]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
Add mkimg, a utility for making disk images from raw partition contents.
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1536
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        1024
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define FULLGRAPH_SBUF_SIZE     512
158
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define WITNESS_RELATED_MASK                                            \
171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173                                           * observed. */
174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178 /* Descendant to ancestor flags */
179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
180
181 /* Ancestor to descendant flags */
182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
183
184 #define WITNESS_INDEX_ASSERT(i)                                         \
185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196         struct lock_object      *li_lock;
197         const char              *li_file;
198         int                     li_line;
199         u_int                   li_flags;
200 };
201
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213         struct lock_list_entry  *ll_next;
214         struct lock_instance    ll_children[LOCK_NCHILDREN];
215         u_int                   ll_count;
216 };
217
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223         char                    w_name[MAX_W_NAME];
224         uint32_t                w_index;  /* Index in the relationship matrix */
225         struct lock_class       *w_class;
226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
229         const char              *w_file; /* File where last acquired */
230         uint32_t                w_line; /* Line where last acquired */
231         uint32_t                w_refcount;
232         uint16_t                w_num_ancestors; /* direct/indirect
233                                                   * ancestor count */
234         uint16_t                w_num_descendants; /* direct/indirect
235                                                     * descendant count */
236         int16_t                 w_ddb_level;
237         unsigned                w_displayed:1;
238         unsigned                w_reversed:1;
239 };
240
241 STAILQ_HEAD(witness_list, witness);
242
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248         struct witness  *wh_array[WITNESS_HASH_SIZE];
249         uint32_t        wh_size;
250         uint32_t        wh_count;
251 };
252
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257         uint16_t        from;
258         uint16_t        to;
259 };
260
261 struct witness_lock_order_data {
262         struct stack                    wlod_stack;
263         struct witness_lock_order_key   wlod_key;
264         struct witness_lock_order_data  *wlod_next;
265 };
266
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data). 
271  */
272 struct witness_lock_order_hash {
273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
274         u_int   wloh_size;
275         u_int   wloh_count;
276 };
277
278 #ifdef BLESSING
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283 #endif
284
285 struct witness_pendhelp {
286         const char              *wh_type;
287         struct lock_object      *wh_lock;
288 };
289
290 struct witness_order_list_entry {
291         const char              *w_name;
292         struct lock_class       *w_class;
293 };
294
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302
303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306
307 static __inline int
308 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
309     const struct witness_lock_order_key *b)
310 {
311
312         return (a->from == b->from && a->to == b->to);
313 }
314
315 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
316                     const char *fname);
317 #ifdef KDB
318 static void     _witness_debugger(int cond, const char *msg);
319 #endif
320 static void     adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int      blessed(struct witness *, struct witness *);
323 #endif
324 static void     depart(struct witness *w);
325 static struct witness   *enroll(const char *description,
326                             struct lock_class *lock_class);
327 static struct lock_instance     *find_instance(struct lock_list_entry *list,
328                                     const struct lock_object *lock);
329 static int      isitmychild(struct witness *parent, struct witness *child);
330 static int      isitmydescendant(struct witness *parent, struct witness *child);
331 static void     itismychild(struct witness *parent, struct witness *child);
332 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
336 #ifdef DDB
337 static void     witness_ddb_compute_levels(void);
338 static void     witness_ddb_display(int(*)(const char *fmt, ...));
339 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
340                     struct witness *, int indent);
341 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
342                     struct witness_list *list);
343 static void     witness_ddb_level_descendants(struct witness *parent, int l);
344 static void     witness_ddb_list(struct thread *td);
345 #endif
346 static void     witness_free(struct witness *m);
347 static struct witness   *witness_get(void);
348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness   *witness_hash_get(const char *key);
350 static void     witness_hash_put(struct witness *w);
351 static void     witness_init_hash_tables(void);
352 static void     witness_increment_graph_generation(void);
353 static void     witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry   *witness_lock_list_get(void);
355 static int      witness_lock_order_add(struct witness *parent,
356                     struct witness *child);
357 static int      witness_lock_order_check(struct witness *parent,
358                     struct witness *child);
359 static struct witness_lock_order_data   *witness_lock_order_get(
360                                             struct witness *parent,
361                                             struct witness *child);
362 static void     witness_list_lock(struct lock_instance *instance,
363                     int (*prnt)(const char *fmt, ...));
364 static void     witness_setflag(struct lock_object *lock, int flag, int set);
365
366 #ifdef KDB
367 #define witness_debugger(c)     _witness_debugger(c, __func__)
368 #else
369 #define witness_debugger(c)
370 #endif
371
372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
373     "Witness Locking");
374
375 /*
376  * If set to 0, lock order checking is disabled.  If set to -1,
377  * witness is completely disabled.  Otherwise witness performs full
378  * lock order checking for all locks.  At runtime, lock order checking
379  * may be toggled.  However, witness cannot be reenabled once it is
380  * completely disabled.
