]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
zfs: merge openzfs/zfs@92e0d9d18 (zfs-2.1-release) into stable/13
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/kthread.h>
39 #include <sys/libkern.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/epoch.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/taskqueue.h>
49 #include <sys/unistd.h>
50 #include <machine/stdarg.h>
51
52 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
53 static void     *taskqueue_giant_ih;
54 static void     *taskqueue_ih;
55 static void      taskqueue_fast_enqueue(void *);
56 static void      taskqueue_swi_enqueue(void *);
57 static void      taskqueue_swi_giant_enqueue(void *);
58
59 struct taskqueue_busy {
60         struct task             *tb_running;
61         u_int                    tb_seq;
62         bool                     tb_canceling;
63         LIST_ENTRY(taskqueue_busy) tb_link;
64 };
65
66 struct taskqueue {
67         STAILQ_HEAD(, task)     tq_queue;
68         LIST_HEAD(, taskqueue_busy) tq_active;
69         struct task             *tq_hint;
70         u_int                   tq_seq;
71         int                     tq_callouts;
72         struct mtx_padalign     tq_mutex;
73         taskqueue_enqueue_fn    tq_enqueue;
74         void                    *tq_context;
75         char                    *tq_name;
76         struct thread           **tq_threads;
77         int                     tq_tcount;
78         int                     tq_spin;
79         int                     tq_flags;
80         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
81         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
82 };
83
84 #define TQ_FLAGS_ACTIVE         (1 << 0)
85 #define TQ_FLAGS_BLOCKED        (1 << 1)
86 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
87
88 #define DT_CALLOUT_ARMED        (1 << 0)
89 #define DT_DRAIN_IN_PROGRESS    (1 << 1)
90
91 #define TQ_LOCK(tq)                                                     \
92         do {                                                            \
93                 if ((tq)->tq_spin)                                      \
94                         mtx_lock_spin(&(tq)->tq_mutex);                 \
95                 else                                                    \
96                         mtx_lock(&(tq)->tq_mutex);                      \
97         } while (0)
98 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
99
100 #define TQ_UNLOCK(tq)                                                   \
101         do {                                                            \
102                 if ((tq)->tq_spin)                                      \
103                         mtx_unlock_spin(&(tq)->tq_mutex);               \
104                 else                                                    \
105                         mtx_unlock(&(tq)->tq_mutex);                    \
106         } while (0)
107 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
108
109 void
110 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
111     int priority, task_fn_t func, void *context)
112 {
113
114         TASK_INIT(&timeout_task->t, priority, func, context);
115         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
116             CALLOUT_RETURNUNLOCKED);
117         timeout_task->q = queue;
118         timeout_task->f = 0;
119 }
120
121 static __inline int
122 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm)
123 {
124         if (tq->tq_spin)
125                 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
126         return (msleep(p, &tq->tq_mutex, 0, wm, 0));
127 }
128
129 static struct taskqueue_busy *
130 task_get_busy(struct taskqueue *queue, struct task *task)
131 {
132         struct taskqueue_busy *tb;
133
134         TQ_ASSERT_LOCKED(queue);
135         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
136                 if (tb->tb_running == task)
137                         return (tb);
138         }
139         return (NULL);
140 }
141
142 static struct taskqueue *
143 _taskqueue_create(const char *name, int mflags,
144                  taskqueue_enqueue_fn enqueue, void *context,
145                  int mtxflags, const char *mtxname __unused)
146 {
147         struct taskqueue *queue;
148         char *tq_name;
149
150         tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
151         if (tq_name == NULL)
152                 return (NULL);
153
154         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
155         if (queue == NULL) {
156                 free(tq_name, M_TASKQUEUE);
157                 return (NULL);
158         }
159
160         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
161
162         STAILQ_INIT(&queue->tq_queue);
163         LIST_INIT(&queue->tq_active);
164         queue->tq_enqueue = enqueue;
165         queue->tq_context = context;
166         queue->tq_name = tq_name;
167         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
168         queue->tq_flags |= TQ_FLAGS_ACTIVE;
169         if (enqueue == taskqueue_fast_enqueue ||
170             enqueue == taskqueue_swi_enqueue ||
171             enqueue == taskqueue_swi_giant_enqueue ||
172             enqueue == taskqueue_thread_enqueue)
173                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
174         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
175
176         return (queue);
177 }
178
179 struct taskqueue *
180 taskqueue_create(const char *name, int mflags,
181                  taskqueue_enqueue_fn enqueue, void *context)
182 {
183
184         return _taskqueue_create(name, mflags, enqueue, context,
185                         MTX_DEF, name);
186 }
187
188 void
189 taskqueue_set_callback(struct taskqueue *queue,
190     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
191     void *context)
192 {
193
194         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
195             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
196             ("Callback type %d not valid, must be %d-%d", cb_type,
197             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
198         KASSERT((queue->tq_callbacks[cb_type] == NULL),
199             ("Re-initialization of taskqueue callback?"));
200
201         queue->tq_callbacks[cb_type] = callback;
202         queue->tq_cb_contexts[cb_type] = context;
203 }
204
205 /*
206  * Signal a taskqueue thread to terminate.
