]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
sys/{x86,amd64}: remove one of doubled ;s
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42
43 /*
44  *      Main Entry: witness
45  *      Pronunciation: 'wit-n&s
46  *      Function: noun
47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *          testimony, witness, from 2wit
49  *      Date: before 12th century
50  *      1 : attestation of a fact or event : TESTIMONY
51  *      2 : one that gives evidence; specifically : one who testifies in
52  *          a cause or before a judicial tribunal
53  *      3 : one asked to be present at a transaction so as to be able to
54  *          testify to its having taken place
55  *      4 : one who has personal knowledge of something
56  *      5 a : something serving as evidence or proof : SIGN
57  *        b : public affirmation by word or example of usually
58  *            religious faith or conviction <the heroic witness to divine
59  *            life -- Pilot>
60  *      6 capitalized : a member of the Jehovah's Witnesses 
61  */
62
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117
118 #include <machine/stdarg.h>
119
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define KTR_WITNESS     KTR_SUBSYS
127 #else
128 #define KTR_WITNESS     0
129 #endif
130
131 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
132 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
133 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
134
135 #ifndef WITNESS_COUNT
136 #define WITNESS_COUNT           1536
137 #endif
138 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
139 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
140
141 /* Allocate 256 KB of stack data space */
142 #define WITNESS_LO_DATA_COUNT   2048
143
144 /* Prime, gives load factor of ~2 at full load */
145 #define WITNESS_LO_HASH_SIZE    1021
146
147 /*
148  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
149  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
150  * probably be safe for the most part, but it's still a SWAG.
151  */
152 #define LOCK_NCHILDREN  5
153 #define LOCK_CHILDCOUNT 2048
154
155 #define MAX_W_NAME      64
156
157 #define FULLGRAPH_SBUF_SIZE     512
158
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define WITNESS_RELATED_MASK                                            \
171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173                                           * observed. */
174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178 /* Descendant to ancestor flags */
179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
180
181 /* Ancestor to descendant flags */
182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
183
184 #define WITNESS_INDEX_ASSERT(i)                                         \
185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
186
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196         struct lock_object      *li_lock;
197         const char              *li_file;
198         int                     li_line;
199         u_int                   li_flags;
200 };
201
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213         struct lock_list_entry  *ll_next;
214         struct lock_instance    ll_children[LOCK_NCHILDREN];
215         u_int                   ll_count;
216 };
217
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223         char                    w_name[MAX_W_NAME];
224         uint32_t                w_index;  /* Index in the relationship matrix */
225         struct lock_class       *w_class;
226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
229         const char              *w_file; /* File where last acquired */
230         uint32_t                w_line; /* Line where last acquired */
231         uint32_t                w_refcount;
232         uint16_t                w_num_ancestors; /* direct/indirect
233                                                   * ancestor count */
234         uint16_t                w_num_descendants; /* direct/indirect
235                                                     * descendant count */
236         int16_t                 w_ddb_level;
237         unsigned                w_displayed:1;
238         unsigned                w_reversed:1;
239 };
240
241 STAILQ_HEAD(witness_list, witness);
242
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248         struct witness  *wh_array[WITNESS_HASH_SIZE];
249         uint32_t        wh_size;
250         uint32_t        wh_count;
251 };
252
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257         uint16_t        from;
258         uint16_t        to;
259 };
260
261 struct witness_lock_order_data {
262         struct stack                    wlod_stack;
263         struct witness_lock_order_key   wlod_key;
264         struct witness_lock_order_data  *wlod_next;
265 };
266
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data). 
271  */
272 struct witness_lock_order_hash {
273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
274         u_int   wloh_size;
275         u_int   wloh_count;
276 };
277
278 struct witness_blessed {
279         const char      *b_lock1;
280         const char      *b_lock2;
281 };
282
283 struct witness_pendhelp {
284         const char              *wh_type;
285         struct lock_object      *wh_lock;
286 };
287
288 struct witness_order_list_entry {
289         const char              *w_name;
290         struct lock_class       *w_class;
291 };
292
293 /*
294  * Returns 0 if one of the locks is a spin lock and the other is not.
295  * Returns 1 otherwise.
296  */
297 static __inline int
298 witness_lock_type_equal(struct witness *w1, struct witness *w2)
299 {
300
301         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
302                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
303 }
304
305 static __inline int
306 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
307     const struct witness_lock_order_key *b)
308 {
309
310         return (a->from == b->from && a->to == b->to);
311 }
312
313 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
314                     const char *fname);
315 static void     adopt(struct witness *parent, struct witness *child);
316 static int      blessed(struct witness *, struct witness *);
317 static void     depart(struct witness *w);
318 static struct witness   *enroll(const char *description,
319                             struct lock_class *lock_class);
320 static struct lock_instance     *find_instance(struct lock_list_entry *list,
321                                     const struct lock_object *lock);
322 static int      isitmychild(struct witness *parent, struct witness *child);
323 static int      isitmydescendant(struct witness *parent, struct witness *child);
324 static void     itismychild(struct witness *parent, struct witness *child);
325 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
326 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
327 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
328 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
329 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
330 #ifdef DDB
331 static void     witness_ddb_compute_levels(void);
332 static void     witness_ddb_display(int(*)(const char *fmt, ...));
333 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
334                     struct witness *, int indent);
335 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
336                     struct witness_list *list);
337 static void     witness_ddb_level_descendants(struct witness *parent, int l);
338 static void     witness_ddb_list(struct thread *td);
339 #endif
340 static void     witness_debugger(int cond, const char *msg);
341 static void     witness_free(struct witness *m);
342 static struct witness   *witness_get(void);
343 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
344 static struct witness   *witness_hash_get(const char *key);
345 static void     witness_hash_put(struct witness *w);
346 static void     witness_init_hash_tables(void);
347 static void     witness_increment_graph_generation(void);
348 static void     witness_lock_list_free(struct lock_list_entry *lle);
349 static struct lock_list_entry   *witness_lock_list_get(void);
350 static int      witness_lock_order_add(struct witness *parent,
351                     struct witness *child);
352 static int      witness_lock_order_check(struct witness *parent,
353                     struct witness *child);
354 static struct witness_lock_order_data   *witness_lock_order_get(
355                                             struct witness *parent,
356                                             struct witness *child);
357 static void     witness_list_lock(struct lock_instance *instance,
358                     int (*prnt)(const char *fmt, ...));
359 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
360 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
361 static void     witness_setflag(struct lock_object *lock, int flag, int set);
362
363 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
364     "Witness Locking");
365
366 /*
367  * If set to 0, lock order checking is disabled.  If set to -1,
368  * witness is completely disabled.  Otherwise witness performs full
369  * lock order checking for all locks.  At runtime, lock order checking
370  * may be toggled.  However, witness cannot be reenabled once it is
371  * completely disabled.
372  */
373 static int witness_watch = 1;
374 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
375     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
376
377 #ifdef KDB
378 /*
379  * When KDB is enabled and witness_kdb is 1, it will cause the system
380  * to drop into kdebug() when:
381  *      - a lock hierarchy violation occurs
382  *      - locks are held when going to sleep.
383  */
384 #ifdef WITNESS_KDB
385 int     witness_kdb = 1;
386 #else
387 int     witness_kdb = 0;
388 #endif
389 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
390 #endif /* KDB */
391
392 #if defined(DDB) || defined(KDB)
393 /*
394  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
395  * to print a stack trace:
396  *      - a lock hierarchy violation occurs
397  *      - locks are held when going to sleep.
398  */
399 int     witness_trace = 1;
400 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
401 #endif /* DDB || KDB */
402
403 #ifdef WITNESS_SKIPSPIN
404 int     witness_skipspin = 1;
405 #else
406 int     witness_skipspin = 0;
407 #endif
408 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
409
410 int badstack_sbuf_size;
411
412 int witness_count = WITNESS_COUNT;
413 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
414     &witness_count, 0, "");
415
416 /*
417  * Output channel for witness messages.  By default we print to the console.
418  */
419 enum witness_channel {
420         WITNESS_CONSOLE,
421         WITNESS_LOG,
422         WITNESS_NONE,
423 };
424
425 static enum witness_channel witness_channel = WITNESS_CONSOLE;
426 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
427     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
428     "Output channel for warnings");
429
430 /*
431  * Call this to print out the relations between locks.
432  */
433 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
434     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
435
436 /*
437  * Call this to print out the witness faulty stacks.
438  */
439 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
440     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
441
442 static struct mtx w_mtx;
443
444 /* w_list */
445 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
446 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
447
448 /* w_typelist */
449 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
450 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
451
452 /* lock list */
453 static struct lock_list_entry *w_lock_list_free = NULL;
454 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
455 static u_int pending_cnt;
456
457 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
458 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
460 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
461     "");
462
463 static struct witness *w_data;
464 static uint8_t **w_rmatrix;
465 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
466 static struct witness_hash w_hash;      /* The witness hash table. */
467
468 /* The lock order data hash */
469 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
470 static struct witness_lock_order_data *w_lofree = NULL;
471 static struct witness_lock_order_hash w_lohash;
472 static int w_max_used_index = 0;
473 static unsigned int w_generation = 0;
474 static const char w_notrunning[] = "Witness not running\n";
475 static const char w_stillcold[] = "Witness is still cold\n";
476 #ifdef __i386__
477 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
478 #endif
479
480 static struct witness_order_list_entry order_lists[] = {
481         /*
482          * sx locks
483          */
484         { "proctree", &lock_class_sx },
485         { "allproc", &lock_class_sx },
486         { "allprison", &lock_class_sx },
487         { NULL, NULL },
488         /*
489          * Various mutexes
490          */
491         { "Giant", &lock_class_mtx_sleep },
492         { "pipe mutex", &lock_class_mtx_sleep },
493         { "sigio lock", &lock_class_mtx_sleep },
494         { "process group", &lock_class_mtx_sleep },
495 #ifdef  HWPMC_HOOKS
496         { "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498         { "process lock", &lock_class_mtx_sleep },
499         { "session", &lock_class_mtx_sleep },
500         { "uidinfo hash", &lock_class_rw },
501         { "time lock", &lock_class_mtx_sleep },
502         { NULL, NULL },
503         /*
504          * umtx
505          */
506         { "umtx lock", &lock_class_mtx_sleep },
507         { NULL, NULL },
508         /*
509          * Sockets
510          */
511         { "accept", &lock_class_mtx_sleep },
512         { "so_snd", &lock_class_mtx_sleep },
513         { "so_rcv", &lock_class_mtx_sleep },
514         { "sellck", &lock_class_mtx_sleep },
515         { NULL, NULL },
516         /*
517          * Routing
518          */
519         { "so_rcv", &lock_class_mtx_sleep },
520         { "radix node head", &lock_class_rm },
521         { "rtentry", &lock_class_mtx_sleep },
522         { "ifaddr", &lock_class_mtx_sleep },
523         { NULL, NULL },
524         /*
525          * IPv4 multicast:
526          * protocol locks before interface locks, after UDP locks.