381  */
382 static int witness_watch = 1;
383 TUNABLE_INT("debug.witness.watch", &witness_watch);
384 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
385     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
386
387 #ifdef KDB
388 /*
389  * When KDB is enabled and witness_kdb is 1, it will cause the system
390  * to drop into kdebug() when:
391  *      - a lock hierarchy violation occurs
392  *      - locks are held when going to sleep.
393  */
394 #ifdef WITNESS_KDB
395 int     witness_kdb = 1;
396 #else
397 int     witness_kdb = 0;
398 #endif
399 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
400 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
401
402 /*
403  * When KDB is enabled and witness_trace is 1, it will cause the system
404  * to print a stack trace:
405  *      - a lock hierarchy violation occurs
406  *      - locks are held when going to sleep.
407  */
408 int     witness_trace = 1;
409 TUNABLE_INT("debug.witness.trace", &witness_trace);
410 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
411 #endif /* KDB */
412
413 #ifdef WITNESS_SKIPSPIN
414 int     witness_skipspin = 1;
415 #else
416 int     witness_skipspin = 0;
417 #endif
418 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
419 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
420     0, "");
421
422 /*
423  * Call this to print out the relations between locks.
424  */
425 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
426     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
427
428 /*
429  * Call this to print out the witness faulty stacks.
430  */
431 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
432     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
433
434 static struct mtx w_mtx;
435
436 /* w_list */
437 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
438 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
439
440 /* w_typelist */
441 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
442 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
443
444 /* lock list */
445 static struct lock_list_entry *w_lock_list_free = NULL;
446 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
447 static u_int pending_cnt;
448
449 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
450 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
451 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
452 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
453     "");
454
455 static struct witness *w_data;
456 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
457 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
458 static struct witness_hash w_hash;      /* The witness hash table. */
459
460 /* The lock order data hash */
461 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
462 static struct witness_lock_order_data *w_lofree = NULL;
463 static struct witness_lock_order_hash w_lohash;
464 static int w_max_used_index = 0;
465 static unsigned int w_generation = 0;
466 static const char w_notrunning[] = "Witness not running\n";
467 static const char w_stillcold[] = "Witness is still cold\n";
468
469
470 static struct witness_order_list_entry order_lists[] = {
471         /*
472          * sx locks
473          */
474         { "proctree", &lock_class_sx },
475         { "allproc", &lock_class_sx },
476         { "allprison", &lock_class_sx },
477         { NULL, NULL },
478         /*
479          * Various mutexes
480          */
481         { "Giant", &lock_class_mtx_sleep },
482         { "pipe mutex", &lock_class_mtx_sleep },
483         { "sigio lock", &lock_class_mtx_sleep },
484         { "process group", &lock_class_mtx_sleep },
485         { "process lock", &lock_class_mtx_sleep },
486         { "session", &lock_class_mtx_sleep },
487         { "uidinfo hash", &lock_class_rw },
488 #ifdef  HWPMC_HOOKS
489         { "pmc-sleep", &lock_class_mtx_sleep },
490 #endif
491         { "time lock", &lock_class_mtx_sleep },
492         { NULL, NULL },
493         /*
494          * Sockets
495          */
496         { "accept", &lock_class_mtx_sleep },
497         { "so_snd", &lock_class_mtx_sleep },
498         { "so_rcv", &lock_class_mtx_sleep },
499         { "sellck", &lock_class_mtx_sleep },
500         { NULL, NULL },
501         /*
502          * Routing
503          */
504         { "so_rcv", &lock_class_mtx_sleep },
505         { "radix node head", &lock_class_rw },
506         { "rtentry", &lock_class_mtx_sleep },
507         { "ifaddr", &lock_class_mtx_sleep },
508         { NULL, NULL },
509         /*
510          * IPv4 multicast:
511          * protocol locks before interface locks, after UDP locks.
512          */
513         { "udpinp", &lock_class_rw },
514         { "in_multi_mtx", &lock_class_mtx_sleep },
515         { "igmp_mtx", &lock_class_mtx_sleep },
516         { "if_addr_lock", &lock_class_rw },
517         { NULL, NULL },
518         /*
519          * IPv6 multicast:
520          * protocol locks before interface locks, after UDP locks.