207  */
208 static void
209 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
210 {
211
212         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
213                 wakeup(tq);
214                 TQ_SLEEP(tq, pp, "tq_destroy");
215         }
216 }
217
218 void
219 taskqueue_free(struct taskqueue *queue)
220 {
221
222         TQ_LOCK(queue);
223         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
224         taskqueue_terminate(queue->tq_threads, queue);
225         KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
226         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
227         mtx_destroy(&queue->tq_mutex);
228         free(queue->tq_threads, M_TASKQUEUE);
229         free(queue->tq_name, M_TASKQUEUE);
230         free(queue, M_TASKQUEUE);
231 }
232
233 static int
234 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task, int flags)
235 {
236         struct task *ins;
237         struct task *prev;
238         struct taskqueue_busy *tb;
239
240         KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
241         /*
242          * Ignore canceling task if requested.
243          */
244         if (__predict_false((flags & TASKQUEUE_FAIL_IF_CANCELING) != 0)) {
245                 tb = task_get_busy(queue, task);
246                 if (tb != NULL && tb->tb_canceling) {
247                         TQ_UNLOCK(queue);
248                         return (ECANCELED);
249                 }
250         }
251
252         /*
253          * Count multiple enqueues.
254          */
255         if (task->ta_pending) {
256                 if (__predict_false((flags & TASKQUEUE_FAIL_IF_PENDING) != 0)) {
257                         TQ_UNLOCK(queue);
258                         return (EEXIST);
259                 }
260                 if (task->ta_pending < USHRT_MAX)
261                         task->ta_pending++;
262                 TQ_UNLOCK(queue);
263                 return (0);
264         }
265
266         /*
267          * Optimise cases when all tasks use small set of priorities.
268          * In case of only one priority we always insert at the end.
269          * In case of two tq_hint typically gives the insertion point.
270          * In case of more then two tq_hint should halve the search.
271          */
272         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
273         if (!prev || prev->ta_priority >= task->ta_priority) {
274                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
275         } else {
276                 prev = queue->tq_hint;
277                 if (prev && prev->ta_priority >= task->ta_priority) {
278                         ins = STAILQ_NEXT(prev, ta_link);
279                 } else {
280                         prev = NULL;
281                         ins = STAILQ_FIRST(&queue->tq_queue);
282                 }
283                 for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link))
284                         if (ins->ta_priority < task->ta_priority)
285                                 break;
286
287                 if (prev) {
288                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
289                         queue->tq_hint = task;
290                 } else
291                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
292         }
293
294         task->ta_pending = 1;
295         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
296                 TQ_UNLOCK(queue);
297         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
298                 queue->tq_enqueue(queue->tq_context);
299         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
300                 TQ_UNLOCK(queue);
301
302         /* Return with lock released. */
303         return (0);
304 }
305
306 int
307 taskqueue_enqueue_flags(struct taskqueue *queue, struct task *task, int flags)
308 {
309         int res;
310
311         TQ_LOCK(queue);
312         res = taskqueue_enqueue_locked(queue, task, flags);
313         /* The lock is released inside. */
