]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_taskqueue.c
Implement taskqueue_start_threads_cpuset().
[FreeBSD/FreeBSD.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/cpuset.h>
34 #include <sys/interrupt.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/taskqueue.h>
44 #include <sys/unistd.h>
45 #include <machine/stdarg.h>
46
47 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
48 static void     *taskqueue_giant_ih;
49 static void     *taskqueue_ih;
50 static void      taskqueue_fast_enqueue(void *);
51 static void      taskqueue_swi_enqueue(void *);
52 static void      taskqueue_swi_giant_enqueue(void *);
53
54 struct taskqueue_busy {
55         struct task     *tb_running;
56         TAILQ_ENTRY(taskqueue_busy) tb_link;
57 };
58
59 struct task * const TB_DRAIN_WAITER = (struct task *)0x1;
60
61 struct taskqueue {
62         STAILQ_HEAD(, task)     tq_queue;
63         taskqueue_enqueue_fn    tq_enqueue;
64         void                    *tq_context;
65         TAILQ_HEAD(, taskqueue_busy) tq_active;
66         struct mtx              tq_mutex;
67         struct thread           **tq_threads;
68         int                     tq_tcount;
69         int                     tq_spin;
70         int                     tq_flags;
71         int                     tq_callouts;
72         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
73         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
74 };
75
76 #define TQ_FLAGS_ACTIVE         (1 << 0)
77 #define TQ_FLAGS_BLOCKED        (1 << 1)
78 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
79
80 #define DT_CALLOUT_ARMED        (1 << 0)
81
82 #define TQ_LOCK(tq)                                                     \
83         do {                                                            \
84                 if ((tq)->tq_spin)                                      \
85                         mtx_lock_spin(&(tq)->tq_mutex);                 \
86                 else                                                    \
87                         mtx_lock(&(tq)->tq_mutex);                      \
88         } while (0)
89 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
90
91 #define TQ_UNLOCK(tq)                                                   \
92         do {                                                            \
93                 if ((tq)->tq_spin)                                      \
94                         mtx_unlock_spin(&(tq)->tq_mutex);               \
95                 else                                                    \
96                         mtx_unlock(&(tq)->tq_mutex);                    \
97         } while (0)
98 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
99
100 void
101 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
102     int priority, task_fn_t func, void *context)
103 {
104
105         TASK_INIT(&timeout_task->t, priority, func, context);
106         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
107             CALLOUT_RETURNUNLOCKED);
108         timeout_task->q = queue;
109         timeout_task->f = 0;
110 }
111
112 static __inline int
113 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
114     int t)
115 {
116         if (tq->tq_spin)
117                 return (msleep_spin(p, m, wm, t));
118         return (msleep(p, m, pri, wm, t));
119 }
120
121 static struct taskqueue *
122 _taskqueue_create(const char *name __unused, int mflags,
123                  taskqueue_enqueue_fn enqueue, void *context,
124                  int mtxflags, const char *mtxname)
125 {
126         struct taskqueue *queue;
127
128         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
129         if (!queue)
130                 return NULL;
131
132         STAILQ_INIT(&queue->tq_queue);
133         TAILQ_INIT(&queue->tq_active);
134         queue->tq_enqueue = enqueue;
135         queue->tq_context = context;
136         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
137         queue->tq_flags |= TQ_FLAGS_ACTIVE;
138         if (enqueue == taskqueue_fast_enqueue ||
139             enqueue == taskqueue_swi_enqueue ||
140             enqueue == taskqueue_swi_giant_enqueue ||
141             enqueue == taskqueue_thread_enqueue)
142                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
143         mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
144
145         return queue;
146 }
147
148 struct taskqueue *
149 taskqueue_create(const char *name, int mflags,
150                  taskqueue_enqueue_fn enqueue, void *context)
151 {
152         return _taskqueue_create(name, mflags, enqueue, context,
153                         MTX_DEF, "taskqueue");
154 }
155
156 void
157 taskqueue_set_callback(struct taskqueue *queue,
158     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
159     void *context)
160 {
161
162         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
163             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
164             ("Callback type %d not valid, must be %d-%d", cb_type,
165             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
166         KASSERT((queue->tq_callbacks[cb_type] == NULL),
167             ("Re-initialization of taskqueue callback?"));
168
169         queue->tq_callbacks[cb_type] = callback;
170         queue->tq_cb_contexts[cb_type] = context;
171 }
172
173 /*
174  * Signal a taskqueue thread to terminate.