521          */
522         { "udpinp", &lock_class_rw },
523         { "in6_multi_mtx", &lock_class_mtx_sleep },
524         { "mld_mtx", &lock_class_mtx_sleep },
525         { "if_addr_lock", &lock_class_rw },
526         { NULL, NULL },
527         /*
528          * UNIX Domain Sockets
529          */
530         { "unp_global_rwlock", &lock_class_rw },
531         { "unp_list_lock", &lock_class_mtx_sleep },
532         { "unp", &lock_class_mtx_sleep },
533         { "so_snd", &lock_class_mtx_sleep },
534         { NULL, NULL },
535         /*
536          * UDP/IP
537          */
538         { "udp", &lock_class_rw },
539         { "udpinp", &lock_class_rw },
540         { "so_snd", &lock_class_mtx_sleep },
541         { NULL, NULL },
542         /*
543          * TCP/IP
544          */
545         { "tcp", &lock_class_rw },
546         { "tcpinp", &lock_class_rw },
547         { "so_snd", &lock_class_mtx_sleep },
548         { NULL, NULL },
549         /*
550          * BPF
551          */
552         { "bpf global lock", &lock_class_mtx_sleep },
553         { "bpf interface lock", &lock_class_rw },
554         { "bpf cdev lock", &lock_class_mtx_sleep },
555         { NULL, NULL },
556         /*
557          * NFS server
558          */
559         { "nfsd_mtx", &lock_class_mtx_sleep },
560         { "so_snd", &lock_class_mtx_sleep },
561         { NULL, NULL },
562
563         /*
564          * IEEE 802.11
565          */
566         { "802.11 com lock", &lock_class_mtx_sleep},
567         { NULL, NULL },
568         /*
569          * Network drivers
570          */
571         { "network driver", &lock_class_mtx_sleep},
572         { NULL, NULL },
573
574         /*
575          * Netgraph
576          */
577         { "ng_node", &lock_class_mtx_sleep },
578         { "ng_worklist", &lock_class_mtx_sleep },
579         { NULL, NULL },
580         /*
581          * CDEV
582          */
583         { "vm map (system)", &lock_class_mtx_sleep },
584         { "vm page queue", &lock_class_mtx_sleep },
585         { "vnode interlock", &lock_class_mtx_sleep },
586         { "cdev", &lock_class_mtx_sleep },
587         { NULL, NULL },
588         /*
589          * VM
590          */
591         { "vm map (user)", &lock_class_sx },
592         { "vm object", &lock_class_rw },
593         { "vm page", &lock_class_mtx_sleep },
594         { "vm page queue", &lock_class_mtx_sleep },
595         { "pmap pv global", &lock_class_rw },
596         { "pmap", &lock_class_mtx_sleep },
597         { "pmap pv list", &lock_class_rw },
598         { "vm page free queue", &lock_class_mtx_sleep },
599         { NULL, NULL },
600         /*
601          * kqueue/VFS interaction
602          */
603         { "kqueue", &lock_class_mtx_sleep },
604         { "struct mount mtx", &lock_class_mtx_sleep },
605         { "vnode interlock", &lock_class_mtx_sleep },
606         { NULL, NULL },
607         /*
608          * ZFS locking
609          */
610         { "dn->dn_mtx", &lock_class_sx },
611         { "dr->dt.di.dr_mtx", &lock_class_sx },
612         { "db->db_mtx", &lock_class_sx },
613         { NULL, NULL },
614         /*
615          * spin locks
616          */
617 #ifdef SMP
618         { "ap boot", &lock_class_mtx_spin },
619 #endif
620         { "rm.mutex_mtx", &lock_class_mtx_spin },
621         { "sio", &lock_class_mtx_spin },
622         { "scrlock", &lock_class_mtx_spin },
623 #ifdef __i386__
624         { "cy", &lock_class_mtx_spin },
625 #endif
626 #ifdef __sparc64__
627         { "pcib_mtx", &lock_class_mtx_spin },
628         { "rtc_mtx", &lock_class_mtx_spin },
629 #endif
630         { "scc_hwmtx", &lock_class_mtx_spin },
631         { "uart_hwmtx", &lock_class_mtx_spin },
632         { "fast_taskqueue", &lock_class_mtx_spin },