527          */
528         { "in_multi_sx", &lock_class_sx },
529         { "udpinp", &lock_class_rw },
530         { "in_multi_list_mtx", &lock_class_mtx_sleep },
531         { "igmp_mtx", &lock_class_mtx_sleep },
532         { "ifnet_rw", &lock_class_rw },
533         { "if_addr_lock", &lock_class_mtx_sleep },
534         { NULL, NULL },
535         /*
536          * IPv6 multicast:
537          * protocol locks before interface locks, after UDP locks.
538          */
539         { "in6_multi_sx", &lock_class_sx },
540         { "udpinp", &lock_class_rw },
541         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
542         { "mld_mtx", &lock_class_mtx_sleep },
543         { "ifnet_rw", &lock_class_rw },
544         { "if_addr_lock", &lock_class_mtx_sleep },
545         { NULL, NULL },
546         /*
547          * UNIX Domain Sockets
548          */
549         { "unp_link_rwlock", &lock_class_rw },
550         { "unp_list_lock", &lock_class_mtx_sleep },
551         { "unp", &lock_class_mtx_sleep },
552         { "so_snd", &lock_class_mtx_sleep },
553         { NULL, NULL },
554         /*
555          * UDP/IP
556          */
557         { "udp", &lock_class_mtx_sleep },
558         { "udpinp", &lock_class_rw },
559         { "so_snd", &lock_class_mtx_sleep },
560         { NULL, NULL },
561         /*
562          * TCP/IP
563          */
564         { "tcp", &lock_class_mtx_sleep },
565         { "tcpinp", &lock_class_rw },
566         { "so_snd", &lock_class_mtx_sleep },
567         { NULL, NULL },
568         /*
569          * BPF
570          */
571         { "bpf global lock", &lock_class_sx },
572         { "bpf cdev lock", &lock_class_mtx_sleep },
573         { NULL, NULL },
574         /*
575          * NFS server
576          */
577         { "nfsd_mtx", &lock_class_mtx_sleep },
578         { "so_snd", &lock_class_mtx_sleep },
579         { NULL, NULL },
580
581         /*
582          * IEEE 802.11
583          */
584         { "802.11 com lock", &lock_class_mtx_sleep},
585         { NULL, NULL },
586         /*
587          * Network drivers
588          */
589         { "network driver", &lock_class_mtx_sleep},
590         { NULL, NULL },
591
592         /*
593          * Netgraph
594          */
595         { "ng_node", &lock_class_mtx_sleep },
596         { "ng_worklist", &lock_class_mtx_sleep },
597         { NULL, NULL },
598         /*
599          * CDEV
600          */
601         { "vm map (system)", &lock_class_mtx_sleep },
602         { "vnode interlock", &lock_class_mtx_sleep },
603         { "cdev", &lock_class_mtx_sleep },
604         { NULL, NULL },
605         /*
606          * VM
607          */
608         { "vm map (user)", &lock_class_sx },
609         { "vm object", &lock_class_rw },
610         { "vm page", &lock_class_mtx_sleep },
611         { "pmap pv global", &lock_class_rw },
612         { "pmap", &lock_class_mtx_sleep },
613         { "pmap pv list", &lock_class_rw },
614         { "vm page free queue", &lock_class_mtx_sleep },
615         { "vm pagequeue", &lock_class_mtx_sleep },
616         { NULL, NULL },
617         /*
618          * kqueue/VFS interaction
619          */
620         { "kqueue", &lock_class_mtx_sleep },
621         { "struct mount mtx", &lock_class_mtx_sleep },
622         { "vnode interlock", &lock_class_mtx_sleep },
623         { NULL, NULL },
624         /*
625          * VFS namecache
626          */
627         { "ncvn", &lock_class_mtx_sleep },
628         { "ncbuc", &lock_class_rw },
629         { "vnode interlock", &lock_class_mtx_sleep },
630         { "ncneg", &lock_class_mtx_sleep },
631         { NULL, NULL },
632         /*
633          * ZFS locking
634          */
635         { "dn->dn_mtx", &lock_class_sx },
636         { "dr->dt.di.dr_mtx", &lock_class_sx },
637         { "db->db_mtx", &lock_class_sx },
638         { NULL, NULL },
639         /*
640          * TCP log locks
641          */
642         { "TCP ID tree", &lock_class_rw },
643         { "tcp log id bucket", &lock_class_mtx_sleep },
644         { "tcpinp", &lock_class_rw },
645         { "TCP log expireq", &lock_class_mtx_sleep },
646         { NULL, NULL },
647         /*
648          * spin locks
649          */
650 #ifdef SMP
651         { "ap boot", &lock_class_mtx_spin },
652 #endif
653         { "rm.mutex_mtx", &lock_class_mtx_spin },
654         { "sio", &lock_class_mtx_spin },
655 #ifdef __i386__
656         { "cy", &lock_class_mtx_spin },
657 #endif
658 #ifdef __sparc64__
659         { "pcib_mtx", &lock_class_mtx_spin },
660         { "rtc_mtx", &lock_class_mtx_spin },
661 #endif
662         { "scc_hwmtx", &lock_class_mtx_spin },
663         { "uart_hwmtx", &lock_class_mtx_spin },
664         { "fast_taskqueue", &lock_class_mtx_spin },
665         { "intr table", &lock_class_mtx_spin },
666         { "process slock", &lock_class_mtx_spin },
667         { "syscons video lock", &lock_class_mtx_spin },
668         { "sleepq chain", &lock_class_mtx_spin },
669         { "rm_spinlock", &lock_class_mtx_spin },
670         { "turnstile chain", &lock_class_mtx_spin },
671         { "turnstile lock", &lock_class_mtx_spin },
672         { "sched lock", &lock_class_mtx_spin },
673         { "td_contested", &lock_class_mtx_spin },
674         { "callout", &lock_class_mtx_spin },
675         { "entropy harvest mutex", &lock_class_mtx_spin },
676 #ifdef SMP
677         { "smp rendezvous", &lock_class_mtx_spin },
678 #endif
679 #ifdef __powerpc__
680         { "tlb0", &lock_class_mtx_spin },
681 #endif
682         { NULL, NULL },
683         { "sched lock", &lock_class_mtx_spin },
684 #ifdef  HWPMC_HOOKS
685         { "pmc-per-proc", &lock_class_mtx_spin },
686 #endif
687         { NULL, NULL },
688         /*
689          * leaf locks
690          */
691         { "intrcnt", &lock_class_mtx_spin },
692         { "icu", &lock_class_mtx_spin },
693 #if defined(SMP) && defined(__sparc64__)
694         { "ipi", &lock_class_mtx_spin },
695 #endif
696 #ifdef __i386__
697         { "allpmaps", &lock_class_mtx_spin },
698         { "descriptor tables", &lock_class_mtx_spin },
699 #endif
700         { "clk", &lock_class_mtx_spin },
701         { "cpuset", &lock_class_mtx_spin },
702         { "mprof lock", &lock_class_mtx_spin },
703         { "zombie lock", &lock_class_mtx_spin },
704         { "ALD Queue", &lock_class_mtx_spin },
705 #if defined(__i386__) || defined(__amd64__)
706         { "pcicfg", &lock_class_mtx_spin },
707         { "NDIS thread lock", &lock_class_mtx_spin },
708 #endif
709         { "tw_osl_io_lock", &lock_class_mtx_spin },
710         { "tw_osl_q_lock", &lock_class_mtx_spin },
711         { "tw_cl_io_lock", &lock_class_mtx_spin },
712         { "tw_cl_intr_lock", &lock_class_mtx_spin },
713         { "tw_cl_gen_lock", &lock_class_mtx_spin },
714 #ifdef  HWPMC_HOOKS
715         { "pmc-leaf", &lock_class_mtx_spin },
716 #endif
717         { "blocked lock", &lock_class_mtx_spin },
718         { NULL, NULL },
719         { NULL, NULL }
720 };
721
722 /*
723  * Pairs of locks which have been blessed.  Witness does not complain about
724  * order problems with blessed lock pairs.  Please do not add an entry to the
725  * table without an explanatory comment.
726  */
727 static struct witness_blessed blessed_list[] = {
728         /*
729          * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
730          * both lock orders, so a deadlock cannot happen as a result of this
731          * LOR.
732          */
733         { "dirhash",    "bufwait" },
734
735         /*
736          * A UFS vnode may be locked in vget() while a buffer belonging to the
737          * parent directory vnode is locked.
738          */
739         { "ufs",        "bufwait" },
740 };
741
742 /*
743  * This global is set to 0 once it becomes safe to use the witness code.
744  */
745 static int witness_cold = 1;
746
747 /*
748  * This global is set to 1 once the static lock orders have been enrolled
749  * so that a warning can be issued for any spin locks enrolled later.
750  */
751 static int witness_spin_warn = 0;
752
753 /* Trim useless garbage from filenames. */
754 static const char *
755 fixup_filename(const char *file)
756 {
757
758         if (file == NULL)
759                 return (NULL);
760         while (strncmp(file, "../", 3) == 0)
761                 file += 3;
762         return (file);
763 }
764
765 /*
766  * Calculate the size of early witness structures.
767  */
768 int
769 witness_startup_count(void)
770 {
771         int sz;
772
773         sz = sizeof(struct witness) * witness_count;
774         sz += sizeof(*w_rmatrix) * (witness_count + 1);
775         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
776             (witness_count + 1);
777
778         return (sz);
779 }
780
781 /*
782  * The WITNESS-enabled diagnostic code.  Note that the witness code does
783  * assume that the early boot is single-threaded at least until after this
784  * routine is completed.
785  */
786 void
787 witness_startup(void *mem)
788 {
789         struct lock_object *lock;
790         struct witness_order_list_entry *order;
791         struct witness *w, *w1;
792         uintptr_t p;
793         int i;
794
795         p = (uintptr_t)mem;
796         w_data = (void *)p;
797         p += sizeof(struct witness) * witness_count;
798
799         w_rmatrix = (void *)p;
800         p += sizeof(*w_rmatrix) * (witness_count + 1);
801
802         for (i = 0; i < witness_count + 1; i++) {
803                 w_rmatrix[i] = (void *)p;
804                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
805         }
806         badstack_sbuf_size = witness_count * 256;
807
808         /*
809          * We have to release Giant before initializing its witness
810          * structure so that WITNESS doesn't get confused.
