]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
zfs: merge openzfs/zfs@39be46f43
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/bus.h>
32 #include <sys/cpuset.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/libkern.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/epoch.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/taskqueue.h>
46 #include <sys/unistd.h>
47 #include <machine/stdarg.h>
48
49 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
50 static void     *taskqueue_giant_ih;
51 static void     *taskqueue_ih;
52 static void      taskqueue_fast_enqueue(void *);
53 static void      taskqueue_swi_enqueue(void *);
54 static void      taskqueue_swi_giant_enqueue(void *);
55
56 struct taskqueue_busy {
57         struct task             *tb_running;
58         u_int                    tb_seq;
59         bool                     tb_canceling;
60         LIST_ENTRY(taskqueue_busy) tb_link;
61 };
62
63 struct taskqueue {
64         STAILQ_HEAD(, task)     tq_queue;
65         LIST_HEAD(, taskqueue_busy) tq_active;
66         struct task             *tq_hint;
67         u_int                   tq_seq;
68         int                     tq_callouts;
69         struct mtx_padalign     tq_mutex;
70         taskqueue_enqueue_fn    tq_enqueue;
71         void                    *tq_context;
72         char                    *tq_name;
73         struct thread           **tq_threads;
74         int                     tq_tcount;
75         int                     tq_spin;
76         int                     tq_flags;
77         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
78         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
79 };
80
81 #define TQ_FLAGS_ACTIVE         (1 << 0)
82 #define TQ_FLAGS_BLOCKED        (1 << 1)
83 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
84
85 #define DT_CALLOUT_ARMED        (1 << 0)
86 #define DT_DRAIN_IN_PROGRESS    (1 << 1)
87
88 #define TQ_LOCK(tq)                                                     \
89         do {                                                            \
90                 if ((tq)->tq_spin)                                      \
91                         mtx_lock_spin(&(tq)->tq_mutex);                 \
92                 else                                                    \
93                         mtx_lock(&(tq)->tq_mutex);                      \
94         } while (0)
95 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
96
97 #define TQ_UNLOCK(tq)                                                   \
98         do {                                                            \
99                 if ((tq)->tq_spin)                                      \
100                         mtx_unlock_spin(&(tq)->tq_mutex);               \
101                 else                                                    \
102                         mtx_unlock(&(tq)->tq_mutex);                    \
103         } while (0)
104 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
105
106 void
107 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
108     int priority, task_fn_t func, void *context)
109 {
110
111         TASK_INIT(&timeout_task->t, priority, func, context);
112         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
113             CALLOUT_RETURNUNLOCKED);
114         timeout_task->q = queue;
115         timeout_task->f = 0;
116 }
117
118 static __inline int
119 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm)
120 {
121         if (tq->tq_spin)
122                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
123         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
124 }
125
126 static struct taskqueue_busy *
127 task_get_busy(struct taskqueue *queue, struct task *task)
128 {
129         struct taskqueue_busy *tb;
130
131         TQ_ASSERT_LOCKED(queue);
132         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
133                 if (tb->tb_running == task)
134                         return (tb);
135         }
136         return (NULL);
137 }
138
139 static struct taskqueue *
140 _taskqueue_create(const char *name, int mflags,
141                  taskqueue_enqueue_fn enqueue, void *context,
142                  int mtxflags, const char *mtxname __unused)
143 {
144         struct taskqueue *queue;
145         char *tq_name;
146
147         tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
148         if (tq_name == NULL)
149                 return (NULL);
150
151         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
152         if (queue == NULL) {
153                 free(tq_name, M_TASKQUEUE);
154                 return (NULL);
155         }
156
157         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
158
159         STAILQ_INIT(&queue->tq_queue);
160         LIST_INIT(&queue->tq_active);
161         queue->tq_enqueue = enqueue;
162         queue->tq_context = context;
163         queue->tq_name = tq_name;
164         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
165         queue->tq_flags |= TQ_FLAGS_ACTIVE;
166         if (enqueue == taskqueue_fast_enqueue ||
167             enqueue == taskqueue_swi_enqueue ||
168             enqueue == taskqueue_swi_giant_enqueue ||
169             enqueue == taskqueue_thread_enqueue)
170                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
171         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
172
173         return (queue);
174 }
175
176 struct taskqueue *
177 taskqueue_create(const char *name, int mflags,
178                  taskqueue_enqueue_fn enqueue, void *context)
179 {
180
181         return _taskqueue_create(name, mflags, enqueue, context,
182                         MTX_DEF, name);
183 }
184
185 void
186 taskqueue_set_callback(struct taskqueue *queue,
187     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
188     void *context)
189 {
190
191         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
192             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
193             ("Callback type %d not valid, must be %d-%d", cb_type,
194             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
195         KASSERT((queue->tq_callbacks[cb_type] == NULL),
196             ("Re-initialization of taskqueue callback?"));
197
198         queue->tq_callbacks[cb_type] = callback;
199         queue->tq_cb_contexts[cb_type] = context;
200 }
201
202 /*
203  * Signal a taskqueue thread to terminate.