314
315         return (res);
316 }
317
318 int
319 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
320 {
321         return (taskqueue_enqueue_flags(queue, task, 0));
322 }
323
324 static void
325 taskqueue_timeout_func(void *arg)
326 {
327         struct taskqueue *queue;
328         struct timeout_task *timeout_task;
329
330         timeout_task = arg;
331         queue = timeout_task->q;
332         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
333         timeout_task->f &= ~DT_CALLOUT_ARMED;
334         queue->tq_callouts--;
335         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t, 0);
336         /* The lock is released inside. */
337 }
338
339 int
340 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
341     struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
342 {
343         int res;
344
345         TQ_LOCK(queue);
346         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
347             ("Migrated queue"));
348         timeout_task->q = queue;
349         res = timeout_task->t.ta_pending;
350         if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
351                 /* Do nothing */
352                 TQ_UNLOCK(queue);
353                 res = -1;
354         } else if (sbt == 0) {
355                 taskqueue_enqueue_locked(queue, &timeout_task->t, 0);
356                 /* The lock is released inside. */
357         } else {
358                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
359                         res++;
360                 } else {
361                         queue->tq_callouts++;
362                         timeout_task->f |= DT_CALLOUT_ARMED;
363                         if (sbt < 0)
364                                 sbt = -sbt; /* Ignore overflow. */
365                 }
366                 if (sbt > 0) {
367                         if (queue->tq_spin)
368                                 flags |= C_DIRECT_EXEC;
369                         callout_reset_sbt(&timeout_task->c, sbt, pr,
370                             taskqueue_timeout_func, timeout_task, flags);
371                 }
372                 TQ_UNLOCK(queue);
373         }
374         return (res);
375 }
376
377 int
378 taskqueue_enqueue_timeout(struct taskqueue *queue,
379     struct timeout_task *ttask, int ticks)
380 {
381
382         return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
383             0, C_HARDCLOCK));
384 }
385
386 static void
387 taskqueue_task_nop_fn(void *context, int pending)
388 {
389 }
390
391 /*
392  * Block until all currently queued tasks in this taskqueue
393  * have begun execution.  Tasks queued during execution of
394  * this function are ignored.
395  */
396 static int
397 taskqueue_drain_tq_queue(struct taskqueue *queue)
398 {
399         struct task t_barrier;
400
401         if (STAILQ_EMPTY(&queue->tq_queue))
402                 return (0);
403
404         /*
405          * Enqueue our barrier after all current tasks, but with
406          * the highest priority so that newly queued tasks cannot
407          * pass it.  Because of the high priority, we can not use
408          * taskqueue_enqueue_locked directly (which drops the lock
409          * anyway) so just insert it at tail while we have the
410          * queue lock.
411          */
412         TASK_INIT(&t_barrier, UCHAR_MAX, taskqueue_task_nop_fn, &t_barrier);
413         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
414         queue->tq_hint = &t_barrier;
415         t_barrier.ta_pending = 1;
416
417         /*
418          * Once the barrier has executed, all previously queued tasks
419          * have completed or are currently executing.
420          */
421         while (t_barrier.ta_pending != 0)
422                 TQ_SLEEP(queue, &t_barrier, "tq_qdrain");
423         return (1);
424 }
425
426 /*
427  * Block until all currently executing tasks for this taskqueue
428  * complete.  Tasks that begin execution during the execution
429  * of this function are ignored.
