]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
Add a taskqueue_cancel(9) to cancel a pending task without waiting for
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/sched.h>
41 #include <sys/taskqueue.h>
42 #include <sys/unistd.h>
43 #include <machine/stdarg.h>
44
45 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
46 static void     *taskqueue_giant_ih;
47 static void     *taskqueue_ih;
48
49 struct taskqueue_busy {
50         struct task     *tb_running;
51         TAILQ_ENTRY(taskqueue_busy) tb_link;
52 };
53
54 struct taskqueue {
55         STAILQ_HEAD(, task)     tq_queue;
56         const char              *tq_name;
57         taskqueue_enqueue_fn    tq_enqueue;
58         void                    *tq_context;
59         TAILQ_HEAD(, taskqueue_busy) tq_active;
60         struct mtx              tq_mutex;
61         struct thread           **tq_threads;
62         int                     tq_tcount;
63         int                     tq_spin;
64         int                     tq_flags;
65 };
66
67 #define TQ_FLAGS_ACTIVE         (1 << 0)
68 #define TQ_FLAGS_BLOCKED        (1 << 1)
69 #define TQ_FLAGS_PENDING        (1 << 2)
70
71 static __inline void
72 TQ_LOCK(struct taskqueue *tq)
73 {
74         if (tq->tq_spin)
75                 mtx_lock_spin(&tq->tq_mutex);
76         else
77                 mtx_lock(&tq->tq_mutex);
78 }
79
80 static __inline void
81 TQ_UNLOCK(struct taskqueue *tq)
82 {
83         if (tq->tq_spin)
84                 mtx_unlock_spin(&tq->tq_mutex);
85         else
86                 mtx_unlock(&tq->tq_mutex);
87 }
88
89 static __inline int
90 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
91     int t)
92 {
93         if (tq->tq_spin)
94                 return (msleep_spin(p, m, wm, t));
95         return (msleep(p, m, pri, wm, t));
96 }
97
98 static struct taskqueue *
99 _taskqueue_create(const char *name, int mflags,
100                  taskqueue_enqueue_fn enqueue, void *context,
101                  int mtxflags, const char *mtxname)
102 {
103         struct taskqueue *queue;
104
105         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
106         if (!queue)
107                 return NULL;
108
109         STAILQ_INIT(&queue->tq_queue);
110         TAILQ_INIT(&queue->tq_active);
111         queue->tq_name = name;
112         queue->tq_enqueue = enqueue;
113         queue->tq_context = context;
114         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
115         queue->tq_flags |= TQ_FLAGS_ACTIVE;
116         mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
117
118         return queue;
119 }
120
121 struct taskqueue *
122 taskqueue_create(const char *name, int mflags,
123                  taskqueue_enqueue_fn enqueue, void *context)
124 {
125         return _taskqueue_create(name, mflags, enqueue, context,
126                         MTX_DEF, "taskqueue");
127 }
128
129 /*
130  * Signal a taskqueue thread to terminate.
131  */
132 static void
133 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
134 {
135
136         while (tq->tq_tcount > 0) {
137                 wakeup(tq);
138                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
139         }
140 }
141
142 void
143 taskqueue_free(struct taskqueue *queue)
144 {
145
146         TQ_LOCK(queue);
147         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
148         taskqueue_terminate(queue->tq_threads, queue);
149         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
150         mtx_destroy(&queue->tq_mutex);
151         free(queue->tq_threads, M_TASKQUEUE);
152         free(queue, M_TASKQUEUE);
153 }
154
155 int
156 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
157 {
158         struct task *ins;
159         struct task *prev;
160
161         TQ_LOCK(queue);
162
163         /*
164          * Count multiple enqueues.
165          */
166         if (task->ta_pending) {
167                 task->ta_pending++;
168                 TQ_UNLOCK(queue);
169                 return 0;
170         }
171
172         /*
173          * Optimise the case when all tasks have the same priority.