204  */
205 static void
206 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
207 {
208
209         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
210                 wakeup(tq);
211                 TQ_SLEEP(tq, pp, "tq_destroy");
212         }
213 }
214
215 void
216 taskqueue_free(struct taskqueue *queue)
217 {
218
219         TQ_LOCK(queue);
220         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
221         taskqueue_terminate(queue->tq_threads, queue);
222         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
223         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
224         mtx_destroy(&queue->tq_mutex);
225         free(queue->tq_threads, M_TASKQUEUE);
226         free(queue->tq_name, M_TASKQUEUE);
227         free(queue, M_TASKQUEUE);
228 }
229
230 static int
231 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task, int flags)
232 {
233         struct task *ins;
234         struct task *prev;
235         struct taskqueue_busy *tb;
236
237         KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
238         /*
239          * Ignore canceling task if requested.
240          */
241         if (__predict_false((flags & TASKQUEUE_FAIL_IF_CANCELING) != 0)) {
242                 tb = task_get_busy(queue, task);
243                 if (tb != NULL && tb->tb_canceling) {
244                         TQ_UNLOCK(queue);
245                         return (ECANCELED);
246                 }
247         }
248
249         /*
250          * Count multiple enqueues.
251          */
252         if (task->ta_pending) {
253                 if (__predict_false((flags & TASKQUEUE_FAIL_IF_PENDING) != 0)) {
254                         TQ_UNLOCK(queue);
255                         return (EEXIST);
256                 }
257                 if (task->ta_pending < USHRT_MAX)
258                         task->ta_pending++;
259                 TQ_UNLOCK(queue);
260                 return (0);
261         }
262
263         /*
264          * Optimise cases when all tasks use small set of priorities.
265          * In case of only one priority we always insert at the end.
266          * In case of two tq_hint typically gives the insertion point.
267          * In case of more then two tq_hint should halve the search.
268          */
269         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
270         if (!prev || prev->ta_priority >= task->ta_priority) {
271                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
272         } else {
273                 prev = queue->tq_hint;
274                 if (prev && prev->ta_priority >= task->ta_priority) {
275                         ins = STAILQ_NEXT(prev, ta_link);
276                 } else {
277                         prev = NULL;
278                         ins = STAILQ_FIRST(&queue->tq_queue);
279                 }
280                 for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link))
281                         if (ins->ta_priority < task->ta_priority)
282                                 break;
283
284                 if (prev) {
285                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
286                         queue->tq_hint = task;
287                 } else
288                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
289         }
290
291         task->ta_pending = 1;
292         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
293                 TQ_UNLOCK(queue);
294         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
295                 queue->tq_enqueue(queue->tq_context);
296         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
297                 TQ_UNLOCK(queue);
298
299         /* Return with lock released. */
300         return (0);
301 }
302
303 int
304 taskqueue_enqueue_flags(struct taskqueue *queue, struct task *task, int flags)
305 {
306         int res;
307
308         TQ_LOCK(queue);
309         res = taskqueue_enqueue_locked(queue, task, flags);
310         /* The lock is released inside. */
311
312         return (res);
313 }
314
315 int
316 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
317 {
318         return (taskqueue_enqueue_flags(queue, task, 0));
319 }
320