811          */
812         mtx_unlock(&Giant);
813         mtx_assert(&Giant, MA_NOTOWNED);
814
815         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
816         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
817             MTX_NOWITNESS | MTX_NOPROFILE);
818         for (i = witness_count - 1; i >= 0; i--) {
819                 w = &w_data[i];
820                 memset(w, 0, sizeof(*w));
821                 w_data[i].w_index = i;  /* Witness index never changes. */
822                 witness_free(w);
823         }
824         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
825             ("%s: Invalid list of free witness objects", __func__));
826
827         /* Witness with index 0 is not used to aid in debugging. */
828         STAILQ_REMOVE_HEAD(&w_free, w_list);
829         w_free_cnt--;
830
831         for (i = 0; i < witness_count; i++) {
832                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
833                     (witness_count + 1));
834         }
835
836         for (i = 0; i < LOCK_CHILDCOUNT; i++)
837                 witness_lock_list_free(&w_locklistdata[i]);
838         witness_init_hash_tables();
839
840         /* First add in all the specified order lists. */
841         for (order = order_lists; order->w_name != NULL; order++) {
842                 w = enroll(order->w_name, order->w_class);
843                 if (w == NULL)
844                         continue;
845                 w->w_file = "order list";
846                 for (order++; order->w_name != NULL; order++) {
847                         w1 = enroll(order->w_name, order->w_class);
848                         if (w1 == NULL)
849                                 continue;
850                         w1->w_file = "order list";
851                         itismychild(w, w1);
852                         w = w1;
853                 }
854         }
855         witness_spin_warn = 1;
856
857         /* Iterate through all locks and add them to witness. */
858         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
859                 lock = pending_locks[i].wh_lock;
860                 KASSERT(lock->lo_flags & LO_WITNESS,
861                     ("%s: lock %s is on pending list but not LO_WITNESS",
862                     __func__, lock->lo_name));
863                 lock->lo_witness = enroll(pending_locks[i].wh_type,
864                     LOCK_CLASS(lock));
865         }
866
867         /* Mark the witness code as being ready for use. */
868         witness_cold = 0;
869
870         mtx_lock(&Giant);
871 }
872
873 void
874 witness_init(struct lock_object *lock, const char *type)
875 {
876         struct lock_class *class;
877
878         /* Various sanity checks. */
879         class = LOCK_CLASS(lock);
880         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
881             (class->lc_flags & LC_RECURSABLE) == 0)
882                 kassert_panic("%s: lock (%s) %s can not be recursable",
883                     __func__, class->lc_name, lock->lo_name);
884         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
885             (class->lc_flags & LC_SLEEPABLE) == 0)
886                 kassert_panic("%s: lock (%s) %s can not be sleepable",
887                     __func__, class->lc_name, lock->lo_name);
888         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
889             (class->lc_flags & LC_UPGRADABLE) == 0)
890                 kassert_panic("%s: lock (%s) %s can not be upgradable",
891                     __func__, class->lc_name, lock->lo_name);
892
893         /*
894          * If we shouldn't watch this lock, then just clear lo_witness.
895          * Otherwise, if witness_cold is set, then it is too early to
896          * enroll this lock, so defer it to witness_initialize() by adding
897          * it to the pending_locks list.  If it is not too early, then enroll
898          * the lock now.
899          */
900         if (witness_watch < 1 || panicstr != NULL ||
901             (lock->lo_flags & LO_WITNESS) == 0)
902                 lock->lo_witness = NULL;
903         else if (witness_cold) {
904                 pending_locks[pending_cnt].wh_lock = lock;
905                 pending_locks[pending_cnt++].wh_type = type;
906                 if (pending_cnt > WITNESS_PENDLIST)
907                         panic("%s: pending locks list is too small, "
908                             "increase WITNESS_PENDLIST\n",
909                             __func__);
910         } else
911                 lock->lo_witness = enroll(type, class);
912 }
913
914 void
915 witness_destroy(struct lock_object *lock)
916 {
917         struct lock_class *class;
918         struct witness *w;
919
920         class = LOCK_CLASS(lock);
921
922         if (witness_cold)
923                 panic("lock (%s) %s destroyed while witness_cold",
924                     class->lc_name, lock->lo_name);
925
926         /* XXX: need to verify that no one holds the lock */
927         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
928                 return;
929         w = lock->lo_witness;
930
931         mtx_lock_spin(&w_mtx);
932         MPASS(w->w_refcount > 0);
933         w->w_refcount--;
934
935         if (w->w_refcount == 0)
936                 depart(w);
937         mtx_unlock_spin(&w_mtx);
938 }
939
940 #ifdef DDB
941 static void
942 witness_ddb_compute_levels(void)
943 {
944         struct witness *w;
945
946         /*
947          * First clear all levels.
948          */
949         STAILQ_FOREACH(w, &w_all, w_list)
950                 w->w_ddb_level = -1;
951
952         /*
953          * Look for locks with no parents and level all their descendants.
954          */
955         STAILQ_FOREACH(w, &w_all, w_list) {
956
957                 /* If the witness has ancestors (is not a root), skip it. */
958                 if (w->w_num_ancestors > 0)
959                         continue;
960                 witness_ddb_level_descendants(w, 0);
961         }
962 }
963
964 static void
965 witness_ddb_level_descendants(struct witness *w, int l)
966 {
967         int i;
968
969         if (w->w_ddb_level >= l)
970                 return;
971
972         w->w_ddb_level = l;
973         l++;
974
975         for (i = 1; i <= w_max_used_index; i++) {
976                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
977                         witness_ddb_level_descendants(&w_data[i], l);
978         }
979 }
980
981 static void
982 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
983     struct witness *w, int indent)
984 {
985         int i;
986
987         for (i = 0; i < indent; i++)
988                 prnt(" ");
989         prnt("%s (type: %s, depth: %d, active refs: %d)",
990              w->w_name, w->w_class->lc_name,
991              w->w_ddb_level, w->w_refcount);
992         if (w->w_displayed) {
993                 prnt(" -- (already displayed)\n");
994                 return;
995         }
996         w->w_displayed = 1;
997         if (w->w_file != NULL && w->w_line != 0)
998                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
999                     w->w_line);
1000         else
1001                 prnt(" -- never acquired\n");
1002         indent++;
1003         WITNESS_INDEX_ASSERT(w->w_index);
1004         for (i = 1; i <= w_max_used_index; i++) {
1005                 if (db_pager_quit)
1006                         return;
1007                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1008                         witness_ddb_display_descendants(prnt, &w_data[i],
1009                             indent);
1010         }
1011 }
1012
1013 static void
1014 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1015     struct witness_list *list)
1016 {
1017         struct witness *w;
1018
1019         STAILQ_FOREACH(w, list, w_typelist) {
1020                 if (w->w_file == NULL || w->w_ddb_level > 0)
1021                         continue;
1022
1023                 /* This lock has no anscestors - display its descendants. */
1024                 witness_ddb_display_descendants(prnt, w, 0);
1025                 if (db_pager_quit)
1026                         return;
1027         }
1028 }
1029         
1030 static void
1031 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1032 {
1033         struct witness *w;
1034
1035         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1036         witness_ddb_compute_levels();
1037
1038         /* Clear all the displayed flags. */
1039         STAILQ_FOREACH(w, &w_all, w_list)
1040                 w->w_displayed = 0;
1041
1042         /*
1043          * First, handle sleep locks which have been acquired at least
1044          * once.
1045          */
1046         prnt("Sleep locks:\n");
1047         witness_ddb_display_list(prnt, &w_sleep);
1048         if (db_pager_quit)
1049                 return;
1050         
1051         /*
1052          * Now do spin locks which have been acquired at least once.
1053          */
1054         prnt("\nSpin locks:\n");
1055         witness_ddb_display_list(prnt, &w_spin);
1056         if (db_pager_quit)
1057                 return;
1058         
1059         /*
1060          * Finally, any locks which have not been acquired yet.
1061          */
1062         prnt("\nLocks which were never acquired:\n");
1063         STAILQ_FOREACH(w, &w_all, w_list) {
1064                 if (w->w_file != NULL || w->w_refcount == 0)
1065                         continue;
1066                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1067                     w->w_class->lc_name, w->w_ddb_level);
1068                 if (db_pager_quit)
1069                         return;
1070         }
1071 }
1072 #endif /* DDB */
1073
1074 int
1075 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1076 {
1077
1078         if (witness_watch == -1 || panicstr != NULL)
1079                 return (0);
1080
1081         /* Require locks that witness knows about. */
1082         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1083             lock2->lo_witness == NULL)
1084                 return (EINVAL);
1085
1086         mtx_assert(&w_mtx, MA_NOTOWNED);
1087         mtx_lock_spin(&w_mtx);
1088
1089         /*
1090          * If we already have either an explicit or implied lock order that
1091          * is the other way around, then return an error.
1092          */
1093         if (witness_watch &&
1094             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1095                 mtx_unlock_spin(&w_mtx);
1096                 return (EDOOFUS);
1097         }
1098         
1099         /* Try to add the new order. */
1100         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1101             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1102         itismychild(lock1->lo_witness, lock2->lo_witness);
1103         mtx_unlock_spin(&w_mtx);
1104         return (0);
1105 }
1106
1107 void
1108 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1109     int line, struct lock_object *interlock)
1110 {
1111         struct lock_list_entry *lock_list, *lle;
1112         struct lock_instance *lock1, *lock2, *plock;
1113         struct lock_class *class, *iclass;
1114         struct witness *w, *w1;
1115         struct thread *td;
1116         int i, j;
1117
1118         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1119             panicstr != NULL)
1120                 return;
1121
1122         w = lock->lo_witness;
1123         class = LOCK_CLASS(lock);
1124         td = curthread;
1125
1126         if (class->lc_flags & LC_SLEEPLOCK) {
1127
1128                 /*
1129                  * Since spin locks include a critical section, this check
1130                  * implicitly enforces a lock order of all sleep locks before
1131                  * all spin locks.
1132                  */
1133                 if (td->td_critnest != 0 && !kdb_active)
1134                         kassert_panic("acquiring blockable sleep lock with "
1135                             "spinlock or critical section held (%s) %s @ %s:%d",
1136                             class->lc_name, lock->lo_name,
1137                             fixup_filename(file), line);
1138
1139                 /*
1140                  * If this is the first lock acquired then just return as
1141                  * no order checking is needed.
1142                  */
1143                 lock_list = td->td_sleeplocks;
1144                 if (lock_list == NULL || lock_list->ll_count == 0)
1145                         return;
1146         } else {
1147
1148                 /*
1149                  * If this is the first lock, just return as no order
1150                  * checking is needed.  Avoid problems with thread
1151                  * migration pinning the thread while checking if
1152                  * spinlocks are held.  If at least one spinlock is held
1153                  * the thread is in a safe path and it is allowed to
1154                  * unpin it.
1155                  */
1156                 sched_pin();
1157                 lock_list = PCPU_GET(spinlocks);
1158                 if (lock_list == NULL || lock_list->ll_count == 0) {
1159                         sched_unpin();
1160                         return;
1161                 }
1162                 sched_unpin();
1163         }
1164
1165         /*
1166          * Check to see if we are recursing on a lock we already own.  If
1167          * so, make sure that we don't mismatch exclusive and shared lock
1168          * acquires.
1169          */
1170         lock1 = find_instance(lock_list, lock);
1171         if (lock1 != NULL) {
1172                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1173                     (flags & LOP_EXCLUSIVE) == 0) {
1174                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1175                             class->lc_name, lock->lo_name,
1176                             fixup_filename(file), line);
1177                         witness_output("while exclusively locked from %s:%d\n",
1178                             fixup_filename(lock1->li_file), lock1->li_line);
1179                         kassert_panic("excl->share");
1180                 }
1181                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1182                     (flags & LOP_EXCLUSIVE) != 0) {
1183                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1184                             class->lc_name, lock->lo_name,
1185                             fixup_filename(file), line);
1186                         witness_output("while share locked from %s:%d\n",
1187                             fixup_filename(lock1->li_file), lock1->li_line);
1188                         kassert_panic("share->excl");
1189                 }
1190                 return;
1191         }
1192
1193         /* Warn if the interlock is not locked exactly once. */
1194         if (interlock != NULL) {
1195                 iclass = LOCK_CLASS(interlock);
1196                 lock1 = find_instance(lock_list, interlock);
1197                 if (lock1 == NULL)
1198                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1199                             iclass->lc_name, interlock->lo_name,
1200                             fixup_filename(file), line);
1201                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1202                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1203                             iclass->lc_name, interlock->lo_name,
1204                             fixup_filename(file), line);
1205         }
1206
1207         /*
1208          * Find the previously acquired lock, but ignore interlocks.