633         { "intr table", &lock_class_mtx_spin },
634 #ifdef  HWPMC_HOOKS
635         { "pmc-per-proc", &lock_class_mtx_spin },
636 #endif
637         { "process slock", &lock_class_mtx_spin },
638         { "sleepq chain", &lock_class_mtx_spin },
639         { "umtx lock", &lock_class_mtx_spin },
640         { "rm_spinlock", &lock_class_mtx_spin },
641         { "turnstile chain", &lock_class_mtx_spin },
642         { "turnstile lock", &lock_class_mtx_spin },
643         { "sched lock", &lock_class_mtx_spin },
644         { "td_contested", &lock_class_mtx_spin },
645         { "callout", &lock_class_mtx_spin },
646         { "entropy harvest mutex", &lock_class_mtx_spin },
647         { "syscons video lock", &lock_class_mtx_spin },
648 #ifdef SMP
649         { "smp rendezvous", &lock_class_mtx_spin },
650 #endif
651 #ifdef __powerpc__
652         { "tlb0", &lock_class_mtx_spin },
653 #endif
654         /*
655          * leaf locks
656          */
657         { "intrcnt", &lock_class_mtx_spin },
658         { "icu", &lock_class_mtx_spin },
659 #ifdef __i386__
660         { "allpmaps", &lock_class_mtx_spin },
661         { "descriptor tables", &lock_class_mtx_spin },
662 #endif
663         { "clk", &lock_class_mtx_spin },
664         { "cpuset", &lock_class_mtx_spin },
665         { "mprof lock", &lock_class_mtx_spin },
666         { "zombie lock", &lock_class_mtx_spin },
667         { "ALD Queue", &lock_class_mtx_spin },
668 #ifdef __ia64__
669         { "MCA spin lock", &lock_class_mtx_spin },
670 #endif
671 #if defined(__i386__) || defined(__amd64__)
672         { "pcicfg", &lock_class_mtx_spin },
673         { "NDIS thread lock", &lock_class_mtx_spin },
674 #endif
675         { "tw_osl_io_lock", &lock_class_mtx_spin },
676         { "tw_osl_q_lock", &lock_class_mtx_spin },
677         { "tw_cl_io_lock", &lock_class_mtx_spin },
678         { "tw_cl_intr_lock", &lock_class_mtx_spin },
679         { "tw_cl_gen_lock", &lock_class_mtx_spin },
680 #ifdef  HWPMC_HOOKS
681         { "pmc-leaf", &lock_class_mtx_spin },
682 #endif
683         { "blocked lock", &lock_class_mtx_spin },
684         { NULL, NULL },
685         { NULL, NULL }
686 };
687
688 #ifdef BLESSING
689 /*
690  * Pairs of locks which have been blessed
691  * Don't complain about order problems with blessed locks
692  */
693 static struct witness_blessed blessed_list[] = {
694 };
695 static int blessed_count =
696         sizeof(blessed_list) / sizeof(struct witness_blessed);
697 #endif
698
699 /*
700  * This global is set to 0 once it becomes safe to use the witness code.
701  */
702 static int witness_cold = 1;
703
704 /*
705  * This global is set to 1 once the static lock orders have been enrolled
706  * so that a warning can be issued for any spin locks enrolled later.
707  */
708 static int witness_spin_warn = 0;
709
710 /* Trim useless garbage from filenames. */
711 static const char *
712 fixup_filename(const char *file)
713 {
714
715         if (file == NULL)
716                 return (NULL);
717         while (strncmp(file, "../", 3) == 0)
718                 file += 3;
719         return (file);
720 }
721
722 /*
723  * The WITNESS-enabled diagnostic code.  Note that the witness code does
724  * assume that the early boot is single-threaded at least until after this
725  * routine is completed.
726  */
727 static void
728 witness_initialize(void *dummy __unused)
729 {
730         struct lock_object *lock;
731         struct witness_order_list_entry *order;
732         struct witness *w, *w1;
733         int i;
734
735         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
736             M_NOWAIT | M_ZERO);
737
738         /*
739          * We have to release Giant before initializing its witness
740          * structure so that WITNESS doesn't get confused.
