812
813         tqp = context;
814         tq = *tqp;
815         wakeup_any(tq);
816 }
817
818 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
819                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
820                      INTR_MPSAFE, &taskqueue_ih));
821
822 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
823                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
824                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
825
826 TASKQUEUE_DEFINE_THREAD(thread);
827
828 struct taskqueue *
829 taskqueue_create_fast(const char *name, int mflags,
830                  taskqueue_enqueue_fn enqueue, void *context)
831 {
832         return _taskqueue_create(name, mflags, enqueue, context,
833                         MTX_SPIN, "fast_taskqueue");
834 }
835
836 static void     *taskqueue_fast_ih;
837
838 static void
839 taskqueue_fast_enqueue(void *context)
840 {
841         swi_sched(taskqueue_fast_ih, 0);
842 }
843
844 static void
845 taskqueue_fast_run(void *dummy)
846 {
847         taskqueue_run(taskqueue_fast);
848 }
849
850 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
851         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
852         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
853
854 int
855 taskqueue_member(struct taskqueue *queue, struct thread *td)
856 {
857         int i, j, ret = 0;
858
859         for (i = 0, j = 0; ; i++) {
860                 if (queue->tq_threads[i] == NULL)
861                         continue;
862                 if (queue->tq_threads[i] == td) {
863                         ret = 1;
864                         break;
865                 }
866                 if (++j >= queue->tq_tcount)
867                         break;
868         }
869         return (ret);
870 }