174          */
175         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
176         if (!prev || prev->ta_priority >= task->ta_priority) {
177                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
178         } else {
179                 prev = NULL;
180                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
181                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
182                         if (ins->ta_priority < task->ta_priority)
183                                 break;
184
185                 if (prev)
186                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
187                 else
188                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
189         }
190
191         task->ta_pending = 1;
192         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
193                 queue->tq_enqueue(queue->tq_context);
194         else
195                 queue->tq_flags |= TQ_FLAGS_PENDING;
196
197         TQ_UNLOCK(queue);
198
199         return 0;
200 }
201
202 void
203 taskqueue_block(struct taskqueue *queue)
204 {
205
206         TQ_LOCK(queue);
207         queue->tq_flags |= TQ_FLAGS_BLOCKED;
208         TQ_UNLOCK(queue);
209 }
210
211 void
212 taskqueue_unblock(struct taskqueue *queue)
213 {
214
215         TQ_LOCK(queue);
216         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
217         if (queue->tq_flags & TQ_FLAGS_PENDING) {
218                 queue->tq_flags &= ~TQ_FLAGS_PENDING;
219                 queue->tq_enqueue(queue->tq_context);
220         }
221         TQ_UNLOCK(queue);
222 }
223
224 static void
225 taskqueue_run_locked(struct taskqueue *queue)
226 {
227         struct taskqueue_busy tb;
228         struct task *task;
229         int pending;
230
231         mtx_assert(&queue->tq_mutex, MA_OWNED);
232         tb.tb_running = NULL;
233         TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
234
235         while (STAILQ_FIRST(&queue->tq_queue)) {
236                 /*
237                  * Carefully remove the first task from the queue and
238                  * zero its pending count.
239                  */
240                 task = STAILQ_FIRST(&queue->tq_queue);
241                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
242                 pending = task->ta_pending;
243                 task->ta_pending = 0;
244                 tb.tb_running = task;
245                 TQ_UNLOCK(queue);
246
247                 task->ta_func(task->ta_context, pending);
248
249                 TQ_LOCK(queue);
250                 tb.tb_running = NULL;
251                 wakeup(task);
252         }
253         TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
254 }
255
256 void
257 taskqueue_run(struct taskqueue *queue)
258 {
259
260         TQ_LOCK(queue);
261         taskqueue_run_locked(queue);
262         TQ_UNLOCK(queue);
263 }
264
265 static int
266 task_is_running(struct taskqueue *queue, struct task *task)
267 {
268         struct taskqueue_busy *tb;
269
270         mtx_assert(&queue->tq_mutex, MA_OWNED);
271         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
272                 if (tb->tb_running == task)
273                         return (1);
274         }
275         return (0);
276 }
277
278 int
279 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
280 {
281         u_int pending;
282         int error;
283
284         TQ_LOCK(queue);
285         if ((pending = task->ta_pending) > 0)
286                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
287         task->ta_pending = 0;
288         error = task_is_running(queue, task) ? EBUSY : 0;
289         TQ_UNLOCK(queue);
290
291         if (pendp != NULL)
292                 *pendp = pending;
293         return (error);
294 }
295
296 void
297 taskqueue_drain(struct taskqueue *queue, struct task *task)
298 {
299
300         if (!queue->tq_spin)
301                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
302
303         TQ_LOCK(queue);
304         while (task->ta_pending != 0 || task_is_running(queue, task))
305                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
306         TQ_UNLOCK(queue);
307 }
308
309 static void
310 taskqueue_swi_enqueue(void *context)
311 {
312         swi_sched(taskqueue_ih, 0);
313 }
314
315 static void
316 taskqueue_swi_run(void *dummy)
317 {
318         taskqueue_run(taskqueue_swi);
319 }
320
321 static void
322 taskqueue_swi_giant_enqueue(void *context)
323 {
324         swi_sched(taskqueue_giant_ih, 0);
325 }
326
327 static void
328 taskqueue_swi_giant_run(void *dummy)
329 {
330         taskqueue_run(taskqueue_swi_giant);
331 }
332
333 int
334 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
335                         const char *name, ...)