430  */
431 static int
432 taskqueue_drain_tq_active(struct taskqueue *queue)
433 {
434         struct taskqueue_busy *tb;
435         u_int seq;
436
437         if (LIST_EMPTY(&queue->tq_active))
438                 return (0);
439
440         /* Block taskq_terminate().*/
441         queue->tq_callouts++;
442
443         /* Wait for any active task with sequence from the past. */
444         seq = queue->tq_seq;
445 restart:
446         LIST_FOREACH(tb, &queue->tq_active, tb_link) {
447                 if ((int)(tb->tb_seq - seq) <= 0) {
448                         TQ_SLEEP(queue, tb->tb_running, "tq_adrain");
449                         goto restart;
450                 }
451         }
452
453         /* Release taskqueue_terminate(). */
454         queue->tq_callouts--;
455         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
456                 wakeup_one(queue->tq_threads);
457         return (1);
458 }
459
460 void
461 taskqueue_block(struct taskqueue *queue)
462 {
463
464         TQ_LOCK(queue);
465         queue->tq_flags |= TQ_FLAGS_BLOCKED;
466         TQ_UNLOCK(queue);
467 }
468
469 void
470 taskqueue_unblock(struct taskqueue *queue)
471 {
472
473         TQ_LOCK(queue);
474         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
475         if (!STAILQ_EMPTY(&queue->tq_queue))
476                 queue->tq_enqueue(queue->tq_context);
477         TQ_UNLOCK(queue);
478 }
479
480 static void
481 taskqueue_run_locked(struct taskqueue *queue)
482 {
483         struct epoch_tracker et;
484         struct taskqueue_busy tb;
485         struct task *task;
486         bool in_net_epoch;
487         int pending;
488
489         KASSERT(queue != NULL, ("tq is NULL"));
490         TQ_ASSERT_LOCKED(queue);
491         tb.tb_running = NULL;
492         LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
493         in_net_epoch = false;
494
495         while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
496                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
497                 if (queue->tq_hint == task)
498                         queue->tq_hint = NULL;
499                 pending = task->ta_pending;
500                 task->ta_pending = 0;
501                 tb.tb_running = task;
502                 tb.tb_seq = ++queue->tq_seq;
503                 tb.tb_canceling = false;
504                 TQ_UNLOCK(queue);
505
506                 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
507                 if (!in_net_epoch && TASK_IS_NET(task)) {
508                         in_net_epoch = true;
509                         NET_EPOCH_ENTER(et);
510                 } else if (in_net_epoch && !TASK_IS_NET(task)) {
511                         NET_EPOCH_EXIT(et);
512                         in_net_epoch = false;
513                 }
514                 task->ta_func(task->ta_context, pending);
515
516                 TQ_LOCK(queue);
517                 wakeup(task);
518         }
519         if (in_net_epoch)
520                 NET_EPOCH_EXIT(et);
521         LIST_REMOVE(&tb, tb_link);
522 }
523
524 void
525 taskqueue_run(struct taskqueue *queue)
526 {
527
528         TQ_LOCK(queue);
529         taskqueue_run_locked(queue);
530         TQ_UNLOCK(queue);
531 }
532
533 /*
534  * Only use this function in single threaded contexts. It returns
535  * non-zero if the given task is either pending or running. Else the
536  * task is idle and can be queued again or freed.
537  */
538 int
539 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
540 {
541         int retval;
542
543         TQ_LOCK(queue);
544         retval = task->ta_pending > 0 || task_get_busy(queue, task) != NULL;
545         TQ_UNLOCK(queue);
546
547         return (retval);
548 }
549
550 static int
551 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
552     u_int *pendp)
553 {
554         struct taskqueue_busy *tb;
555         int retval = 0;
556
557         if (task->ta_pending > 0) {
558                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
559                 if (queue->tq_hint == task)
560                         queue->tq_hint = NULL;
561         }
562         if (pendp != NULL)
563                 *pendp = task->ta_pending;
564         task->ta_pending = 0;
565         tb = task_get_busy(queue, task);
566         if (tb != NULL) {
567                 tb->tb_canceling = true;
568                 retval = EBUSY;
569         }
570
571         return (retval);
572 }
573
574 int
575 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
576 {
577         int error;
578
579         TQ_LOCK(queue);
580         error = taskqueue_cancel_locked(queue, task, pendp);
581         TQ_UNLOCK(queue);
582
583         return (error);
584 }
585
586 int
587 taskqueue_cancel_timeout(struct taskqueue *queue,
588     struct timeout_task *timeout_task, u_int *pendp)
589 {
590         u_int pending, pending1;
591         int error;
592
593         TQ_LOCK(queue);
594         pending = !!(callout_stop(&timeout_task->c) > 0);
