]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
Notable upstream pull request merges:
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/bus.h>
32 #include <sys/cpuset.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/libkern.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/epoch.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/taskqueue.h>
46 #include <sys/unistd.h>
47 #include <machine/stdarg.h>
48
49 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
50 static void     *taskqueue_giant_ih;
51 static void     *taskqueue_ih;
52 static void      taskqueue_fast_enqueue(void *);
53 static void      taskqueue_swi_enqueue(void *);
54 static void      taskqueue_swi_giant_enqueue(void *);
55
56 struct taskqueue_busy {
57         struct task             *tb_running;
58         u_int                    tb_seq;
59         bool                     tb_canceling;
60         LIST_ENTRY(taskqueue_busy) tb_link;
61 };
62
63 struct taskqueue {
64         STAILQ_HEAD(, task)     tq_queue;
65         LIST_HEAD(, taskqueue_busy) tq_active;
66         struct task             *tq_hint;
67         u_int                   tq_seq;
68         int                     tq_callouts;
69         struct mtx_padalign     tq_mutex;
70         taskqueue_enqueue_fn    tq_enqueue;
71         void                    *tq_context;
72         char                    *tq_name;
73         struct thread           **tq_threads;
74         int                     tq_tcount;
75         int                     tq_spin;
76         int                     tq_flags;
77         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
78         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
79 };
80
81 #define TQ_FLAGS_ACTIVE         (1 << 0)
82 #define TQ_FLAGS_BLOCKED        (1 << 1)
83 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
84
85 #define DT_CALLOUT_ARMED        (1 << 0)
86 #define DT_DRAIN_IN_PROGRESS    (1 << 1)
87
88 #define TQ_LOCK(tq)                                                     \
89         do {                                                            \
90                 if ((tq)->tq_spin)                                      \
91                         mtx_lock_spin(&(tq)->tq_mutex);                 \
92                 else                                                    \
93                         mtx_lock(&(tq)->tq_mutex);                      \
94         } while (0)
95 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
96
97 #define TQ_UNLOCK(tq)                                                   \
98         do {                                                            \
99                 if ((tq)->tq_spin)                                      \
100                         mtx_unlock_spin(&(tq)->tq_mutex);               \
101                 else                                                    \
102                         mtx_unlock(&(tq)->tq_mutex);                    \
103         } while (0)
104 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
105
106 void
107 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
108     int priority, task_fn_t func, void *context)
109 {
110
111         TASK_INIT(&timeout_task->t, priority, func, context);
112         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
113             CALLOUT_RETURNUNLOCKED);
114         timeout_task->q = queue;
115         timeout_task->f = 0;
116 }
117
118 static __inline int
119 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm)
120 {
121         if (tq->tq_spin)
122                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
123         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
124 }
125
126 static struct taskqueue_busy *
127 task_get_busy(struct taskqueue *queue, struct task *task)
128 {
129         struct taskqueue_busy *tb;
130
131         TQ_ASSERT_LOCKED(queue);
132         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
133                 if (tb->tb_running == task)
134                         return (tb);
135         }
136         return (NULL);
137 }
138
139 static struct taskqueue *
140 _taskqueue_create(const char *name, int mflags,
141                  taskqueue_enqueue_fn enqueue, void *context,
142                  int mtxflags, const char *mtxname __unused)
143 {
144         struct taskqueue *queue;
145         char *tq_name;
146
147         tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
148         if (tq_name == NULL)
149                 return (NULL);
150
151         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
152         if (queue == NULL) {
153                 free(tq_name, M_TASKQUEUE);
154                 return (NULL);
155         }
156
157         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
158
159         STAILQ_INIT(&queue->tq_queue);
160         LIST_INIT(&queue->tq_active);
161         queue->tq_enqueue = enqueue;
162         queue->tq_context = context;
163         queue->tq_name = tq_name;
164         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
165         queue->tq_flags |= TQ_FLAGS_ACTIVE;
166         if (enqueue == taskqueue_fast_enqueue ||
167             enqueue == taskqueue_swi_enqueue ||
168             enqueue == taskqueue_swi_giant_enqueue ||
169             enqueue == taskqueue_thread_enqueue)
170                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
171         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
172
173         return (queue);
174 }
175
176 struct taskqueue *
177 taskqueue_create(const char *name, int mflags,
178                  taskqueue_enqueue_fn enqueue, void *context)
179 {
180
181         return _taskqueue_create(name, mflags, enqueue, context,
182                         MTX_DEF, name);
183 }
184
185 void
186 taskqueue_set_callback(struct taskqueue *queue,
187     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
188     void *context)
189 {
190
191         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
192             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
193             ("Callback type %d not valid, must be %d-%d", cb_type,
194             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
195         KASSERT((queue->tq_callbacks[cb_type] == NULL),
196             ("Re-initialization of taskqueue callback?"));
197
198         queue->tq_callbacks[cb_type] = callback;
199         queue->tq_cb_contexts[cb_type] = context;
200 }
201
202 /*
203  * Signal a taskqueue thread to terminate.