336 {
337         va_list ap;
338         struct thread *td;
339         struct taskqueue *tq;
340         int i, error;
341         char ktname[MAXCOMLEN + 1];
342
343         if (count <= 0)
344                 return (EINVAL);
345
346         tq = *tqp;
347
348         va_start(ap, name);
349         vsnprintf(ktname, sizeof(ktname), name, ap);
350         va_end(ap);
351
352         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
353             M_NOWAIT | M_ZERO);
354         if (tq->tq_threads == NULL) {
355                 printf("%s: no memory for %s threads\n", __func__, ktname);
356                 return (ENOMEM);
357         }
358
359         for (i = 0; i < count; i++) {
360                 if (count == 1)
361                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
362                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
363                 else
364                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
365                             &tq->tq_threads[i], RFSTOPPED, 0,
366                             "%s_%d", ktname, i);
367                 if (error) {
368                         /* should be ok to continue, taskqueue_free will dtrt */
369                         printf("%s: kthread_add(%s): error %d", __func__,
370                             ktname, error);
371                         tq->tq_threads[i] = NULL;               /* paranoid */
372                 } else
373                         tq->tq_tcount++;
374         }
375         for (i = 0; i < count; i++) {
376                 if (tq->tq_threads[i] == NULL)
377                         continue;
378                 td = tq->tq_threads[i];
379                 thread_lock(td);
380                 sched_prio(td, pri);
381                 sched_add(td, SRQ_BORING);
382                 thread_unlock(td);
383         }
384
385         return (0);
386 }
387
388 void
389 taskqueue_thread_loop(void *arg)
390 {
391         struct taskqueue **tqp, *tq;
392
393         tqp = arg;
394         tq = *tqp;
395         TQ_LOCK(tq);
396         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
397                 taskqueue_run_locked(tq);
398                 /*
399                  * Because taskqueue_run() can drop tq_mutex, we need to
400                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
401                  * meantime, which means we missed a wakeup.
402                  */
403                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
404                         break;
405                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
406         }
407         taskqueue_run_locked(tq);
408
409         /* rendezvous with thread that asked us to terminate */
410         tq->tq_tcount--;
411         wakeup_one(tq->tq_threads);
412         TQ_UNLOCK(tq);
413         kthread_exit();
414 }
415
416 void
417 taskqueue_thread_enqueue(void *context)
418 {
419         struct taskqueue **tqp, *tq;
420
421         tqp = context;
422         tq = *tqp;
423
424         mtx_assert(&tq->tq_mutex, MA_OWNED);
425         wakeup_one(tq);
426 }
427
428 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
429                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
430                      INTR_MPSAFE, &taskqueue_ih)); 
431
432 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
433                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
434                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 
435
436 TASKQUEUE_DEFINE_THREAD(thread);
437
438 struct taskqueue *
439 taskqueue_create_fast(const char *name, int mflags,
440                  taskqueue_enqueue_fn enqueue, void *context)
441 {
442         return _taskqueue_create(name, mflags, enqueue, context,
443                         MTX_SPIN, "fast_taskqueue");
444 }
445
446 /* NB: for backwards compatibility */
447 int
448 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
449 {
450         return taskqueue_enqueue(queue, task);
451 }
452
453 static void     *taskqueue_fast_ih;
454
455 static void
456 taskqueue_fast_enqueue(void *context)
457 {
458         swi_sched(taskqueue_fast_ih, 0);
459 }
460
461 static void
462 taskqueue_fast_run(void *dummy)
463 {
464         taskqueue_run(taskqueue_fast);
465 }
466
467 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
468         swi_add(NULL, "Fast task queue", taskqueue_fast_run, NULL,
469         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
470
471 int
472 taskqueue_member(struct taskqueue *queue, struct thread *td)
473 {
474         int i, j, ret = 0;
475
476         TQ_LOCK(queue);
477         for (i = 0, j = 0; ; i++) {
478                 if (queue->tq_threads[i] == NULL)
479                         continue;
480                 if (queue->tq_threads[i] == td) {
481                         ret = 1;
482                         break;
483                 }
484                 if (++j >= queue->tq_tcount)
485                         break;
486         }
487         TQ_UNLOCK(queue);
488         return (ret);
489 }