321 static void
322 taskqueue_timeout_func(void *arg)
323 {
324         struct taskqueue *queue;
325         struct timeout_task *timeout_task;
326
327         timeout_task = arg;
328         queue = timeout_task->q;
329         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
330         timeout_task->f &= ~DT_CALLOUT_ARMED;
331         queue->tq_callouts--;
332         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t, 0);
333         /* The lock is released inside. */
334 }
335
336 int
337 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
338     struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
339 {
340         int res;
341
342         TQ_LOCK(queue);
343         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
344             ("Migrated queue"));
345         timeout_task->q = queue;
346         res = timeout_task->t.ta_pending;
347         if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
348                 /* Do nothing */
349                 TQ_UNLOCK(queue);
350                 res = -1;
351         } else if (sbt == 0) {
352                 taskqueue_enqueue_locked(queue, &timeout_task->t, 0);
353                 /* The lock is released inside. */
354         } else {
355                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
356                         res++;
357                 } else {
358                         queue->tq_callouts++;
359                         timeout_task->f |= DT_CALLOUT_ARMED;
360                         if (sbt < 0)
361                                 sbt = -sbt; /* Ignore overflow. */
362                 }
363                 if (sbt > 0) {
364                         if (queue->tq_spin)
365                                 flags |= C_DIRECT_EXEC;
366                         if (queue->tq_spin && queue->tq_tcount == 1 &&
367                             queue->tq_threads[0] == curthread) {
368                                 callout_reset_sbt_curcpu(&timeout_task->c, sbt, pr,
369                                     taskqueue_timeout_func, timeout_task, flags);
370                         } else {
371                                 callout_reset_sbt(&timeout_task->c, sbt, pr,
372                                     taskqueue_timeout_func, timeout_task, flags);
373                         }
374                 }
375                 TQ_UNLOCK(queue);
376         }
377         return (res);
378 }
379
380 int
381 taskqueue_enqueue_timeout(struct taskqueue *queue,
382     struct timeout_task *ttask, int ticks)
383 {
384
385         return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
386             0, C_HARDCLOCK));
387 }
388
389 static void
390 taskqueue_task_nop_fn(void *context, int pending)
391 {
392 }
393
394 /*
395  * Block until all currently queued tasks in this taskqueue
396  * have begun execution.  Tasks queued during execution of
397  * this function are ignored.
398  */
399 static int
400 taskqueue_drain_tq_queue(struct taskqueue *queue)
401 {
402         struct task t_barrier;
403
404         if (STAILQ_EMPTY(&queue->tq_queue))
405                 return (0);
406
407         /*
408          * Enqueue our barrier after all current tasks, but with
409          * the highest priority so that newly queued tasks cannot
410          * pass it.  Because of the high priority, we can not use
411          * taskqueue_enqueue_locked directly (which drops the lock
412          * anyway) so just insert it at tail while we have the
413          * queue lock.
414          */
415         TASK_INIT(&t_barrier, UCHAR_MAX, taskqueue_task_nop_fn, &t_barrier);
416         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
417         queue->tq_hint = &t_barrier;
418         t_barrier.ta_pending = 1;
419
420         /*
421          * Once the barrier has executed, all previously queued tasks
422          * have completed or are currently executing.
423          */
424         while (t_barrier.ta_pending != 0)
425                 TQ_SLEEP(queue, &t_barrier, "tq_qdrain");
426         return (1);
427 }
428
429 /*
430  * Block until all currently executing tasks for this taskqueue
431  * complete.  Tasks that begin execution during the execution
432  * of this function are ignored.