1209          */
1210         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1211         if (interlock != NULL && plock->li_lock == interlock) {
1212                 if (lock_list->ll_count > 1)
1213                         plock =
1214                             &lock_list->ll_children[lock_list->ll_count - 2];
1215                 else {
1216                         lle = lock_list->ll_next;
1217
1218                         /*
1219                          * The interlock is the only lock we hold, so
1220                          * simply return.
1221                          */
1222                         if (lle == NULL)
1223                                 return;
1224                         plock = &lle->ll_children[lle->ll_count - 1];
1225                 }
1226         }
1227         
1228         /*
1229          * Try to perform most checks without a lock.  If this succeeds we
1230          * can skip acquiring the lock and return success.  Otherwise we redo
1231          * the check with the lock held to handle races with concurrent updates.
1232          */
1233         w1 = plock->li_lock->lo_witness;
1234         if (witness_lock_order_check(w1, w))
1235                 return;
1236
1237         mtx_lock_spin(&w_mtx);
1238         if (witness_lock_order_check(w1, w)) {
1239                 mtx_unlock_spin(&w_mtx);
1240                 return;
1241         }
1242         witness_lock_order_add(w1, w);
1243
1244         /*
1245          * Check for duplicate locks of the same type.  Note that we only
1246          * have to check for this on the last lock we just acquired.  Any
1247          * other cases will be caught as lock order violations.
1248          */
1249         if (w1 == w) {
1250                 i = w->w_index;
1251                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1252                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1253                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1254                         w->w_reversed = 1;
1255                         mtx_unlock_spin(&w_mtx);
1256                         witness_output(
1257                             "acquiring duplicate lock of same type: \"%s\"\n", 
1258                             w->w_name);
1259                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1260                             fixup_filename(plock->li_file), plock->li_line);
1261                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1262                             fixup_filename(file), line);
1263                         witness_debugger(1, __func__);
1264                 } else
1265                         mtx_unlock_spin(&w_mtx);
1266                 return;
1267         }
1268         mtx_assert(&w_mtx, MA_OWNED);
1269
1270         /*
1271          * If we know that the lock we are acquiring comes after
1272          * the lock we most recently acquired in the lock order tree,
1273          * then there is no need for any further checks.
1274          */
1275         if (isitmychild(w1, w))
1276                 goto out;
1277
1278         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1279                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1280
1281                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1282                         lock1 = &lle->ll_children[i];
1283
1284                         /*
1285                          * Ignore the interlock.
1286                          */
1287                         if (interlock == lock1->li_lock)
1288                                 continue;
1289
1290                         /*
1291                          * If this lock doesn't undergo witness checking,
1292                          * then skip it.
1293                          */
1294                         w1 = lock1->li_lock->lo_witness;
1295                         if (w1 == NULL) {
1296                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1297                                     ("lock missing witness structure"));
1298                                 continue;
1299                         }
1300
1301                         /*
1302                          * If we are locking Giant and this is a sleepable
1303                          * lock, then skip it.
1304                          */
1305                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1306                             lock == &Giant.lock_object)
1307                                 continue;
1308
1309                         /*
1310                          * If we are locking a sleepable lock and this lock
1311                          * is Giant, then skip it.
1312                          */
1313                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1314                             lock1->li_lock == &Giant.lock_object)
1315                                 continue;
1316
1317                         /*
1318                          * If we are locking a sleepable lock and this lock
1319                          * isn't sleepable, we want to treat it as a lock
1320                          * order violation to enfore a general lock order of
1321                          * sleepable locks before non-sleepable locks.
1322                          */
1323                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1324                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1325                                 goto reversal;
1326
1327                         /*
1328                          * If we are locking Giant and this is a non-sleepable
1329                          * lock, then treat it as a reversal.
1330                          */
1331                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1332                             lock == &Giant.lock_object)
1333                                 goto reversal;
1334
1335                         /*
1336                          * Check the lock order hierarchy for a reveresal.
1337                          */
1338                         if (!isitmydescendant(w, w1))
1339                                 continue;
1340                 reversal:
1341
1342                         /*
1343                          * We have a lock order violation, check to see if it
1344                          * is allowed or has already been yelled about.
1345                          */
1346
1347                         /* Bail if this violation is known */
1348                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1349                                 goto out;
1350
1351                         /* Record this as a violation */
1352                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1353                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1354                         w->w_reversed = w1->w_reversed = 1;
1355                         witness_increment_graph_generation();
1356
1357                         /*
1358                          * If the lock order is blessed, bail before logging
1359                          * anything.  We don't look for other lock order
1360                          * violations though, which may be a bug.
1361                          */
1362                         if (blessed(w, w1))
1363                                 goto out;
1364                         mtx_unlock_spin(&w_mtx);
1365
1366 #ifdef WITNESS_NO_VNODE
1367                         /*
1368                          * There are known LORs between VNODE locks. They are
1369                          * not an indication of a bug. VNODE locks are flagged
1370                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1371                          * is between 2 VNODE locks.
1372                          */
1373                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1374                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1375                                 return;
1376 #endif
1377
1378                         /*
1379                          * Ok, yell about it.
1380                          */
1381                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1382                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1383                                 witness_output(
1384                 "lock order reversal: (sleepable after non-sleepable)\n");
1385                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1386                             && lock == &Giant.lock_object)
1387                                 witness_output(
1388                 "lock order reversal: (Giant after non-sleepable)\n");
1389                         else
1390                                 witness_output("lock order reversal:\n");
1391
1392                         /*
1393                          * Try to locate an earlier lock with
1394                          * witness w in our list.
1395                          */
1396                         do {
1397                                 lock2 = &lle->ll_children[i];
1398                                 MPASS(lock2->li_lock != NULL);
1399                                 if (lock2->li_lock->lo_witness == w)
1400                                         break;
1401                                 if (i == 0 && lle->ll_next != NULL) {
1402                                         lle = lle->ll_next;
1403                                         i = lle->ll_count - 1;
1404                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1405                                 } else
1406                                         i--;
1407                         } while (i >= 0);
1408                         if (i < 0) {
1409                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1410                                     lock1->li_lock, lock1->li_lock->lo_name,
1411                                     w1->w_name, fixup_filename(lock1->li_file),
1412                                     lock1->li_line);
1413                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1414                                     lock->lo_name, w->w_name,
1415                                     fixup_filename(file), line);
1416                         } else {
1417                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1418                                     lock2->li_lock, lock2->li_lock->lo_name,
1419                                     lock2->li_lock->lo_witness->w_name,
1420                                     fixup_filename(lock2->li_file),
1421                                     lock2->li_line);
1422                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1423                                     lock1->li_lock, lock1->li_lock->lo_name,
1424                                     w1->w_name, fixup_filename(lock1->li_file),
1425                                     lock1->li_line);
1426                                 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1427                                     lock->lo_name, w->w_name,
1428                                     fixup_filename(file), line);
1429                         }
1430                         witness_debugger(1, __func__);
1431                         return;
1432                 }
1433         }
1434
1435         /*
1436          * If requested, build a new lock order.  However, don't build a new
1437          * relationship between a sleepable lock and Giant if it is in the
1438          * wrong direction.  The correct lock order is that sleepable locks
1439          * always come before Giant.
1440          */
1441         if (flags & LOP_NEWORDER &&
1442             !(plock->li_lock == &Giant.lock_object &&
1443             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1444                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1445                     w->w_name, plock->li_lock->lo_witness->w_name);
1446                 itismychild(plock->li_lock->lo_witness, w);
1447         }
1448 out:
1449         mtx_unlock_spin(&w_mtx);
1450 }
1451
1452 void
1453 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1454 {
1455         struct lock_list_entry **lock_list, *lle;
1456         struct lock_instance *instance;
1457         struct witness *w;
1458         struct thread *td;
1459
1460         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1461             panicstr != NULL)
1462                 return;
1463         w = lock->lo_witness;
1464         td = curthread;
1465
1466         /* Determine lock list for this lock. */
1467         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1468                 lock_list = &td->td_sleeplocks;
1469         else
1470                 lock_list = PCPU_PTR(spinlocks);
1471
1472         /* Check to see if we are recursing on a lock we already own. */
1473         instance = find_instance(*lock_list, lock);
1474         if (instance != NULL) {
1475                 instance->li_flags++;
1476                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1477                     td->td_proc->p_pid, lock->lo_name,
1478                     instance->li_flags & LI_RECURSEMASK);
1479                 instance->li_file = file;
1480                 instance->li_line = line;
1481                 return;
1482         }
1483
1484         /* Update per-witness last file and line acquire. */
1485         w->w_file = file;
1486         w->w_line = line;
1487
1488         /* Find the next open lock instance in the list and fill it. */
1489         lle = *lock_list;
1490         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1491                 lle = witness_lock_list_get();
1492                 if (lle == NULL)
1493                         return;
1494                 lle->ll_next = *lock_list;
1495                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1496                     td->td_proc->p_pid, lle);
1497                 *lock_list = lle;
1498         }
1499         instance = &lle->ll_children[lle->ll_count++];
1500         instance->li_lock = lock;
1501         instance->li_line = line;
1502         instance->li_file = file;
1503         if ((flags & LOP_EXCLUSIVE) != 0)
1504                 instance->li_flags = LI_EXCLUSIVE;
1505         else
1506                 instance->li_flags = 0;
1507         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1508             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1509 }
1510
1511 void
1512 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1513 {
1514         struct lock_instance *instance;
1515         struct lock_class *class;
1516
1517         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1518         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1519                 return;
1520         class = LOCK_CLASS(lock);
1521         if (witness_watch) {
1522                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1523                         kassert_panic(
1524                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1525                             class->lc_name, lock->lo_name,
1526                             fixup_filename(file), line);
1527                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1528                         kassert_panic(
1529                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1530                             class->lc_name, lock->lo_name,
1531                             fixup_filename(file), line);
1532         }
1533         instance = find_instance(curthread->td_sleeplocks, lock);
1534         if (instance == NULL) {
1535                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1536                     class->lc_name, lock->lo_name,
1537                     fixup_filename(file), line);
1538                 return;
1539         }
1540         if (witness_watch) {
1541                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1542                         kassert_panic(
1543                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1544                             class->lc_name, lock->lo_name,
1545                             fixup_filename(file), line);
1546                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1547                         kassert_panic(
1548                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1549                             class->lc_name, lock->lo_name,
1550                             instance->li_flags & LI_RECURSEMASK,
1551                             fixup_filename(file), line);
1552         }
1553         instance->li_flags |= LI_EXCLUSIVE;
1554 }
1555
1556 void
1557 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1558     int line)
1559 {
1560         struct lock_instance *instance;
1561         struct lock_class *class;
1562
1563         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1564         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1565                 return;
1566         class = LOCK_CLASS(lock);
1567         if (witness_watch) {
1568                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1569                         kassert_panic(
1570                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1571                             class->lc_name, lock->lo_name,
1572                             fixup_filename(file), line);
1573                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1574                         kassert_panic(
1575                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1576                             class->lc_name, lock->lo_name,
1577                             fixup_filename(file), line);
1578         }
1579         instance = find_instance(curthread->td_sleeplocks, lock);
1580         if (instance == NULL) {
1581                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1582                     class->lc_name, lock->lo_name,
1583                     fixup_filename(file), line);
1584                 return;
1585         }
1586         if (witness_watch) {
1587                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1588                         kassert_panic(
1589                             "downgrade of shared lock (%s) %s @ %s:%d",
1590                             class->lc_name, lock->lo_name,
1591                             fixup_filename(file), line);
1592                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1593                         kassert_panic(
1594                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1595                             class->lc_name, lock->lo_name,
1596                             instance->li_flags & LI_RECURSEMASK,
1597                             fixup_filename(file), line);
1598         }
1599         instance->li_flags &= ~LI_EXCLUSIVE;
1600 }
1601
1602 void
1603 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1604 {
1605         struct lock_list_entry **lock_list, *lle;
1606         struct lock_instance *instance;
1607         struct lock_class *class;
1608         struct thread *td;
1609         register_t s;
1610         int i, j;
1611
1612         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1613                 return;
1614         td = curthread;
1615         class = LOCK_CLASS(lock);
1616
1617         /* Find lock instance associated with this lock. */
1618         if (class->lc_flags & LC_SLEEPLOCK)
1619                 lock_list = &td->td_sleeplocks;
1620         else
1621                 lock_list = PCPU_PTR(spinlocks);
1622         lle = *lock_list;
1623         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1624                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1625                         instance = &(*lock_list)->ll_children[i];
1626                         if (instance->li_lock == lock)
1627                                 goto found;
1628                 }
1629
1630         /*
1631          * When disabling WITNESS through witness_watch we could end up in
1632          * having registered locks in the td_sleeplocks queue.