595         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
596         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
597                 timeout_task->f &= ~DT_CALLOUT_ARMED;
598                 queue->tq_callouts--;
599         }
600         TQ_UNLOCK(queue);
601
602         if (pendp != NULL)
603                 *pendp = pending + pending1;
604         return (error);
605 }
606
607 void
608 taskqueue_drain(struct taskqueue *queue, struct task *task)
609 {
610
611         if (!queue->tq_spin)
612                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
613
614         TQ_LOCK(queue);
615         while (task->ta_pending != 0 || task_get_busy(queue, task) != NULL)
616                 TQ_SLEEP(queue, task, "tq_drain");
617         TQ_UNLOCK(queue);
618 }
619
620 void
621 taskqueue_drain_all(struct taskqueue *queue)
622 {
623
624         if (!queue->tq_spin)
625                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
626
627         TQ_LOCK(queue);
628         (void)taskqueue_drain_tq_queue(queue);
629         (void)taskqueue_drain_tq_active(queue);
630         TQ_UNLOCK(queue);
631 }
632
633 void
634 taskqueue_drain_timeout(struct taskqueue *queue,
635     struct timeout_task *timeout_task)
636 {
637
638         /*
639          * Set flag to prevent timer from re-starting during drain:
640          */
641         TQ_LOCK(queue);
642         KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
643             ("Drain already in progress"));
644         timeout_task->f |= DT_DRAIN_IN_PROGRESS;
645         TQ_UNLOCK(queue);
646
647         callout_drain(&timeout_task->c);
648         taskqueue_drain(queue, &timeout_task->t);
649
650         /*
651          * Clear flag to allow timer to re-start:
652          */
653         TQ_LOCK(queue);
654         timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
655         TQ_UNLOCK(queue);
656 }
657
658 void
659 taskqueue_quiesce(struct taskqueue *queue)
660 {
661         int ret;
662
663         TQ_LOCK(queue);
664         do {
665                 ret = taskqueue_drain_tq_queue(queue);
666                 if (ret == 0)
667                         ret = taskqueue_drain_tq_active(queue);
668         } while (ret != 0);
669         TQ_UNLOCK(queue);
670 }
671
672 static void
673 taskqueue_swi_enqueue(void *context)
674 {
675         swi_sched(taskqueue_ih, 0);
676 }
677
678 static void
679 taskqueue_swi_run(void *dummy)
680 {
681         taskqueue_run(taskqueue_swi);
682 }
683
684 static void
685 taskqueue_swi_giant_enqueue(void *context)
686 {
687         swi_sched(taskqueue_giant_ih, 0);
688 }
689
690 static void
691 taskqueue_swi_giant_run(void *dummy)
692 {
693         taskqueue_run(taskqueue_swi_giant);
694 }
695
696 static int
697 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
698     cpuset_t *mask, struct proc *p, const char *name, va_list ap)
699 {
700         char ktname[MAXCOMLEN + 1];
701         struct thread *td;
702         struct taskqueue *tq;
703         int i, error;
704
705         if (count <= 0)
706                 return (EINVAL);
707
708         vsnprintf(ktname, sizeof(ktname), name, ap);
709         tq = *tqp;
710
711         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
712             M_NOWAIT | M_ZERO);
713         if (tq->tq_threads == NULL) {
714                 printf("%s: no memory for %s threads\n", __func__, ktname);
715                 return (ENOMEM);
716         }
717
718         for (i = 0; i < count; i++) {
719                 if (count == 1)
720                         error = kthread_add(taskqueue_thread_loop, tqp, p,
721                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
722                 else
723                         error = kthread_add(taskqueue_thread_loop, tqp, p,
724                             &tq->tq_threads[i], RFSTOPPED, 0,
725                             "%s_%d", ktname, i);
726                 if (error) {
727                         /* should be ok to continue, taskqueue_free will dtrt */
728                         printf("%s: kthread_add(%s): error %d", __func__,
729                             ktname, error);
730                         tq->tq_threads[i] = NULL;               /* paranoid */
731                 } else
732                         tq->tq_tcount++;
733         }
734         if (tq->tq_tcount == 0) {
735                 free(tq->tq_threads, M_TASKQUEUE);
736                 tq->tq_threads = NULL;
737                 return (ENOMEM);
738         }
739         for (i = 0; i < count; i++) {
740                 if (tq->tq_threads[i] == NULL)
741                         continue;
742                 td = tq->tq_threads[i];
743                 if (mask) {
744                         error = cpuset_setthread(td->td_tid, mask);
745                         /*
746                          * Failing to pin is rarely an actual fatal error;
747                          * it'll just affect performance.