204  */
205 static void
206 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
207 {
208
209         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
210                 wakeup(tq);
211                 TQ_SLEEP(tq, pp, "tq_destroy");
212         }
213 }
214
215 void
216 taskqueue_free(struct taskqueue *queue)
217 {
218
219         TQ_LOCK(queue);
220         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
221         taskqueue_terminate(queue->tq_threads, queue);
222         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
223         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
224         mtx_destroy(&queue->tq_mutex);
225         free(queue->tq_threads, M_TASKQUEUE);
226         free(queue->tq_name, M_TASKQUEUE);
227         free(queue, M_TASKQUEUE);
228 }
229
230 static int
231 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task, int flags)
232 {
233         struct task *ins;
234         struct task *prev;
235         struct taskqueue_busy *tb;
236
237         KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
238         /*
239          * Ignore canceling task if requested.
240          */
241         if (__predict_false((flags & TASKQUEUE_FAIL_IF_CANCELING) != 0)) {
242                 tb = task_get_busy(queue, task);
243                 if (tb != NULL && tb->tb_canceling) {
244                         TQ_UNLOCK(queue);
245                         return (ECANCELED);
246                 }
247         }
248
249         /*
250          * Count multiple enqueues.
251          */
252         if (task->ta_pending) {
253                 if (__predict_false((flags & TASKQUEUE_FAIL_IF_PENDING) != 0)) {
254                         TQ_UNLOCK(queue);
255                         return (EEXIST);
256                 }
257                 if (task->ta_pending < USHRT_MAX)
258                         task->ta_pending++;
259                 TQ_UNLOCK(queue);
260                 return (0);
261         }
262
263         /*
264          * Optimise cases when all tasks use small set of priorities.
265          * In case of only one priority we always insert at the end.
266          * In case of two tq_hint typically gives the insertion point.
267          * In case of more then two tq_hint should halve the search.
268          */
269         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
270         if (!prev || prev->ta_priority >= task->ta_priority) {
271                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
272         } else {
273                 prev = queue->tq_hint;
274                 if (prev && prev->ta_priority >= task->ta_priority) {
275                         ins = STAILQ_NEXT(prev, ta_link);
276                 } else {
277                         prev = NULL;
278                         ins = STAILQ_FIRST(&queue->tq_queue);
279                 }
280                 for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link))
281                         if (ins->ta_priority < task->ta_priority)
282                                 break;
283
284                 if (prev) {
285                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
286                         queue->tq_hint = task;
287                 } else
288                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
289         }
290
291         task->ta_pending = 1;
292         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
293                 TQ_UNLOCK(queue);
294         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
295                 queue->tq_enqueue(queue->tq_context);
296         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
297                 TQ_UNLOCK(queue);
298
299         /* Return with lock released. */
300         return (0);
301 }
302
303 int
304 taskqueue_enqueue_flags(struct taskqueue *queue, struct task *task, int flags)
305 {
306         int res;
307
308         TQ_LOCK(queue);
309         res = taskqueue_enqueue_locked(queue, task, flags);
310         /* The lock is released inside. */