433  */
434 static int
435 taskqueue_drain_tq_active(struct taskqueue *queue)
436 {
437         struct taskqueue_busy *tb;
438         u_int seq;
439
440         if (LIST_EMPTY(&queue->tq_active))
441                 return (0);
442
443         /* Block taskq_terminate().*/
444         queue->tq_callouts++;
445
446         /* Wait for any active task with sequence from the past. */
447         seq = queue->tq_seq;
448 restart:
449         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
450                 if ((int)(tb->tb_seq - seq) <= 0) {
451                         TQ_SLEEP(queue, tb->tb_running, "tq_adrain");
452                         goto restart;
453                 }
454         }
455
456         /* Release taskqueue_terminate(). */
457         queue->tq_callouts--;
458         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
459                 wakeup_one(queue->tq_threads);
460         return (1);
461 }
462
463 void
464 taskqueue_block(struct taskqueue *queue)
465 {
466
467         TQ_LOCK(queue);
468         queue->tq_flags |= TQ_FLAGS_BLOCKED;
469         TQ_UNLOCK(queue);
470 }
471
472 void
473 taskqueue_unblock(struct taskqueue *queue)
474 {
475
476         TQ_LOCK(queue);
477         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
478         if (!STAILQ_EMPTY(&queue->tq_queue))
479                 queue->tq_enqueue(queue->tq_context);
480         TQ_UNLOCK(queue);
481 }
482
483 static void
484 taskqueue_run_locked(struct taskqueue *queue)
485 {
486         struct epoch_tracker et;
487         struct taskqueue_busy tb;
488         struct task *task;
489         bool in_net_epoch;
490         int pending;
491
492         KASSERT(queue != NULL, ("tq is NULL"));
493         TQ_ASSERT_LOCKED(queue);
494         tb.tb_running = NULL;
495         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
496         in_net_epoch = false;
497
498         while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
499                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
500                 if (queue->tq_hint == task)
501                         queue->tq_hint = NULL;
502                 pending = task->ta_pending;
503                 task->ta_pending = 0;
504                 tb.tb_running = task;
505                 tb.tb_seq = ++queue->tq_seq;
506                 tb.tb_canceling = false;
507                 TQ_UNLOCK(queue);
508
509                 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
510                 if (!in_net_epoch && TASK_IS_NET(task)) {
511                         in_net_epoch = true;
512                         NET_EPOCH_ENTER(et);
513                 } else if (in_net_epoch && !TASK_IS_NET(task)) {
514                         NET_EPOCH_EXIT(et);
515                         in_net_epoch = false;
516                 }
517                 task->ta_func(task->ta_context, pending);
518
519                 TQ_LOCK(queue);
520                 wakeup(task);
521         }
522         if (in_net_epoch)
523                 NET_EPOCH_EXIT(et);
524         LIST_REMOVE(&tb, tb_link);
525 }
526
527 void
528 taskqueue_run(struct taskqueue *queue)
529 {
530
531         TQ_LOCK(queue);
532         taskqueue_run_locked(queue);
533         TQ_UNLOCK(queue);
534 }
535
536 /*
537  * Only use this function in single threaded contexts. It returns
538  * non-zero if the given task is either pending or running. Else the
539  * task is idle and can be queued again or freed.
540  */
541 int
542 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
543 {
544         int retval;
545
546         TQ_LOCK(queue);
547         retval = task->ta_pending > 0 || task_get_busy(queue, task) != NULL;
548         TQ_UNLOCK(queue);
549
550         return (retval);
551 }
552
553 static int
554 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
555     u_int *pendp)
556 {
557         struct taskqueue_busy *tb;
558         int retval = 0;
559
560         if (task->ta_pending > 0) {
561                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
562                 if (queue->tq_hint == task)
563                         queue->tq_hint = NULL;
564         }
565         if (pendp != NULL)
566                 *pendp = task->ta_pending;
567         task->ta_pending = 0;
568         tb = task_get_busy(queue, task);
569         if (tb != NULL) {
570                 tb->tb_canceling = true;
571                 retval = EBUSY;
572         }
573
574         return (retval);
575 }
576
577 int
578 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
579 {
580         int error;
581
582         TQ_LOCK(queue);
583         error = taskqueue_cancel_locked(queue, task, pendp);
584         TQ_UNLOCK(queue);
585
586         return (error);
587 }
588
589 int
590 taskqueue_cancel_timeout(struct taskqueue *queue,
591     struct timeout_task *timeout_task, u_int *pendp)
592 {
593         u_int pending, pending1;
594         int error;
595
596         TQ_LOCK(queue);
597         pending = !!(callout_stop(&timeout_task->c) > 0);