175  */
176 static void
177 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
178 {
179
180         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
181                 wakeup(tq);
182                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
183         }
184 }
185
186 void
187 taskqueue_free(struct taskqueue *queue)
188 {
189
190         TQ_LOCK(queue);
191         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
192         taskqueue_terminate(queue->tq_threads, queue);
193         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
194         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
195         mtx_destroy(&queue->tq_mutex);
196         free(queue->tq_threads, M_TASKQUEUE);
197         free(queue, M_TASKQUEUE);
198 }
199
200 static int
201 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
202 {
203         struct task *ins;
204         struct task *prev;
205
206         /*
207          * Count multiple enqueues.
208          */
209         if (task->ta_pending) {
210                 if (task->ta_pending < USHRT_MAX)
211                         task->ta_pending++;
212                 TQ_UNLOCK(queue);
213                 return (0);
214         }
215
216         /*
217          * Optimise the case when all tasks have the same priority.
218          */
219         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
220         if (!prev || prev->ta_priority >= task->ta_priority) {
221                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
222         } else {
223                 prev = NULL;
224                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
225                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
226                         if (ins->ta_priority < task->ta_priority)
227                                 break;
228
229                 if (prev)
230                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
231                 else
232                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
233         }
234
235         task->ta_pending = 1;
236         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
237                 TQ_UNLOCK(queue);
238         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
239                 queue->tq_enqueue(queue->tq_context);
240         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
241                 TQ_UNLOCK(queue);
242
243         /* Return with lock released. */
244         return (0);
245 }
246
247 int
248 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
249 {
250         int res;
251
252         TQ_LOCK(queue);
253         res = taskqueue_enqueue_locked(queue, task);
254         /* The lock is released inside. */
255
256         return (res);
257 }
258
259 static void
260 taskqueue_timeout_func(void *arg)
261 {
262         struct taskqueue *queue;
263         struct timeout_task *timeout_task;
264
265         timeout_task = arg;
266         queue = timeout_task->q;
267         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
268         timeout_task->f &= ~DT_CALLOUT_ARMED;
269         queue->tq_callouts--;
270         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
271         /* The lock is released inside. */
272 }
273
274 int
275 taskqueue_enqueue_timeout(struct taskqueue *queue,
276     struct timeout_task *timeout_task, int ticks)
277 {
278         int res;
279
280         TQ_LOCK(queue);
281         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
282             ("Migrated queue"));
283         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
284         timeout_task->q = queue;
285         res = timeout_task->t.ta_pending;
286         if (ticks == 0) {
287                 taskqueue_enqueue_locked(queue, &timeout_task->t);
288                 /* The lock is released inside. */
289         } else {
290                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
291                         res++;
292                 } else {
293                         queue->tq_callouts++;
294                         timeout_task->f |= DT_CALLOUT_ARMED;
295                         if (ticks < 0)
296                                 ticks = -ticks; /* Ignore overflow. */
297                 }
298                 if (ticks > 0) {
299                         callout_reset(&timeout_task->c, ticks,
300                             taskqueue_timeout_func, timeout_task);
301                 }
302                 TQ_UNLOCK(queue);
303         }
304         return (res);
305 }
306
307 static void
308 taskqueue_task_nop_fn(void *context, int pending)
309 {
310 }
311
312 /*
313  * Block until all currently queued tasks in this taskqueue
314  * have begun execution.  Tasks queued during execution of
315  * this function are ignored.
316  */
317 static void
318 taskqueue_drain_tq_queue(struct taskqueue *queue)
319 {
320         struct task t_barrier;
321
322         if (STAILQ_EMPTY(&queue->tq_queue))
323                 return;
324
325         /*
326          * Enqueue our barrier with the lowest possible priority
327          * so we are inserted after all current tasks.
328          */
329         TASK_INIT(&t_barrier, 0, taskqueue_task_nop_fn, &t_barrier);
330         taskqueue_enqueue_locked(queue, &t_barrier);
331
332         /*
333          * Raise the barrier's priority so newly queued tasks cannot
334          * pass it.