748                          */
749                         if (error)
750                                 printf("%s: curthread=%llu: can't pin; "
751                                     "error=%d\n",
752                                     __func__,
753                                     (unsigned long long) td->td_tid,
754                                     error);
755                 }
756                 thread_lock(td);
757                 sched_prio(td, pri);
758                 sched_add(td, SRQ_BORING);
759         }
760
761         return (0);
762 }
763
764 int
765 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
766     const char *name, ...)
767 {
768         va_list ap;
769         int error;
770
771         va_start(ap, name);
772         error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
773         va_end(ap);
774         return (error);
775 }
776
777 int
778 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
779     struct proc *proc, const char *name, ...)
780 {
781         va_list ap;
782         int error;
783
784         va_start(ap, name);
785         error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
786         va_end(ap);
787         return (error);
788 }
789
790 int
791 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
792     cpuset_t *mask, const char *name, ...)
793 {
794         va_list ap;
795         int error;
796
797         va_start(ap, name);
798         error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
799         va_end(ap);
800         return (error);
801 }
802
803 static inline void
804 taskqueue_run_callback(struct taskqueue *tq,
805     enum taskqueue_callback_type cb_type)
806 {
807         taskqueue_callback_fn tq_callback;
808
809         TQ_ASSERT_UNLOCKED(tq);
810         tq_callback = tq->tq_callbacks[cb_type];
811         if (tq_callback != NULL)
812                 tq_callback(tq->tq_cb_contexts[cb_type]);
813 }
814
815 void
816 taskqueue_thread_loop(void *arg)
817 {
818         struct taskqueue **tqp, *tq;
819
820         tqp = arg;
821         tq = *tqp;
822         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
823         TQ_LOCK(tq);
824         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
825                 /* XXX ? */
826                 taskqueue_run_locked(tq);
827                 /*
828                  * Because taskqueue_run() can drop tq_mutex, we need to
829                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
830                  * meantime, which means we missed a wakeup.
831                  */
832                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
833                         break;
834                 TQ_SLEEP(tq, tq, "-");
835         }
836         taskqueue_run_locked(tq);
837         /*
838          * This thread is on its way out, so just drop the lock temporarily
839          * in order to call the shutdown callback.  This allows the callback
840          * to look at the taskqueue, even just before it dies.
841          */
842         TQ_UNLOCK(tq);
843         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
844         TQ_LOCK(tq);
845
846         /* rendezvous with thread that asked us to terminate */
847         tq->tq_tcount--;
848         wakeup_one(tq->tq_threads);
849         TQ_UNLOCK(tq);
850         kthread_exit();
851 }
852
853 void
854 taskqueue_thread_enqueue(void *context)
855 {
856         struct taskqueue **tqp, *tq;
857
858         tqp = context;
859         tq = *tqp;
860         wakeup_any(tq);
861 }
862
863 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
864                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
865                      INTR_MPSAFE, &taskqueue_ih));
866
867 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
868                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
869                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
870
871 TASKQUEUE_DEFINE_THREAD(thread);
872
873 struct taskqueue *
874 taskqueue_create_fast(const char *name, int mflags,
875                  taskqueue_enqueue_fn enqueue, void *context)
876 {
877         return _taskqueue_create(name, mflags, enqueue, context,
878                         MTX_SPIN, "fast_taskqueue");
879 }
880
881 static void     *taskqueue_fast_ih;
882
883 static void
884 taskqueue_fast_enqueue(void *context)
885 {
886         swi_sched(taskqueue_fast_ih, 0);
887 }
888
889 static void
890 taskqueue_fast_run(void *dummy)
891 {
892         taskqueue_run(taskqueue_fast);
893 }
894
895 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
896         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
897         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
898
899 int
900 taskqueue_member(struct taskqueue *queue, struct thread *td)
901 {
902         int i, j, ret = 0;
903
904         for (i = 0, j = 0; ; i++) {
905                 if (queue->tq_threads[i] == NULL)
906                         continue;
907                 if (queue->tq_threads[i] == td) {
908                         ret = 1;
909                         break;
910                 }
911                 if (++j >= queue->tq_tcount)
912                         break;
913         }
914         return (ret);
915 }