598         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
599         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
600                 timeout_task->f &= ~DT_CALLOUT_ARMED;
601                 queue->tq_callouts--;
602         }
603         TQ_UNLOCK(queue);
604
605         if (pendp != NULL)
606                 *pendp = pending + pending1;
607         return (error);
608 }
609
610 void
611 taskqueue_drain(struct taskqueue *queue, struct task *task)
612 {
613
614         if (!queue->tq_spin)
615                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
616
617         TQ_LOCK(queue);
618         while (task->ta_pending != 0 || task_get_busy(queue, task) != NULL)
619                 TQ_SLEEP(queue, task, "tq_drain");
620         TQ_UNLOCK(queue);
621 }
622
623 void
624 taskqueue_drain_all(struct taskqueue *queue)
625 {
626
627         if (!queue->tq_spin)
628                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
629
630         TQ_LOCK(queue);
631         (void)taskqueue_drain_tq_queue(queue);
632         (void)taskqueue_drain_tq_active(queue);
633         TQ_UNLOCK(queue);
634 }
635
636 void
637 taskqueue_drain_timeout(struct taskqueue *queue,
638     struct timeout_task *timeout_task)
639 {
640
641         /*
642          * Set flag to prevent timer from re-starting during drain:
643          */
644         TQ_LOCK(queue);
645         KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
646             ("Drain already in progress"));
647         timeout_task->f |= DT_DRAIN_IN_PROGRESS;
648         TQ_UNLOCK(queue);
649
650         callout_drain(&timeout_task->c);
651         taskqueue_drain(queue, &timeout_task->t);
652
653         /*
654          * Clear flag to allow timer to re-start:
655          */
656         TQ_LOCK(queue);
657         timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
658         TQ_UNLOCK(queue);
659 }
660
661 void
662 taskqueue_quiesce(struct taskqueue *queue)
663 {
664         int ret;
665
666         TQ_LOCK(queue);
667         do {
668                 ret = taskqueue_drain_tq_queue(queue);
669                 if (ret == 0)
670                         ret = taskqueue_drain_tq_active(queue);
671         } while (ret != 0);
672         TQ_UNLOCK(queue);
673 }
674
675 static void
676 taskqueue_swi_enqueue(void *context)
677 {
678         swi_sched(taskqueue_ih, 0);
679 }
680
681 static void
682 taskqueue_swi_run(void *dummy)
683 {
684         taskqueue_run(taskqueue_swi);
685 }
686
687 static void
688 taskqueue_swi_giant_enqueue(void *context)
689 {
690         swi_sched(taskqueue_giant_ih, 0);
691 }
692
693 static void
694 taskqueue_swi_giant_run(void *dummy)
695 {
696         taskqueue_run(taskqueue_swi_giant);
697 }
698
699 static int
700 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
701     cpuset_t *mask, struct proc *p, const char *name, va_list ap)
702 {
703         char ktname[MAXCOMLEN + 1];
704         struct thread *td;
705         struct taskqueue *tq;
706         int i, error;
707
708         if (count <= 0)
709                 return (EINVAL);
710
711         vsnprintf(ktname, sizeof(ktname), name, ap);
712         tq = *tqp;
713
714         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
715             M_NOWAIT | M_ZERO);
716         if (tq->tq_threads == NULL) {
717                 printf("%s: no memory for %s threads\n", __func__, ktname);
718                 return (ENOMEM);
719         }
720
721         for (i = 0; i < count; i++) {
722                 if (count == 1)
723                         error = kthread_add(taskqueue_thread_loop, tqp, p,
724                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
725                 else
726                         error = kthread_add(taskqueue_thread_loop, tqp, p,
727                             &tq->tq_threads[i], RFSTOPPED, 0,
728                             "%s_%d", ktname, i);
729                 if (error) {
730                         /* should be ok to continue, taskqueue_free will dtrt */
731                         printf("%s: kthread_add(%s): error %d", __func__,
732                             ktname, error);
733                         tq->tq_threads[i] = NULL;               /* paranoid */
734                 } else
735                         tq->tq_tcount++;
736         }
737         if (tq->tq_tcount == 0) {
738                 free(tq->tq_threads, M_TASKQUEUE);
739                 tq->tq_threads = NULL;
740                 return (ENOMEM);
741         }
742         for (i = 0; i < count; i++) {
743                 if (tq->tq_threads[i] == NULL)
744                         continue;
745                 td = tq->tq_threads[i];
746                 if (mask) {
747                         error = cpuset_setthread(td->td_tid, mask);
748                         /*
749                          * Failing to pin is rarely an actual fatal error;
750                          * it'll just affect performance.