311
312         return (res);
313 }
314
315 int
316 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
317 {
318         return (taskqueue_enqueue_flags(queue, task, 0));
319 }
320
321 static void
322 taskqueue_timeout_func(void *arg)
323 {
324         struct taskqueue *queue;
325         struct timeout_task *timeout_task;
326
327         timeout_task = arg;
328         queue = timeout_task->q;
329         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
330         timeout_task->f &= ~DT_CALLOUT_ARMED;
331         queue->tq_callouts--;
332         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t, 0);
333         /* The lock is released inside. */
334 }
335
336 int
337 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
338     struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
339 {
340         int res;
341
342         TQ_LOCK(queue);
343         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
344             ("Migrated queue"));
345         timeout_task->q = queue;
346         res = timeout_task->t.ta_pending;
347         if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
348                 /* Do nothing */
349                 TQ_UNLOCK(queue);
350                 res = -1;
351         } else if (sbt == 0) {
352                 taskqueue_enqueue_locked(queue, &timeout_task->t, 0);
353                 /* The lock is released inside. */
354         } else {
355                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
356                         res++;
357                 } else {
358                         queue->tq_callouts++;
359                         timeout_task->f |= DT_CALLOUT_ARMED;
360                         if (sbt < 0)
361                                 sbt = -sbt; /* Ignore overflow. */
362                 }
363                 if (sbt > 0) {
364                         if (queue->tq_spin)
365                                 flags |= C_DIRECT_EXEC;
366                         callout_reset_sbt(&timeout_task->c, sbt, pr,
367                             taskqueue_timeout_func, timeout_task, flags);
368                 }
369                 TQ_UNLOCK(queue);
370         }
371         return (res);
372 }
373
374 int
375 taskqueue_enqueue_timeout(struct taskqueue *queue,
376     struct timeout_task *ttask, int ticks)
377 {
378
379         return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
380             0, C_HARDCLOCK));
381 }
382
383 static void
384 taskqueue_task_nop_fn(void *context, int pending)
385 {
386 }
387
388 /*
389  * Block until all currently queued tasks in this taskqueue
390  * have begun execution.  Tasks queued during execution of
391  * this function are ignored.
392  */
393 static int
394 taskqueue_drain_tq_queue(struct taskqueue *queue)
395 {
396         struct task t_barrier;
397
398         if (STAILQ_EMPTY(&queue->tq_queue))
399                 return (0);
400
401         /*
402          * Enqueue our barrier after all current tasks, but with
403          * the highest priority so that newly queued tasks cannot
404          * pass it.  Because of the high priority, we can not use
405          * taskqueue_enqueue_locked directly (which drops the lock
406          * anyway) so just insert it at tail while we have the
407          * queue lock.
408          */
409         TASK_INIT(&t_barrier, UCHAR_MAX, taskqueue_task_nop_fn, &t_barrier);
410         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
411         queue->tq_hint = &t_barrier;
412         t_barrier.ta_pending = 1;
413
414         /*
415          * Once the barrier has executed, all previously queued tasks
416          * have completed or are currently executing.
417          */
418         while (t_barrier.ta_pending != 0)
419                 TQ_SLEEP(queue, &t_barrier, "tq_qdrain");
420         return (1);
421 }
422
423 /*
424  * Block until all currently executing tasks for this taskqueue
425  * complete.  Tasks that begin execution during the execution
426  * of this function are ignored.