335          */
336         t_barrier.ta_priority = USHRT_MAX;
337
338         /*
339          * Once the barrier has executed, all previously queued tasks
340          * have completed or are currently executing.
341          */
342         while (t_barrier.ta_pending != 0)
343                 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
344 }
345
346 /*
347  * Block until all currently executing tasks for this taskqueue
348  * complete.  Tasks that begin execution during the execution
349  * of this function are ignored.
350  */
351 static void
352 taskqueue_drain_tq_active(struct taskqueue *queue)
353 {
354         struct taskqueue_busy tb_marker, *tb_first;
355
356         if (TAILQ_EMPTY(&queue->tq_active))
357                 return;
358
359         /* Block taskq_terminate().*/
360         queue->tq_callouts++;
361
362         /*
363          * Wait for all currently executing taskqueue threads
364          * to go idle.
365          */
366         tb_marker.tb_running = TB_DRAIN_WAITER;
367         TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
368         while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
369                 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
370         TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
371
372         /*
373          * Wakeup any other drain waiter that happened to queue up
374          * without any intervening active thread.
375          */
376         tb_first = TAILQ_FIRST(&queue->tq_active);
377         if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
378                 wakeup(tb_first);
379
380         /* Release taskqueue_terminate(). */
381         queue->tq_callouts--;
382         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
383                 wakeup_one(queue->tq_threads);
384 }
385
386 void
387 taskqueue_block(struct taskqueue *queue)
388 {
389
390         TQ_LOCK(queue);
391         queue->tq_flags |= TQ_FLAGS_BLOCKED;
392         TQ_UNLOCK(queue);
393 }
394
395 void
396 taskqueue_unblock(struct taskqueue *queue)
397 {
398
399         TQ_LOCK(queue);
400         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
401         if (!STAILQ_EMPTY(&queue->tq_queue))
402                 queue->tq_enqueue(queue->tq_context);
403         TQ_UNLOCK(queue);
404 }
405
406 static void
407 taskqueue_run_locked(struct taskqueue *queue)
408 {
409         struct taskqueue_busy tb;
410         struct taskqueue_busy *tb_first;
411         struct task *task;
412         int pending;
413
414         TQ_ASSERT_LOCKED(queue);
415         tb.tb_running = NULL;
416
417         while (STAILQ_FIRST(&queue->tq_queue)) {
418                 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
419
420                 /*
421                  * Carefully remove the first task from the queue and
422                  * zero its pending count.
423                  */
424                 task = STAILQ_FIRST(&queue->tq_queue);
425                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
426                 pending = task->ta_pending;
427                 task->ta_pending = 0;
428                 tb.tb_running = task;
429                 TQ_UNLOCK(queue);
430
431                 task->ta_func(task->ta_context, pending);
432
433                 TQ_LOCK(queue);
434                 tb.tb_running = NULL;
435                 wakeup(task);
436
437                 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
438                 tb_first = TAILQ_FIRST(&queue->tq_active);
439                 if (tb_first != NULL &&
440                     tb_first->tb_running == TB_DRAIN_WAITER)
441                         wakeup(tb_first);
442         }
443 }
444
445 void
446 taskqueue_run(struct taskqueue *queue)
447 {
448
449         TQ_LOCK(queue);
450         taskqueue_run_locked(queue);
451         TQ_UNLOCK(queue);
452 }
453
454 static int
455 task_is_running(struct taskqueue *queue, struct task *task)
456 {
457         struct taskqueue_busy *tb;
458
459         TQ_ASSERT_LOCKED(queue);
460         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
461                 if (tb->tb_running == task)
462                         return (1);
463         }
464         return (0);
465 }
466
467 static int
468 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
469     u_int *pendp)
470 {
471
472         if (task->ta_pending > 0)
473                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
474         if (pendp != NULL)
475                 *pendp = task->ta_pending;
476         task->ta_pending = 0;
477         return (task_is_running(queue, task) ? EBUSY : 0);
478 }
479
480 int
481 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
482 {
483         int error;
484
485         TQ_LOCK(queue);
486         error = taskqueue_cancel_locked(queue, task, pendp);
487         TQ_UNLOCK(queue);
488
489         return (error);
490 }
491
492 int
493 taskqueue_cancel_timeout(struct taskqueue *queue,
494     struct timeout_task *timeout_task, u_int *pendp)
495 {