751                          */
752                         if (error)
753                                 printf("%s: curthread=%llu: can't pin; "
754                                     "error=%d\n",
755                                     __func__,
756                                     (unsigned long long) td->td_tid,
757                                     error);
758                 }
759                 thread_lock(td);
760                 sched_prio(td, pri);
761                 sched_add(td, SRQ_BORING);
762         }
763
764         return (0);
765 }
766
767 int
768 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
769     const char *name, ...)
770 {
771         va_list ap;
772         int error;
773
774         va_start(ap, name);
775         error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
776         va_end(ap);
777         return (error);
778 }
779
780 int
781 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
782     struct proc *proc, const char *name, ...)
783 {
784         va_list ap;
785         int error;
786
787         va_start(ap, name);
788         error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
789         va_end(ap);
790         return (error);
791 }
792
793 int
794 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
795     cpuset_t *mask, const char *name, ...)
796 {
797         va_list ap;
798         int error;
799
800         va_start(ap, name);
801         error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
802         va_end(ap);
803         return (error);
804 }
805
806 static inline void
807 taskqueue_run_callback(struct taskqueue *tq,
808     enum taskqueue_callback_type cb_type)
809 {
810         taskqueue_callback_fn tq_callback;
811
812         TQ_ASSERT_UNLOCKED(tq);
813         tq_callback = tq->tq_callbacks[cb_type];
814         if (tq_callback != NULL)
815                 tq_callback(tq->tq_cb_contexts[cb_type]);
816 }
817
818 void
819 taskqueue_thread_loop(void *arg)
820 {
821         struct taskqueue **tqp, *tq;
822
823         tqp = arg;
824         tq = *tqp;
825         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
826         TQ_LOCK(tq);
827         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
828                 /* XXX ? */
829                 taskqueue_run_locked(tq);
830                 /*
831                  * Because taskqueue_run() can drop tq_mutex, we need to
832                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
833                  * meantime, which means we missed a wakeup.
834                  */
835                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
836                         break;
837                 TQ_SLEEP(tq, tq, "-");
838         }
839         taskqueue_run_locked(tq);
840         /*
841          * This thread is on its way out, so just drop the lock temporarily
842          * in order to call the shutdown callback.  This allows the callback
843          * to look at the taskqueue, even just before it dies.
844          */
845         TQ_UNLOCK(tq);
846         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
847         TQ_LOCK(tq);
848
849         /* rendezvous with thread that asked us to terminate */
850         tq->tq_tcount--;
851         wakeup_one(tq->tq_threads);
852         TQ_UNLOCK(tq);
853         kthread_exit();
854 }
855
856 void
857 taskqueue_thread_enqueue(void *context)
858 {
859         struct taskqueue **tqp, *tq;
860
861         tqp = context;
862         tq = *tqp;
863         wakeup_any(tq);
864 }
865
866 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
867                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
868                      INTR_MPSAFE, &taskqueue_ih));
869
870 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
871                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
872                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
873
874 TASKQUEUE_DEFINE_THREAD(thread);
875
876 struct taskqueue *
877 taskqueue_create_fast(const char *name, int mflags,
878                  taskqueue_enqueue_fn enqueue, void *context)
879 {
880         return _taskqueue_create(name, mflags, enqueue, context,
881                         MTX_SPIN, "fast_taskqueue");
882 }
883
884 static void     *taskqueue_fast_ih;
885
886 static void
887 taskqueue_fast_enqueue(void *context)
888 {
889         swi_sched(taskqueue_fast_ih, 0);
890 }
891
892 static void
893 taskqueue_fast_run(void *dummy)
894 {
895         taskqueue_run(taskqueue_fast);
896 }
897
898 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
899         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
900         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
901
902 int
903 taskqueue_member(struct taskqueue *queue, struct thread *td)
904 {
905         int i, j, ret = 0;
906
907         for (i = 0, j = 0; ; i++) {
908                 if (queue->tq_threads[i] == NULL)
909                         continue;
910                 if (queue->tq_threads[i] == td) {
911                         ret = 1;
912                         break;
913                 }
914                 if (++j >= queue->tq_tcount)
915                         break;
916         }
917         return (ret);
918 }