1633          * We have to make sure we flush these queues, so just search for
1634          * eventual register locks and remove them.
1635          */
1636         if (witness_watch > 0) {
1637                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1638                     lock->lo_name, fixup_filename(file), line);
1639                 return;
1640         } else {
1641                 return;
1642         }
1643 found:
1644
1645         /* First, check for shared/exclusive mismatches. */
1646         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1647             (flags & LOP_EXCLUSIVE) == 0) {
1648                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1649                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1650                 witness_output("while exclusively locked from %s:%d\n",
1651                     fixup_filename(instance->li_file), instance->li_line);
1652                 kassert_panic("excl->ushare");
1653         }
1654         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1655             (flags & LOP_EXCLUSIVE) != 0) {
1656                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1657                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1658                 witness_output("while share locked from %s:%d\n",
1659                     fixup_filename(instance->li_file),
1660                     instance->li_line);
1661                 kassert_panic("share->uexcl");
1662         }
1663         /* If we are recursed, unrecurse. */
1664         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1665                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1666                     td->td_proc->p_pid, instance->li_lock->lo_name,
1667                     instance->li_flags);
1668                 instance->li_flags--;
1669                 return;
1670         }
1671         /* The lock is now being dropped, check for NORELEASE flag */
1672         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1673                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1674                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1675                 kassert_panic("lock marked norelease");
1676         }
1677
1678         /* Otherwise, remove this item from the list. */
1679         s = intr_disable();
1680         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1681             td->td_proc->p_pid, instance->li_lock->lo_name,
1682             (*lock_list)->ll_count - 1);
1683         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1684                 (*lock_list)->ll_children[j] =
1685                     (*lock_list)->ll_children[j + 1];
1686         (*lock_list)->ll_count--;
1687         intr_restore(s);
1688
1689         /*
1690          * In order to reduce contention on w_mtx, we want to keep always an
1691          * head object into lists so that frequent allocation from the 
1692          * free witness pool (and subsequent locking) is avoided.
1693          * In order to maintain the current code simple, when the head
1694          * object is totally unloaded it means also that we do not have
1695          * further objects in the list, so the list ownership needs to be
1696          * hand over to another object if the current head needs to be freed.
1697          */
1698         if ((*lock_list)->ll_count == 0) {
1699                 if (*lock_list == lle) {
1700                         if (lle->ll_next == NULL)
1701                                 return;
1702                 } else
1703                         lle = *lock_list;
1704                 *lock_list = lle->ll_next;
1705                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1706                     td->td_proc->p_pid, lle);
1707                 witness_lock_list_free(lle);
1708         }
1709 }
1710
1711 void
1712 witness_thread_exit(struct thread *td)
1713 {
1714         struct lock_list_entry *lle;
1715         int i, n;
1716
1717         lle = td->td_sleeplocks;
1718         if (lle == NULL || panicstr != NULL)
1719                 return;
1720         if (lle->ll_count != 0) {
1721                 for (n = 0; lle != NULL; lle = lle->ll_next)
1722                         for (i = lle->ll_count - 1; i >= 0; i--) {
1723                                 if (n == 0)
1724                                         witness_output(
1725                     "Thread %p exiting with the following locks held:\n", td);
1726                                 n++;
1727                                 witness_list_lock(&lle->ll_children[i],
1728                                     witness_output);
1729                                 
1730                         }
1731                 kassert_panic(
1732                     "Thread %p cannot exit while holding sleeplocks\n", td);
1733         }
1734         witness_lock_list_free(lle);
1735 }
1736
1737 /*
1738  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1739  * exempt Giant and sleepable locks from the checks as well.  If any
1740  * non-exempt locks are held, then a supplied message is printed to the
1741  * output channel along with a list of the offending locks.  If indicated in the
1742  * flags then a failure results in a panic as well.
1743  */
1744 int
1745 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1746 {
1747         struct lock_list_entry *lock_list, *lle;
1748         struct lock_instance *lock1;
1749         struct thread *td;
1750         va_list ap;
1751         int i, n;
1752
1753         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1754                 return (0);
1755         n = 0;
1756         td = curthread;
1757         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1758                 for (i = lle->ll_count - 1; i >= 0; i--) {
1759                         lock1 = &lle->ll_children[i];
1760                         if (lock1->li_lock == lock)
1761                                 continue;
1762                         if (flags & WARN_GIANTOK &&
1763                             lock1->li_lock == &Giant.lock_object)
1764                                 continue;
1765                         if (flags & WARN_SLEEPOK &&
1766                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1767                                 continue;
1768                         if (n == 0) {
1769                                 va_start(ap, fmt);
1770                                 vprintf(fmt, ap);
1771                                 va_end(ap);
1772                                 printf(" with the following %slocks held:\n",
1773                                     (flags & WARN_SLEEPOK) != 0 ?
1774                                     "non-sleepable " : "");
1775                         }
1776                         n++;
1777                         witness_list_lock(lock1, printf);
1778                 }
1779
1780         /*
1781          * Pin the thread in order to avoid problems with thread migration.
1782          * Once that all verifies are passed about spinlocks ownership,
1783          * the thread is in a safe path and it can be unpinned.
1784          */
1785         sched_pin();
1786         lock_list = PCPU_GET(spinlocks);
1787         if (lock_list != NULL && lock_list->ll_count != 0) {
1788                 sched_unpin();
1789
1790                 /*
1791                  * We should only have one spinlock and as long as
1792                  * the flags cannot match for this locks class,
1793                  * check if the first spinlock is the one curthread
1794                  * should hold.
1795                  */
1796                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1797                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1798                     lock1->li_lock == lock && n == 0)
1799                         return (0);
1800
1801                 va_start(ap, fmt);
1802                 vprintf(fmt, ap);
1803                 va_end(ap);
1804                 printf(" with the following %slocks held:\n",
1805                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1806                 n += witness_list_locks(&lock_list, printf);
1807         } else
1808                 sched_unpin();
1809         if (flags & WARN_PANIC && n)
1810                 kassert_panic("%s", __func__);
1811         else
1812                 witness_debugger(n, __func__);
1813         return (n);
1814 }
1815
1816 const char *
1817 witness_file(struct lock_object *lock)
1818 {
1819         struct witness *w;
1820
1821         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1822                 return ("?");
1823         w = lock->lo_witness;
1824         return (w->w_file);
1825 }
1826
1827 int
1828 witness_line(struct lock_object *lock)
1829 {
1830         struct witness *w;
1831
1832         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1833                 return (0);
1834         w = lock->lo_witness;
1835         return (w->w_line);
1836 }
1837
1838 static struct witness *
1839 enroll(const char *description, struct lock_class *lock_class)
1840 {
1841         struct witness *w;
1842
1843         MPASS(description != NULL);
1844
1845         if (witness_watch == -1 || panicstr != NULL)
1846                 return (NULL);
1847         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1848                 if (witness_skipspin)
1849                         return (NULL);
1850         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1851                 kassert_panic("lock class %s is not sleep or spin",
1852                     lock_class->lc_name);
1853                 return (NULL);
1854         }
1855
1856         mtx_lock_spin(&w_mtx);
1857         w = witness_hash_get(description);
1858         if (w)
1859                 goto found;
1860         if ((w = witness_get()) == NULL)
1861                 return (NULL);
1862         MPASS(strlen(description) < MAX_W_NAME);
1863         strcpy(w->w_name, description);
1864         w->w_class = lock_class;
1865         w->w_refcount = 1;
1866         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1867         if (lock_class->lc_flags & LC_SPINLOCK) {
1868                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1869                 w_spin_cnt++;
1870         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1871                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1872                 w_sleep_cnt++;
1873         }
1874
1875         /* Insert new witness into the hash */
1876         witness_hash_put(w);
1877         witness_increment_graph_generation();
1878         mtx_unlock_spin(&w_mtx);
1879         return (w);
1880 found:
1881         w->w_refcount++;
1882         if (w->w_refcount == 1)
1883                 w->w_class = lock_class;
1884         mtx_unlock_spin(&w_mtx);
1885         if (lock_class != w->w_class)
1886                 kassert_panic(
1887                     "lock (%s) %s does not match earlier (%s) lock",
1888                     description, lock_class->lc_name,
1889                     w->w_class->lc_name);
1890         return (w);
1891 }
1892
1893 static void
1894 depart(struct witness *w)
1895 {
1896
1897         MPASS(w->w_refcount == 0);
1898         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1899                 w_sleep_cnt--;
1900         } else {
1901                 w_spin_cnt--;
1902         }
1903         /*
1904          * Set file to NULL as it may point into a loadable module.
1905          */
1906         w->w_file = NULL;
1907         w->w_line = 0;
1908         witness_increment_graph_generation();
1909 }
1910
1911
1912 static void
1913 adopt(struct witness *parent, struct witness *child)
1914 {
1915         int pi, ci, i, j;
1916
1917         if (witness_cold == 0)
1918                 mtx_assert(&w_mtx, MA_OWNED);
1919
1920         /* If the relationship is already known, there's no work to be done. */
1921         if (isitmychild(parent, child))
1922                 return;
1923
1924         /* When the structure of the graph changes, bump up the generation. */
1925         witness_increment_graph_generation();
1926
1927         /*
1928          * The hard part ... create the direct relationship, then propagate all
1929          * indirect relationships.