427  */
428 static int
429 taskqueue_drain_tq_active(struct taskqueue *queue)
430 {
431         struct taskqueue_busy *tb;
432         u_int seq;
433
434         if (LIST_EMPTY(&queue->tq_active))
435                 return (0);
436
437         /* Block taskq_terminate().*/
438         queue->tq_callouts++;
439
440         /* Wait for any active task with sequence from the past. */
441         seq = queue->tq_seq;
442 restart:
443         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
444                 if ((int)(tb->tb_seq - seq) <= 0) {
445                         TQ_SLEEP(queue, tb->tb_running, "tq_adrain");
446                         goto restart;
447                 }
448         }
449
450         /* Release taskqueue_terminate(). */
451         queue->tq_callouts--;
452         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
453                 wakeup_one(queue->tq_threads);
454         return (1);
455 }
456
457 void
458 taskqueue_block(struct taskqueue *queue)
459 {
460
461         TQ_LOCK(queue);
462         queue->tq_flags |= TQ_FLAGS_BLOCKED;
463         TQ_UNLOCK(queue);
464 }
465
466 void
467 taskqueue_unblock(struct taskqueue *queue)
468 {
469
470         TQ_LOCK(queue);
471         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
472         if (!STAILQ_EMPTY(&queue->tq_queue))
473                 queue->tq_enqueue(queue->tq_context);
474         TQ_UNLOCK(queue);
475 }
476
477 static void
478 taskqueue_run_locked(struct taskqueue *queue)
479 {
480         struct epoch_tracker et;
481         struct taskqueue_busy tb;
482         struct task *task;
483         bool in_net_epoch;
484         int pending;
485
486         KASSERT(queue != NULL, ("tq is NULL"));
487         TQ_ASSERT_LOCKED(queue);
488         tb.tb_running = NULL;
489         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
490         in_net_epoch = false;
491
492         while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
493                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
494                 if (queue->tq_hint == task)
495                         queue->tq_hint = NULL;
496                 pending = task->ta_pending;
497                 task->ta_pending = 0;
498                 tb.tb_running = task;
499                 tb.tb_seq = ++queue->tq_seq;
500                 tb.tb_canceling = false;
501                 TQ_UNLOCK(queue);
502
503                 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
504                 if (!in_net_epoch && TASK_IS_NET(task)) {
505                         in_net_epoch = true;
506                         NET_EPOCH_ENTER(et);
507                 } else if (in_net_epoch && !TASK_IS_NET(task)) {
508                         NET_EPOCH_EXIT(et);
509                         in_net_epoch = false;
510                 }
511                 task->ta_func(task->ta_context, pending);
512
513                 TQ_LOCK(queue);
514                 wakeup(task);
515         }
516         if (in_net_epoch)
517                 NET_EPOCH_EXIT(et);
518         LIST_REMOVE(&tb, tb_link);
519 }
520
521 void
522 taskqueue_run(struct taskqueue *queue)
523 {
524
525         TQ_LOCK(queue);
526         taskqueue_run_locked(queue);
527         TQ_UNLOCK(queue);
528 }
529
530 /*
531  * Only use this function in single threaded contexts. It returns
532  * non-zero if the given task is either pending or running. Else the
533  * task is idle and can be queued again or freed.
534  */
535 int
536 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
537 {
538         int retval;
539
540         TQ_LOCK(queue);
541         retval = task->ta_pending > 0 || task_get_busy(queue, task) != NULL;
542         TQ_UNLOCK(queue);
543
544         return (retval);
545 }
546
547 static int
548 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
549     u_int *pendp)
550 {
551         struct taskqueue_busy *tb;
552         int retval = 0;
553
554         if (task->ta_pending > 0) {
555                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
556                 if (queue->tq_hint == task)
557                         queue->tq_hint = NULL;
558         }
559         if (pendp != NULL)
560                 *pendp = task->ta_pending;
561         task->ta_pending = 0;
562         tb = task_get_busy(queue, task);
563         if (tb != NULL) {
564                 tb->tb_canceling = true;
565                 retval = EBUSY;
566         }
567
568         return (retval);
569 }
570
571 int
572 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
573 {
574         int error;
575
576         TQ_LOCK(queue);
577         error = taskqueue_cancel_locked(queue, task, pendp);
578         TQ_UNLOCK(queue);
579
580         return (error);
581 }
582
583 int
584 taskqueue_cancel_timeout(struct taskqueue *queue,
585     struct timeout_task *timeout_task, u_int *pendp)
586 {
587         u_int pending, pending1;
588         int error;
589
590         TQ_LOCK(queue);
591         pending = !!(callout_stop(&timeout_task->c) > 0);