496         u_int pending, pending1;
497         int error;
498
499         TQ_LOCK(queue);
500         pending = !!callout_stop(&timeout_task->c);
501         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
502         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
503                 timeout_task->f &= ~DT_CALLOUT_ARMED;
504                 queue->tq_callouts--;
505         }
506         TQ_UNLOCK(queue);
507
508         if (pendp != NULL)
509                 *pendp = pending + pending1;
510         return (error);
511 }
512
513 void
514 taskqueue_drain(struct taskqueue *queue, struct task *task)
515 {
516
517         if (!queue->tq_spin)
518                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
519
520         TQ_LOCK(queue);
521         while (task->ta_pending != 0 || task_is_running(queue, task))
522                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
523         TQ_UNLOCK(queue);
524 }
525
526 void
527 taskqueue_drain_all(struct taskqueue *queue)
528 {
529
530         if (!queue->tq_spin)
531                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
532
533         TQ_LOCK(queue);
534         taskqueue_drain_tq_queue(queue);
535         taskqueue_drain_tq_active(queue);
536         TQ_UNLOCK(queue);
537 }
538
539 void
540 taskqueue_drain_timeout(struct taskqueue *queue,
541     struct timeout_task *timeout_task)
542 {
543
544         callout_drain(&timeout_task->c);
545         taskqueue_drain(queue, &timeout_task->t);
546 }
547
548 static void
549 taskqueue_swi_enqueue(void *context)
550 {
551         swi_sched(taskqueue_ih, 0);
552 }
553
554 static void
555 taskqueue_swi_run(void *dummy)
556 {
557         taskqueue_run(taskqueue_swi);
558 }
559
560 static void
561 taskqueue_swi_giant_enqueue(void *context)
562 {
563         swi_sched(taskqueue_giant_ih, 0);
564 }
565
566 static void
567 taskqueue_swi_giant_run(void *dummy)
568 {
569         taskqueue_run(taskqueue_swi_giant);
570 }
571
572 static int
573 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
574     cpuset_t *mask, const char *name, va_list ap)
575 {
576         char ktname[MAXCOMLEN + 1];
577         struct thread *td;
578         struct taskqueue *tq;
579         int i, error;
580
581         if (count <= 0)
582                 return (EINVAL);
583
584         vsnprintf(ktname, sizeof(ktname), name, ap);
585         tq = *tqp;
586
587         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
588             M_NOWAIT | M_ZERO);
589         if (tq->tq_threads == NULL) {
590                 printf("%s: no memory for %s threads\n", __func__, ktname);
591                 return (ENOMEM);
592         }
593
594         for (i = 0; i < count; i++) {
595                 if (count == 1)
596                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
597                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
598                 else
599                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
600                             &tq->tq_threads[i], RFSTOPPED, 0,
601                             "%s_%d", ktname, i);
602                 if (error) {
603                         /* should be ok to continue, taskqueue_free will dtrt */
604                         printf("%s: kthread_add(%s): error %d", __func__,
605                             ktname, error);
606                         tq->tq_threads[i] = NULL;               /* paranoid */
607                 } else
608                         tq->tq_tcount++;
609         }
610         for (i = 0; i < count; i++) {
611                 if (tq->tq_threads[i] == NULL)
612                         continue;
613                 td = tq->tq_threads[i];
614                 if (mask) {
615                         error = cpuset_setthread(td->td_tid, mask);
616                         /*
617                          * Failing to pin is rarely an actual fatal error;
618                          * it'll just affect performance.
619                          */
620                         if (error)
621                                 printf("%s: curthread=%llu: can't pin; "
622                                     "error=%d\n",
623                                     __func__,
624                                     (unsigned long long) td->td_tid,
625                                     error);
626                 }
627                 thread_lock(td);
628                 sched_prio(td, pri);
629                 sched_add(td, SRQ_BORING);
630                 thread_unlock(td);
631         }
632
633         return (0);
634 }
635
636 int
637 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
638     const char *name, ...)
639 {
640         va_list ap;
641         int error;
642
643         va_start(ap, name);
644         error = _taskqueue_start_threads(tqp, count, pri, NULL, name, ap);
645         va_end(ap);
646         return (error);
647 }
648
649 int
650 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
651     cpuset_t *mask, const char *name, ...)