1930          */
1931         pi = parent->w_index;
1932         ci = child->w_index;
1933         WITNESS_INDEX_ASSERT(pi);
1934         WITNESS_INDEX_ASSERT(ci);
1935         MPASS(pi != ci);
1936         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1937         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1938
1939         /*
1940          * If parent was not already an ancestor of child,
1941          * then we increment the descendant and ancestor counters.
1942          */
1943         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1944                 parent->w_num_descendants++;
1945                 child->w_num_ancestors++;
1946         }
1947
1948         /* 
1949          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1950          * an ancestor of 'pi' during this loop.
1951          */
1952         for (i = 1; i <= w_max_used_index; i++) {
1953                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1954                     (i != pi))
1955                         continue;
1956
1957                 /* Find each descendant of 'i' and mark it as a descendant. */
1958                 for (j = 1; j <= w_max_used_index; j++) {
1959
1960                         /* 
1961                          * Skip children that are already marked as
1962                          * descendants of 'i'.
1963                          */
1964                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1965                                 continue;
1966
1967                         /*
1968                          * We are only interested in descendants of 'ci'. Note
1969                          * that 'ci' itself is counted as a descendant of 'ci'.
1970                          */
1971                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1972                             (j != ci))
1973                                 continue;
1974                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1975                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1976                         w_data[i].w_num_descendants++;
1977                         w_data[j].w_num_ancestors++;
1978
1979                         /* 
1980                          * Make sure we aren't marking a node as both an
1981                          * ancestor and descendant. We should have caught 
1982                          * this as a lock order reversal earlier.
1983                          */
1984                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1985                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1986                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1987                                     "both ancestor and descendant\n",
1988                                     i, j, w_rmatrix[i][j]); 
1989                                 kdb_backtrace();
1990                                 printf("Witness disabled.\n");
1991                                 witness_watch = -1;
1992                         }
1993                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1994                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1995                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1996                                     "both ancestor and descendant\n",
1997                                     j, i, w_rmatrix[j][i]); 
1998                                 kdb_backtrace();
1999                                 printf("Witness disabled.\n");
2000                                 witness_watch = -1;
2001                         }
2002                 }
2003         }
2004 }
2005
2006 static void
2007 itismychild(struct witness *parent, struct witness *child)
2008 {
2009         int unlocked;
2010
2011         MPASS(child != NULL && parent != NULL);
2012         if (witness_cold == 0)
2013                 mtx_assert(&w_mtx, MA_OWNED);
2014
2015         if (!witness_lock_type_equal(parent, child)) {
2016                 if (witness_cold == 0) {
2017                         unlocked = 1;
2018                         mtx_unlock_spin(&w_mtx);
2019                 } else {
2020                         unlocked = 0;
2021                 }
2022                 kassert_panic(
2023                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2024                     "the same lock type", __func__, parent->w_name,
2025                     parent->w_class->lc_name, child->w_name,
2026                     child->w_class->lc_name);
2027                 if (unlocked)
2028                         mtx_lock_spin(&w_mtx);
2029         }
2030         adopt(parent, child);
2031 }
2032
2033 /*
2034  * Generic code for the isitmy*() functions. The rmask parameter is the
2035  * expected relationship of w1 to w2.
2036  */
2037 static int
2038 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2039 {
2040         unsigned char r1, r2;
2041         int i1, i2;
2042
2043         i1 = w1->w_index;
2044         i2 = w2->w_index;
2045         WITNESS_INDEX_ASSERT(i1);
2046         WITNESS_INDEX_ASSERT(i2);
2047         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2048         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2049
2050         /* The flags on one better be the inverse of the flags on the other */
2051         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2052             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2053                 /* Don't squawk if we're potentially racing with an update. */
2054                 if (!mtx_owned(&w_mtx))
2055                         return (0);
2056                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2057                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2058                     "w_rmatrix[%d][%d] == %hhx\n",
2059                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2060                     i2, i1, r2);
2061                 kdb_backtrace();
2062                 printf("Witness disabled.\n");
2063                 witness_watch = -1;
2064         }
2065         return (r1 & rmask);
2066 }
2067
2068 /*
2069  * Checks if @child is a direct child of @parent.
2070  */
2071 static int
2072 isitmychild(struct witness *parent, struct witness *child)
2073 {
2074
2075         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2076 }
2077
2078 /*
2079  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2080  */
2081 static int
2082 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2083 {
2084
2085         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2086             __func__));
2087 }
2088
2089 static int
2090 blessed(struct witness *w1, struct witness *w2)
2091 {
2092         int i;
2093         struct witness_blessed *b;
2094
2095         for (i = 0; i < nitems(blessed_list); i++) {
2096                 b = &blessed_list[i];
2097                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2098                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2099                                 return (1);
2100                         continue;
2101                 }
2102                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2103                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2104                                 return (1);
2105         }
2106         return (0);
2107 }
2108
2109 static struct witness *
2110 witness_get(void)
2111 {
2112         struct witness *w;
2113         int index;
2114
2115         if (witness_cold == 0)
2116                 mtx_assert(&w_mtx, MA_OWNED);
2117
2118         if (witness_watch == -1) {
2119                 mtx_unlock_spin(&w_mtx);
2120                 return (NULL);
2121         }
2122         if (STAILQ_EMPTY(&w_free)) {
2123                 witness_watch = -1;
2124                 mtx_unlock_spin(&w_mtx);
2125                 printf("WITNESS: unable to allocate a new witness object\n");
2126                 return (NULL);
2127         }
2128         w = STAILQ_FIRST(&w_free);
2129         STAILQ_REMOVE_HEAD(&w_free, w_list);
2130         w_free_cnt--;
2131         index = w->w_index;
2132         MPASS(index > 0 && index == w_max_used_index+1 &&
2133             index < witness_count);
2134         bzero(w, sizeof(*w));
2135         w->w_index = index;
2136         if (index > w_max_used_index)
2137                 w_max_used_index = index;
2138         return (w);
2139 }
2140
2141 static void
2142 witness_free(struct witness *w)
2143 {
2144
2145         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2146         w_free_cnt++;
2147 }
2148
2149 static struct lock_list_entry *
2150 witness_lock_list_get(void)
2151 {
2152         struct lock_list_entry *lle;
2153
2154         if (witness_watch == -1)
2155                 return (NULL);
2156         mtx_lock_spin(&w_mtx);
2157         lle = w_lock_list_free;
2158         if (lle == NULL) {
2159                 witness_watch = -1;
2160                 mtx_unlock_spin(&w_mtx);
2161                 printf("%s: witness exhausted\n", __func__);
2162                 return (NULL);
2163         }
2164         w_lock_list_free = lle->ll_next;
2165         mtx_unlock_spin(&w_mtx);
2166         bzero(lle, sizeof(*lle));
2167         return (lle);
2168 }
2169                 
2170 static void
2171 witness_lock_list_free(struct lock_list_entry *lle)
2172 {
2173
2174         mtx_lock_spin(&w_mtx);
2175         lle->ll_next = w_lock_list_free;
2176         w_lock_list_free = lle;
2177         mtx_unlock_spin(&w_mtx);
2178 }
2179
2180 static struct lock_instance *
2181 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2182 {
2183         struct lock_list_entry *lle;
2184         struct lock_instance *instance;
2185         int i;
2186
2187         for (lle = list; lle != NULL; lle = lle->ll_next)
2188                 for (i = lle->ll_count - 1; i >= 0; i--) {
2189                         instance = &lle->ll_children[i];
2190                         if (instance->li_lock == lock)
2191                                 return (instance);
2192                 }
2193         return (NULL);
2194 }
2195
2196 static void
2197 witness_list_lock(struct lock_instance *instance,
2198     int (*prnt)(const char *fmt, ...))
2199 {
2200         struct lock_object *lock;
2201
2202         lock = instance->li_lock;
2203         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2204             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2205         if (lock->lo_witness->w_name != lock->lo_name)
2206                 prnt(" (%s)", lock->lo_witness->w_name);
2207         prnt(" r = %d (%p) locked @ %s:%d\n",
2208             instance->li_flags & LI_RECURSEMASK, lock,
2209             fixup_filename(instance->li_file), instance->li_line);
2210 }
2211
2212 static int
2213 witness_output(const char *fmt, ...)
2214 {
2215         va_list ap;
2216         int ret;
2217
2218         va_start(ap, fmt);
2219         ret = witness_voutput(fmt, ap);
2220         va_end(ap);
2221         return (ret);
2222 }
2223
2224 static int
2225 witness_voutput(const char *fmt, va_list ap)
2226 {
2227         int ret;
2228
2229         ret = 0;
2230         switch (witness_channel) {
2231         case WITNESS_CONSOLE:
2232                 ret = vprintf(fmt, ap);
2233                 break;
2234         case WITNESS_LOG:
2235                 vlog(LOG_NOTICE, fmt, ap);
2236                 break;
2237         case WITNESS_NONE:
2238                 break;
2239         }
2240         return (ret);
2241 }
2242
2243 #ifdef DDB
2244 static int
2245 witness_thread_has_locks(struct thread *td)
2246 {
2247
2248         if (td->td_sleeplocks == NULL)
2249                 return (0);
2250         return (td->td_sleeplocks->ll_count != 0);
2251 }
2252
2253 static int
2254 witness_proc_has_locks(struct proc *p)
2255 {
2256         struct thread *td;
2257
2258         FOREACH_THREAD_IN_PROC(p, td) {
2259                 if (witness_thread_has_locks(td))
2260                         return (1);
2261         }
2262         return (0);
2263 }
2264 #endif
2265
2266 int
2267 witness_list_locks(struct lock_list_entry **lock_list,
2268     int (*prnt)(const char *fmt, ...))
2269 {
2270         struct lock_list_entry *lle;
2271         int i, nheld;
2272
2273         nheld = 0;
2274         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2275                 for (i = lle->ll_count - 1; i >= 0; i--) {
2276                         witness_list_lock(&lle->ll_children[i], prnt);
2277                         nheld++;
2278                 }
2279         return (nheld);
2280 }
2281
2282 /*
2283  * This is a bit risky at best.  We call this function when we have timed
2284  * out acquiring a spin lock, and we assume that the other CPU is stuck
2285  * with this lock held.  So, we go groveling around in the other CPU's
2286  * per-cpu data to try to find the lock instance for this spin lock to
2287  * see when it was last acquired.
2288  */
2289 void
2290 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2291     int (*prnt)(const char *fmt, ...))
2292 {
2293         struct lock_instance *instance;
2294         struct pcpu *pc;
2295
2296         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2297                 return;
2298         pc = pcpu_find(owner->td_oncpu);
2299         instance = find_instance(pc->pc_spinlocks, lock);
2300         if (instance != NULL)
2301                 witness_list_lock(instance, prnt);
2302 }
2303
2304 void
2305 witness_save(struct lock_object *lock, const char **filep, int *linep)
2306 {
2307         struct lock_list_entry *lock_list;
2308         struct lock_instance *instance;
2309         struct lock_class *class;
2310
2311         /*
2312          * This function is used independently in locking code to deal with
2313          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2314          * is gone.