592         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
593         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
594                 timeout_task->f &= ~DT_CALLOUT_ARMED;
595                 queue->tq_callouts--;
596         }
597         TQ_UNLOCK(queue);
598
599         if (pendp != NULL)
600                 *pendp = pending + pending1;
601         return (error);
602 }
603
604 void
605 taskqueue_drain(struct taskqueue *queue, struct task *task)
606 {
607
608         if (!queue->tq_spin)
609                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
610
611         TQ_LOCK(queue);
612         while (task->ta_pending != 0 || task_get_busy(queue, task) != NULL)
613                 TQ_SLEEP(queue, task, "tq_drain");
614         TQ_UNLOCK(queue);
615 }
616
617 void
618 taskqueue_drain_all(struct taskqueue *queue)
619 {
620
621         if (!queue->tq_spin)
622                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
623
624         TQ_LOCK(queue);
625         (void)taskqueue_drain_tq_queue(queue);
626         (void)taskqueue_drain_tq_active(queue);
627         TQ_UNLOCK(queue);
628 }
629
630 void
631 taskqueue_drain_timeout(struct taskqueue *queue,
632     struct timeout_task *timeout_task)
633 {
634
635         /*
636          * Set flag to prevent timer from re-starting during drain:
637          */
638         TQ_LOCK(queue);
639         KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
640             ("Drain already in progress"));
641         timeout_task->f |= DT_DRAIN_IN_PROGRESS;
642         TQ_UNLOCK(queue);
643
644         callout_drain(&timeout_task->c);
645         taskqueue_drain(queue, &timeout_task->t);
646
647         /*
648          * Clear flag to allow timer to re-start:
649          */
650         TQ_LOCK(queue);
651         timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
652         TQ_UNLOCK(queue);
653 }
654
655 void
656 taskqueue_quiesce(struct taskqueue *queue)
657 {
658         int ret;
659
660         TQ_LOCK(queue);
661         do {
662                 ret = taskqueue_drain_tq_queue(queue);
663                 if (ret == 0)
664                         ret = taskqueue_drain_tq_active(queue);
665         } while (ret != 0);
666         TQ_UNLOCK(queue);
667 }
668
669 static void
670 taskqueue_swi_enqueue(void *context)
671 {
672         swi_sched(taskqueue_ih, 0);
673 }
674
675 static void
676 taskqueue_swi_run(void *dummy)
677 {
678         taskqueue_run(taskqueue_swi);
679 }
680
681 static void
682 taskqueue_swi_giant_enqueue(void *context)
683 {
684         swi_sched(taskqueue_giant_ih, 0);
685 }
686
687 static void
688 taskqueue_swi_giant_run(void *dummy)
689 {
690         taskqueue_run(taskqueue_swi_giant);
691 }
692
693 static int
694 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
695     cpuset_t *mask, struct proc *p, const char *name, va_list ap)
696 {
697         char ktname[MAXCOMLEN + 1];
698         struct thread *td;
699         struct taskqueue *tq;
700         int i, error;
701
702         if (count <= 0)
703                 return (EINVAL);
704
705         vsnprintf(ktname, sizeof(ktname), name, ap);
706         tq = *tqp;
707
708         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
709             M_NOWAIT | M_ZERO);
710         if (tq->tq_threads == NULL) {
711                 printf("%s: no memory for %s threads\n", __func__, ktname);
712                 return (ENOMEM);
713         }
714
715         for (i = 0; i < count; i++) {
716                 if (count == 1)
717                         error = kthread_add(taskqueue_thread_loop, tqp, p,
718                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
719                 else
720                         error = kthread_add(taskqueue_thread_loop, tqp, p,
721                             &tq->tq_threads[i], RFSTOPPED, 0,
722                             "%s_%d", ktname, i);
723                 if (error) {
724                         /* should be ok to continue, taskqueue_free will dtrt */
725                         printf("%s: kthread_add(%s): error %d", __func__,
726                             ktname, error);
727                         tq->tq_threads[i] = NULL;               /* paranoid */
728                 } else
729                         tq->tq_tcount++;
730         }
731         if (tq->tq_tcount == 0) {
732                 free(tq->tq_threads, M_TASKQUEUE);
733                 tq->tq_threads = NULL;
734                 return (ENOMEM);
735         }
736         for (i = 0; i < count; i++) {
737                 if (tq->tq_threads[i] == NULL)
738                         continue;
739                 td = tq->tq_threads[i];
740                 if (mask) {
741                         error = cpuset_setthread(td->td_tid, mask);
742                         /*
743                          * Failing to pin is rarely an actual fatal error;
744                          * it'll just affect performance.