652 {
653         va_list ap;
654         int error;
655
656         va_start(ap, name);
657         error = _taskqueue_start_threads(tqp, count, pri, mask, name, ap);
658         va_end(ap);
659         return (error);
660 }
661
662 int
663 taskqueue_start_threads_pinned(struct taskqueue **tqp, int count, int pri,
664     int cpu_id, const char *name, ...)
665 {
666         cpuset_t mask;
667         va_list ap;
668         int error;
669
670         /*
671          * In case someone passes in NOCPU, just fall back to the
672          * default behaviour of "don't pin".
673          */
674         if (cpu_id != NOCPU) {
675                 CPU_ZERO(&mask);
676                 CPU_SET(cpu_id, &mask);
677         }
678
679         va_start(ap, name);
680         error = _taskqueue_start_threads(tqp, count, pri,
681             cpu_id == NOCPU ? NULL : &mask, name, ap);
682         va_end(ap);
683         return (error);
684 }
685
686 static inline void
687 taskqueue_run_callback(struct taskqueue *tq,
688     enum taskqueue_callback_type cb_type)
689 {
690         taskqueue_callback_fn tq_callback;
691
692         TQ_ASSERT_UNLOCKED(tq);
693         tq_callback = tq->tq_callbacks[cb_type];
694         if (tq_callback != NULL)
695                 tq_callback(tq->tq_cb_contexts[cb_type]);
696 }
697
698 void
699 taskqueue_thread_loop(void *arg)
700 {
701         struct taskqueue **tqp, *tq;
702
703         tqp = arg;
704         tq = *tqp;
705         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
706         TQ_LOCK(tq);
707         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
708                 taskqueue_run_locked(tq);
709                 /*
710                  * Because taskqueue_run() can drop tq_mutex, we need to
711                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
712                  * meantime, which means we missed a wakeup.
713                  */
714                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
715                         break;
716                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
717         }
718         taskqueue_run_locked(tq);
719
720         /*
721          * This thread is on its way out, so just drop the lock temporarily
722          * in order to call the shutdown callback.  This allows the callback
723          * to look at the taskqueue, even just before it dies.
724          */
725         TQ_UNLOCK(tq);
726         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
727         TQ_LOCK(tq);
728
729         /* rendezvous with thread that asked us to terminate */
730         tq->tq_tcount--;
731         wakeup_one(tq->tq_threads);
732         TQ_UNLOCK(tq);
733         kthread_exit();
734 }
735
736 void
737 taskqueue_thread_enqueue(void *context)
738 {
739         struct taskqueue **tqp, *tq;
740
741         tqp = context;
742         tq = *tqp;
743
744         wakeup_one(tq);
745 }
746
747 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
748                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
749                      INTR_MPSAFE, &taskqueue_ih));
750
751 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
752                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
753                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
754
755 TASKQUEUE_DEFINE_THREAD(thread);
756
757 struct taskqueue *
758 taskqueue_create_fast(const char *name, int mflags,
759                  taskqueue_enqueue_fn enqueue, void *context)
760 {
761         return _taskqueue_create(name, mflags, enqueue, context,
762                         MTX_SPIN, "fast_taskqueue");
763 }
764
765 /* NB: for backwards compatibility */
766 int
767 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
768 {
769         return taskqueue_enqueue(queue, task);
770 }
771
772 static void     *taskqueue_fast_ih;
773
774 static void
775 taskqueue_fast_enqueue(void *context)
776 {
777         swi_sched(taskqueue_fast_ih, 0);
778 }
779
780 static void
781 taskqueue_fast_run(void *dummy)
782 {
783         taskqueue_run(taskqueue_fast);
784 }
785
786 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
787         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
788         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
789
790 int
791 taskqueue_member(struct taskqueue *queue, struct thread *td)
792 {
793         int i, j, ret = 0;
794
795         for (i = 0, j = 0; ; i++) {
796                 if (queue->tq_threads[i] == NULL)
797                         continue;
798                 if (queue->tq_threads[i] == td) {
799                         ret = 1;
800                         break;
801                 }
802                 if (++j >= queue->tq_tcount)
803                         break;
804         }
805         return (ret);
806 }