2315          */
2316         if (SCHEDULER_STOPPED())
2317                 return;
2318         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2319         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2320                 return;
2321         class = LOCK_CLASS(lock);
2322         if (class->lc_flags & LC_SLEEPLOCK)
2323                 lock_list = curthread->td_sleeplocks;
2324         else {
2325                 if (witness_skipspin)
2326                         return;
2327                 lock_list = PCPU_GET(spinlocks);
2328         }
2329         instance = find_instance(lock_list, lock);
2330         if (instance == NULL) {
2331                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2332                     class->lc_name, lock->lo_name);
2333                 return;
2334         }
2335         *filep = instance->li_file;
2336         *linep = instance->li_line;
2337 }
2338
2339 void
2340 witness_restore(struct lock_object *lock, const char *file, int line)
2341 {
2342         struct lock_list_entry *lock_list;
2343         struct lock_instance *instance;
2344         struct lock_class *class;
2345
2346         /*
2347          * This function is used independently in locking code to deal with
2348          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2349          * is gone.
2350          */
2351         if (SCHEDULER_STOPPED())
2352                 return;
2353         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2354         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2355                 return;
2356         class = LOCK_CLASS(lock);
2357         if (class->lc_flags & LC_SLEEPLOCK)
2358                 lock_list = curthread->td_sleeplocks;
2359         else {
2360                 if (witness_skipspin)
2361                         return;
2362                 lock_list = PCPU_GET(spinlocks);
2363         }
2364         instance = find_instance(lock_list, lock);
2365         if (instance == NULL)
2366                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2367                     class->lc_name, lock->lo_name);
2368         lock->lo_witness->w_file = file;
2369         lock->lo_witness->w_line = line;
2370         if (instance == NULL)
2371                 return;
2372         instance->li_file = file;
2373         instance->li_line = line;
2374 }
2375
2376 void
2377 witness_assert(const struct lock_object *lock, int flags, const char *file,
2378     int line)
2379 {
2380 #ifdef INVARIANT_SUPPORT
2381         struct lock_instance *instance;
2382         struct lock_class *class;
2383
2384         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2385                 return;
2386         class = LOCK_CLASS(lock);
2387         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2388                 instance = find_instance(curthread->td_sleeplocks, lock);
2389         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2390                 instance = find_instance(PCPU_GET(spinlocks), lock);
2391         else {
2392                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2393                     class->lc_name, lock->lo_name);
2394                 return;
2395         }
2396         switch (flags) {
2397         case LA_UNLOCKED:
2398                 if (instance != NULL)
2399                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2400                             class->lc_name, lock->lo_name,
2401                             fixup_filename(file), line);
2402                 break;
2403         case LA_LOCKED:
2404         case LA_LOCKED | LA_RECURSED:
2405         case LA_LOCKED | LA_NOTRECURSED:
2406         case LA_SLOCKED:
2407         case LA_SLOCKED | LA_RECURSED:
2408         case LA_SLOCKED | LA_NOTRECURSED:
2409         case LA_XLOCKED:
2410         case LA_XLOCKED | LA_RECURSED:
2411         case LA_XLOCKED | LA_NOTRECURSED:
2412                 if (instance == NULL) {
2413                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2414                             class->lc_name, lock->lo_name,
2415                             fixup_filename(file), line);
2416                         break;
2417                 }
2418                 if ((flags & LA_XLOCKED) != 0 &&
2419                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2420                         kassert_panic(
2421                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2422                             class->lc_name, lock->lo_name,
2423                             fixup_filename(file), line);
2424                 if ((flags & LA_SLOCKED) != 0 &&
2425                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2426                         kassert_panic(
2427                             "Lock (%s) %s exclusively locked @ %s:%d.",
2428                             class->lc_name, lock->lo_name,
2429                             fixup_filename(file), line);
2430                 if ((flags & LA_RECURSED) != 0 &&
2431                     (instance->li_flags & LI_RECURSEMASK) == 0)
2432                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2433                             class->lc_name, lock->lo_name,
2434                             fixup_filename(file), line);
2435                 if ((flags & LA_NOTRECURSED) != 0 &&
2436                     (instance->li_flags & LI_RECURSEMASK) != 0)
2437                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2438                             class->lc_name, lock->lo_name,
2439                             fixup_filename(file), line);
2440                 break;
2441         default:
2442                 kassert_panic("Invalid lock assertion at %s:%d.",
2443                     fixup_filename(file), line);
2444
2445         }
2446 #endif  /* INVARIANT_SUPPORT */
2447 }
2448
2449 static void
2450 witness_setflag(struct lock_object *lock, int flag, int set)
2451 {
2452         struct lock_list_entry *lock_list;
2453         struct lock_instance *instance;
2454         struct lock_class *class;
2455
2456         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2457                 return;
2458         class = LOCK_CLASS(lock);
2459         if (class->lc_flags & LC_SLEEPLOCK)
2460                 lock_list = curthread->td_sleeplocks;
2461         else {
2462                 if (witness_skipspin)
2463                         return;
2464                 lock_list = PCPU_GET(spinlocks);
2465         }
2466         instance = find_instance(lock_list, lock);
2467         if (instance == NULL) {
2468                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2469                     class->lc_name, lock->lo_name);
2470                 return;
2471         }
2472
2473         if (set)
2474                 instance->li_flags |= flag;
2475         else
2476                 instance->li_flags &= ~flag;
2477 }
2478
2479 void
2480 witness_norelease(struct lock_object *lock)
2481 {
2482
2483         witness_setflag(lock, LI_NORELEASE, 1);
2484 }
2485
2486 void
2487 witness_releaseok(struct lock_object *lock)
2488 {
2489
2490         witness_setflag(lock, LI_NORELEASE, 0);
2491 }
2492
2493 #ifdef DDB
2494 static void
2495 witness_ddb_list(struct thread *td)
2496 {
2497
2498         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2499         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2500
2501         if (witness_watch < 1)
2502                 return;
2503
2504         witness_list_locks(&td->td_sleeplocks, db_printf);
2505
2506         /*
2507          * We only handle spinlocks if td == curthread.  This is somewhat broken
2508          * if td is currently executing on some other CPU and holds spin locks
2509          * as we won't display those locks.  If we had a MI way of getting
2510          * the per-cpu data for a given cpu then we could use
2511          * td->td_oncpu to get the list of spinlocks for this thread
2512          * and "fix" this.
2513          *
2514          * That still wouldn't really fix this unless we locked the scheduler
2515          * lock or stopped the other CPU to make sure it wasn't changing the
2516          * list out from under us.  It is probably best to just not try to
2517          * handle threads on other CPU's for now.
2518          */
2519         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2520                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2521 }
2522
2523 DB_SHOW_COMMAND(locks, db_witness_list)
2524 {
2525         struct thread *td;
2526
2527         if (have_addr)
2528                 td = db_lookup_thread(addr, true);
2529         else
2530                 td = kdb_thread;
2531         witness_ddb_list(td);
2532 }
2533
2534 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2535 {
2536         struct thread *td;
2537         struct proc *p;
2538
2539         /*
2540          * It would be nice to list only threads and processes that actually
2541          * held sleep locks, but that information is currently not exported
2542          * by WITNESS.
2543          */
2544         FOREACH_PROC_IN_SYSTEM(p) {
2545                 if (!witness_proc_has_locks(p))
2546                         continue;
2547                 FOREACH_THREAD_IN_PROC(p, td) {
2548                         if (!witness_thread_has_locks(td))
2549                                 continue;
2550                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2551                             p->p_comm, td, td->td_tid);
2552                         witness_ddb_list(td);
2553                         if (db_pager_quit)
2554                                 return;
2555                 }
2556         }
2557 }
2558 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2559
2560 DB_SHOW_COMMAND(witness, db_witness_display)
2561 {
2562
2563         witness_ddb_display(db_printf);
2564 }
2565 #endif
2566
2567 static void
2568 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2569 {
2570         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2571         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2572         int generation, i, j;
2573
2574         tmp_data1 = NULL;
2575         tmp_data2 = NULL;
2576         tmp_w1 = NULL;
2577         tmp_w2 = NULL;
2578
2579         /* Allocate and init temporary storage space. */
2580         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2581         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2582         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2583             M_WAITOK | M_ZERO);
2584         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2585             M_WAITOK | M_ZERO);
2586         stack_zero(&tmp_data1->wlod_stack);
2587         stack_zero(&tmp_data2->wlod_stack);
2588
2589 restart:
2590         mtx_lock_spin(&w_mtx);
2591         generation = w_generation;
2592         mtx_unlock_spin(&w_mtx);
2593         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2594             w_lohash.wloh_count);
2595         for (i = 1; i < w_max_used_index; i++) {
2596                 mtx_lock_spin(&w_mtx);
2597                 if (generation != w_generation) {
2598                         mtx_unlock_spin(&w_mtx);
2599
2600                         /* The graph has changed, try again. */
2601                         *oldidx = 0;
2602                         sbuf_clear(sb);
2603                         goto restart;
2604                 }
2605
2606                 w1 = &w_data[i];
2607                 if (w1->w_reversed == 0) {
2608                         mtx_unlock_spin(&w_mtx);
2609                         continue;
2610                 }
2611
2612                 /* Copy w1 locally so we can release the spin lock. */
2613                 *tmp_w1 = *w1;
2614                 mtx_unlock_spin(&w_mtx);
2615
2616                 if (tmp_w1->w_reversed == 0)
2617                         continue;
2618                 for (j = 1; j < w_max_used_index; j++) {
2619                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2620                                 continue;
2621
2622                         mtx_lock_spin(&w_mtx);
2623                         if (generation != w_generation) {
2624                                 mtx_unlock_spin(&w_mtx);
2625
2626                                 /* The graph has changed, try again. */
2627                                 *oldidx = 0;
2628                                 sbuf_clear(sb);
2629                                 goto restart;
2630                         }
2631
2632                         w2 = &w_data[j];
2633                         data1 = witness_lock_order_get(w1, w2);
2634                         data2 = witness_lock_order_get(w2, w1);
2635
2636                         /*
2637                          * Copy information locally so we can release the
2638                          * spin lock.
2639                          */
2640                         *tmp_w2 = *w2;
2641
2642                         if (data1) {
2643                                 stack_zero(&tmp_data1->wlod_stack);
2644                                 stack_copy(&data1->wlod_stack,
2645                                     &tmp_data1->wlod_stack);
2646                         }
2647                         if (data2 && data2 != data1) {
2648                                 stack_zero(&tmp_data2->wlod_stack);
2649                                 stack_copy(&data2->wlod_stack,
2650                                     &tmp_data2->wlod_stack);
2651                         }
2652                         mtx_unlock_spin(&w_mtx);
2653
2654                         if (blessed(tmp_w1, tmp_w2))
2655                                 continue;
2656
2657                         sbuf_printf(sb,
2658             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2659                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2660                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2661                         if (data1) {
2662                                 sbuf_printf(sb,
2663                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2664                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2665                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2666                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2667                                 sbuf_printf(sb, "\n");
2668                         }
2669                         if (data2 && data2 != data1) {
2670                                 sbuf_printf(sb,
2671                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2672                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2673                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2674                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2675                                 sbuf_printf(sb, "\n");
2676                         }
2677                 }
2678         }
2679         mtx_lock_spin(&w_mtx);
2680         if (generation != w_generation) {
2681                 mtx_unlock_spin(&w_mtx);
2682
2683                 /*
2684                  * The graph changed while we were printing stack data,
2685                  * try again.