745                          */
746                         if (error)
747                                 printf("%s: curthread=%llu: can't pin; "
748                                     "error=%d\n",
749                                     __func__,
750                                     (unsigned long long) td->td_tid,
751                                     error);
752                 }
753                 thread_lock(td);
754                 sched_prio(td, pri);
755                 sched_add(td, SRQ_BORING);
756         }
757
758         return (0);
759 }
760
761 int
762 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
763     const char *name, ...)
764 {
765         va_list ap;
766         int error;
767
768         va_start(ap, name);
769         error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
770         va_end(ap);
771         return (error);
772 }
773
774 int
775 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
776     struct proc *proc, const char *name, ...)
777 {
778         va_list ap;
779         int error;
780
781         va_start(ap, name);
782         error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
783         va_end(ap);
784         return (error);
785 }
786
787 int
788 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
789     cpuset_t *mask, const char *name, ...)
790 {
791         va_list ap;
792         int error;
793
794         va_start(ap, name);
795         error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
796         va_end(ap);
797         return (error);
798 }
799
800 static inline void
801 taskqueue_run_callback(struct taskqueue *tq,
802     enum taskqueue_callback_type cb_type)
803 {
804         taskqueue_callback_fn tq_callback;
805
806         TQ_ASSERT_UNLOCKED(tq);
807         tq_callback = tq->tq_callbacks[cb_type];
808         if (tq_callback != NULL)
809                 tq_callback(tq->tq_cb_contexts[cb_type]);
810 }
811
812 void
813 taskqueue_thread_loop(void *arg)
814 {
815         struct taskqueue **tqp, *tq;
816
817         tqp = arg;
818         tq = *tqp;
819         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
820         TQ_LOCK(tq);
821         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
822                 /* XXX ? */
823                 taskqueue_run_locked(tq);
824                 /*
825                  * Because taskqueue_run() can drop tq_mutex, we need to
826                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
827                  * meantime, which means we missed a wakeup.
828                  */
829                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
830                         break;
831                 TQ_SLEEP(tq, tq, "-");
832         }
833         taskqueue_run_locked(tq);
834         /*
835          * This thread is on its way out, so just drop the lock temporarily
836          * in order to call the shutdown callback.  This allows the callback
837          * to look at the taskqueue, even just before it dies.
838          */
839         TQ_UNLOCK(tq);
840         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
841         TQ_LOCK(tq);
842
843         /* rendezvous with thread that asked us to terminate */
844         tq->tq_tcount--;
845         wakeup_one(tq->tq_threads);
846         TQ_UNLOCK(tq);
847         kthread_exit();
848 }
849
850 void
851 taskqueue_thread_enqueue(void *context)
852 {
853         struct taskqueue **tqp, *tq;
854
855         tqp = context;
856         tq = *tqp;
857         wakeup_any(tq);
858 }
859
860 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
861                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
862                      INTR_MPSAFE, &taskqueue_ih));
863
864 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
865                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
866                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
867
868 TASKQUEUE_DEFINE_THREAD(thread);
869
870 struct taskqueue *
871 taskqueue_create_fast(const char *name, int mflags,
872                  taskqueue_enqueue_fn enqueue, void *context)
873 {
874         return _taskqueue_create(name, mflags, enqueue, context,
875                         MTX_SPIN, "fast_taskqueue");
876 }
877
878 static void     *taskqueue_fast_ih;
879
880 static void
881 taskqueue_fast_enqueue(void *context)
882 {
883         swi_sched(taskqueue_fast_ih, 0);
884 }
885
886 static void
887 taskqueue_fast_run(void *dummy)
888 {
889         taskqueue_run(taskqueue_fast);
890 }
891
892 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
893         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
894         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
895
896 int
897 taskqueue_member(struct taskqueue *queue, struct thread *td)
898 {
899         int i, j, ret = 0;
900
901         for (i = 0, j = 0; ; i++) {
902                 if (queue->tq_threads[i] == NULL)
903                         continue;
904                 if (queue->tq_threads[i] == td) {
905                         ret = 1;
906                         break;
907                 }
908                 if (++j >= queue->tq_tcount)
909                         break;
910         }
911         return (ret);
912 }