2686                  */
2687                 *oldidx = 0;
2688                 sbuf_clear(sb);
2689                 goto restart;
2690         }
2691         mtx_unlock_spin(&w_mtx);
2692
2693         /* Free temporary storage space. */
2694         free(tmp_data1, M_TEMP);
2695         free(tmp_data2, M_TEMP);
2696         free(tmp_w1, M_TEMP);
2697         free(tmp_w2, M_TEMP);
2698 }
2699
2700 static int
2701 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2702 {
2703         struct sbuf *sb;
2704         int error;
2705
2706         if (witness_watch < 1) {
2707                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2708                 return (error);
2709         }
2710         if (witness_cold) {
2711                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2712                 return (error);
2713         }
2714         error = 0;
2715         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2716         if (sb == NULL)
2717                 return (ENOMEM);
2718
2719         sbuf_print_witness_badstacks(sb, &req->oldidx);
2720
2721         sbuf_finish(sb);
2722         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2723         sbuf_delete(sb);
2724
2725         return (error);
2726 }
2727
2728 #ifdef DDB
2729 static int
2730 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2731 {
2732
2733         return (db_printf("%.*s", len, data));
2734 }
2735
2736 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2737 {
2738         struct sbuf sb;
2739         char buffer[128];
2740         size_t dummy;
2741
2742         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2743         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2744         sbuf_print_witness_badstacks(&sb, &dummy);
2745         sbuf_finish(&sb);
2746 }
2747 #endif
2748
2749 static int
2750 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2751 {
2752         static const struct {
2753                 enum witness_channel channel;
2754                 const char *name;
2755         } channels[] = {
2756                 { WITNESS_CONSOLE, "console" },
2757                 { WITNESS_LOG, "log" },
2758                 { WITNESS_NONE, "none" },
2759         };
2760         char buf[16];
2761         u_int i;
2762         int error;
2763
2764         buf[0] = '\0';
2765         for (i = 0; i < nitems(channels); i++)
2766                 if (witness_channel == channels[i].channel) {
2767                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2768                         break;
2769                 }
2770
2771         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2772         if (error != 0 || req->newptr == NULL)
2773                 return (error);
2774
2775         error = EINVAL;
2776         for (i = 0; i < nitems(channels); i++)
2777                 if (strcmp(channels[i].name, buf) == 0) {
2778                         witness_channel = channels[i].channel;
2779                         error = 0;
2780                         break;
2781                 }
2782         return (error);
2783 }
2784
2785 static int
2786 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2787 {
2788         struct witness *w;
2789         struct sbuf *sb;
2790         int error;
2791
2792 #ifdef __i386__
2793         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2794         return (error);
2795 #endif
2796
2797         if (witness_watch < 1) {
2798                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2799                 return (error);
2800         }
2801         if (witness_cold) {
2802                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2803                 return (error);
2804         }
2805         error = 0;
2806
2807         error = sysctl_wire_old_buffer(req, 0);
2808         if (error != 0)
2809                 return (error);
2810         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2811         if (sb == NULL)
2812                 return (ENOMEM);
2813         sbuf_printf(sb, "\n");
2814
2815         mtx_lock_spin(&w_mtx);
2816         STAILQ_FOREACH(w, &w_all, w_list)
2817                 w->w_displayed = 0;
2818         STAILQ_FOREACH(w, &w_all, w_list)
2819                 witness_add_fullgraph(sb, w);
2820         mtx_unlock_spin(&w_mtx);
2821
2822         /*
2823          * Close the sbuf and return to userland.
2824          */
2825         error = sbuf_finish(sb);
2826         sbuf_delete(sb);
2827
2828         return (error);
2829 }
2830
2831 static int
2832 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2833 {
2834         int error, value;
2835
2836         value = witness_watch;
2837         error = sysctl_handle_int(oidp, &value, 0, req);
2838         if (error != 0 || req->newptr == NULL)
2839                 return (error);
2840         if (value > 1 || value < -1 ||
2841             (witness_watch == -1 && value != witness_watch))
2842                 return (EINVAL);
2843         witness_watch = value;
2844         return (0);
2845 }
2846
2847 static void
2848 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2849 {
2850         int i;
2851
2852         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2853                 return;
2854         w->w_displayed = 1;
2855
2856         WITNESS_INDEX_ASSERT(w->w_index);
2857         for (i = 1; i <= w_max_used_index; i++) {
2858                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2859                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2860                             w_data[i].w_name);
2861                         witness_add_fullgraph(sb, &w_data[i]);
2862                 }
2863         }
2864 }
2865
2866 /*
2867  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2868  * interprets the key as a string and reads until the null
2869  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2870  * hash value computed from the key.
2871  */
2872 static uint32_t
2873 witness_hash_djb2(const uint8_t *key, uint32_t size)
2874 {
2875         unsigned int hash = 5381;
2876         int i;
2877
2878         /* hash = hash * 33 + key[i] */
2879         if (size)
2880                 for (i = 0; i < size; i++)
2881                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2882         else
2883                 for (i = 0; key[i] != 0; i++)
2884                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2885
2886         return (hash);
2887 }
2888
2889
2890 /*
2891  * Initializes the two witness hash tables. Called exactly once from
2892  * witness_initialize().
2893  */
2894 static void
2895 witness_init_hash_tables(void)
2896 {
2897         int i;
2898
2899         MPASS(witness_cold);
2900
2901         /* Initialize the hash tables. */
2902         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2903                 w_hash.wh_array[i] = NULL;
2904
2905         w_hash.wh_size = WITNESS_HASH_SIZE;
2906         w_hash.wh_count = 0;
2907
2908         /* Initialize the lock order data hash. */
2909         w_lofree = NULL;
2910         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2911                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2912                 w_lodata[i].wlod_next = w_lofree;
2913                 w_lofree = &w_lodata[i];
2914         }
2915         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2916         w_lohash.wloh_count = 0;
2917         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2918                 w_lohash.wloh_array[i] = NULL;
2919 }
2920
2921 static struct witness *
2922 witness_hash_get(const char *key)
2923 {
2924         struct witness *w;
2925         uint32_t hash;
2926         
2927         MPASS(key != NULL);
2928         if (witness_cold == 0)
2929                 mtx_assert(&w_mtx, MA_OWNED);
2930         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2931         w = w_hash.wh_array[hash];
2932         while (w != NULL) {
2933                 if (strcmp(w->w_name, key) == 0)
2934                         goto out;
2935                 w = w->w_hash_next;
2936         }
2937
2938 out:
2939         return (w);
2940 }
2941
2942 static void
2943 witness_hash_put(struct witness *w)
2944 {
2945         uint32_t hash;
2946
2947         MPASS(w != NULL);
2948         MPASS(w->w_name != NULL);
2949         if (witness_cold == 0)
2950                 mtx_assert(&w_mtx, MA_OWNED);
2951         KASSERT(witness_hash_get(w->w_name) == NULL,
2952             ("%s: trying to add a hash entry that already exists!", __func__));
2953         KASSERT(w->w_hash_next == NULL,
2954             ("%s: w->w_hash_next != NULL", __func__));
2955
2956         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2957         w->w_hash_next = w_hash.wh_array[hash];
2958         w_hash.wh_array[hash] = w;
2959         w_hash.wh_count++;
2960 }
2961
2962
2963 static struct witness_lock_order_data *
2964 witness_lock_order_get(struct witness *parent, struct witness *child)
2965 {
2966         struct witness_lock_order_data *data = NULL;
2967         struct witness_lock_order_key key;
2968         unsigned int hash;
2969
2970         MPASS(parent != NULL && child != NULL);
2971         key.from = parent->w_index;
2972         key.to = child->w_index;
2973         WITNESS_INDEX_ASSERT(key.from);
2974         WITNESS_INDEX_ASSERT(key.to);
2975         if ((w_rmatrix[parent->w_index][child->w_index]
2976             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2977                 goto out;
2978
2979         hash = witness_hash_djb2((const char*)&key,
2980             sizeof(key)) % w_lohash.wloh_size;
2981         data = w_lohash.wloh_array[hash];
2982         while (data != NULL) {
2983                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2984                         break;
2985                 data = data->wlod_next;
2986         }
2987
2988 out:
2989         return (data);
2990 }
2991
2992 /*
2993  * Verify that parent and child have a known relationship, are not the same,
2994  * and child is actually a child of parent.  This is done without w_mtx
2995  * to avoid contention in the common case.
2996  */
2997 static int
2998 witness_lock_order_check(struct witness *parent, struct witness *child)
2999 {
3000
3001         if (parent != child &&
3002             w_rmatrix[parent->w_index][child->w_index]
3003             & WITNESS_LOCK_ORDER_KNOWN &&
3004             isitmychild(parent, child))
3005                 return (1);
3006
3007         return (0);
3008 }
3009
3010 static int
3011 witness_lock_order_add(struct witness *parent, struct witness *child)
3012 {
3013         struct witness_lock_order_data *data = NULL;
3014         struct witness_lock_order_key key;
3015         unsigned int hash;
3016         
3017         MPASS(parent != NULL && child != NULL);
3018         key.from = parent->w_index;
3019         key.to = child->w_index;
3020         WITNESS_INDEX_ASSERT(key.from);
3021         WITNESS_INDEX_ASSERT(key.to);
3022         if (w_rmatrix[parent->w_index][child->w_index]
3023             & WITNESS_LOCK_ORDER_KNOWN)
3024                 return (1);
3025
3026         hash = witness_hash_djb2((const char*)&key,
3027             sizeof(key)) % w_lohash.wloh_size;
3028         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3029         data = w_lofree;
3030         if (data == NULL)
3031                 return (0);
3032         w_lofree = data->wlod_next;
3033         data->wlod_next = w_lohash.wloh_array[hash];
3034         data->wlod_key = key;
3035         w_lohash.wloh_array[hash] = data;
3036         w_lohash.wloh_count++;
3037         stack_zero(&data->wlod_stack);
3038         stack_save(&data->wlod_stack);
3039         return (1);
3040 }
3041
3042 /* Call this whenever the structure of the witness graph changes. */
3043 static void
3044 witness_increment_graph_generation(void)
3045 {
3046
3047         if (witness_cold == 0)
3048                 mtx_assert(&w_mtx, MA_OWNED);
3049         w_generation++;
3050 }
3051
3052 static int
3053 witness_output_drain(void *arg __unused, const char *data, int len)
3054 {
3055
3056         witness_output("%.*s", len, data);
3057         return (len);
3058 }
3059
3060 static void
3061 witness_debugger(int cond, const char *msg)
3062 {
3063         char buf[32];
3064         struct sbuf sb;
3065         struct stack st;
3066
3067         if (!cond)
3068                 return;
3069
3070         if (witness_trace) {
3071                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3072                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3073
3074                 stack_zero(&st);
3075                 stack_save(&st);
3076                 witness_output("stack backtrace:\n");
3077                 stack_sbuf_print_ddb(&sb, &st);
3078
3079                 sbuf_finish(&sb);
3080         }
3081
3082 #ifdef KDB
3083         if (witness_kdb)
3084                 kdb_enter(KDB_WHY_WITNESS, msg);
3085 #endif
3086 }