741          */
742         mtx_unlock(&Giant);
743         mtx_assert(&Giant, MA_NOTOWNED);
744
745         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
746         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
747             MTX_NOWITNESS | MTX_NOPROFILE);
748         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
749                 w = &w_data[i];
750                 memset(w, 0, sizeof(*w));
751                 w_data[i].w_index = i;  /* Witness index never changes. */
752                 witness_free(w);
753         }
754         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
755             ("%s: Invalid list of free witness objects", __func__));
756
757         /* Witness with index 0 is not used to aid in debugging. */
758         STAILQ_REMOVE_HEAD(&w_free, w_list);
759         w_free_cnt--;
760
761         memset(w_rmatrix, 0,
762             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
763
764         for (i = 0; i < LOCK_CHILDCOUNT; i++)
765                 witness_lock_list_free(&w_locklistdata[i]);
766         witness_init_hash_tables();
767
768         /* First add in all the specified order lists. */
769         for (order = order_lists; order->w_name != NULL; order++) {
770                 w = enroll(order->w_name, order->w_class);
771                 if (w == NULL)
772                         continue;
773                 w->w_file = "order list";
774                 for (order++; order->w_name != NULL; order++) {
775                         w1 = enroll(order->w_name, order->w_class);
776                         if (w1 == NULL)
777                                 continue;
778                         w1->w_file = "order list";
779                         itismychild(w, w1);
780                         w = w1;
781                 }
782         }
783         witness_spin_warn = 1;
784
785         /* Iterate through all locks and add them to witness. */
786         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
787                 lock = pending_locks[i].wh_lock;
788                 KASSERT(lock->lo_flags & LO_WITNESS,
789                     ("%s: lock %s is on pending list but not LO_WITNESS",
790                     __func__, lock->lo_name));
791                 lock->lo_witness = enroll(pending_locks[i].wh_type,
792                     LOCK_CLASS(lock));
793         }
794
795         /* Mark the witness code as being ready for use. */
796         witness_cold = 0;
797
798         mtx_lock(&Giant);
799 }
800 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
801     NULL);
802
803 void
804 witness_init(struct lock_object *lock, const char *type)
805 {
806         struct lock_class *class;
807
808         /* Various sanity checks. */
809         class = LOCK_CLASS(lock);
810         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
811             (class->lc_flags & LC_RECURSABLE) == 0)
812                 kassert_panic("%s: lock (%s) %s can not be recursable",
813                     __func__, class->lc_name, lock->lo_name);
814         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
815             (class->lc_flags & LC_SLEEPABLE) == 0)
816                 kassert_panic("%s: lock (%s) %s can not be sleepable",
817                     __func__, class->lc_name, lock->lo_name);
818         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
819             (class->lc_flags & LC_UPGRADABLE) == 0)
820                 kassert_panic("%s: lock (%s) %s can not be upgradable",
821                     __func__, class->lc_name, lock->lo_name);
822
823         /*
824          * If we shouldn't watch this lock, then just clear lo_witness.
825          * Otherwise, if witness_cold is set, then it is too early to
826          * enroll this lock, so defer it to witness_initialize() by adding
827          * it to the pending_locks list.  If it is not too early, then enroll
828          * the lock now.
829          */
830         if (witness_watch < 1 || panicstr != NULL ||
831             (lock->lo_flags & LO_WITNESS) == 0)
832                 lock->lo_witness = NULL;
833         else if (witness_cold) {
834                 pending_locks[pending_cnt].wh_lock = lock;
835                 pending_locks[pending_cnt++].wh_type = type;
836                 if (pending_cnt > WITNESS_PENDLIST)
837                         panic("%s: pending locks list is too small, "
838                             "increase WITNESS_PENDLIST\n",
839                             __func__);
840         } else
841                 lock->lo_witness = enroll(type, class);
842 }
843
844 void
845 witness_destroy(struct lock_object *lock)
846 {
847         struct lock_class *class;
848         struct witness *w;
849
850         class = LOCK_CLASS(lock);
851
852         if (witness_cold)
853                 panic("lock (%s) %s destroyed while witness_cold",
854                     class->lc_name, lock->lo_name);
855
856         /* XXX: need to verify that no one holds the lock */
857         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
858                 return;
859         w = lock->lo_witness;
860
861         mtx_lock_spin(&w_mtx);
862         MPASS(w->w_refcount > 0);
863         w->w_refcount--;
864
865         if (w->w_refcount == 0)
866                 depart(w);
867         mtx_unlock_spin(&w_mtx);
868 }
869
870 #ifdef DDB
871 static void
872 witness_ddb_compute_levels(void)
873 {
874         struct witness *w;
875
876         /*
877          * First clear all levels.
878          */
879         STAILQ_FOREACH(w, &w_all, w_list)
880                 w->w_ddb_level = -1;
881
882         /*
883          * Look for locks with no parents and level all their descendants.
884          */
885         STAILQ_FOREACH(w, &w_all, w_list) {
886
887                 /* If the witness has ancestors (is not a root), skip it. */
888                 if (w->w_num_ancestors > 0)
889                         continue;
890                 witness_ddb_level_descendants(w, 0);
891         }
892 }
893
894 static void
895 witness_ddb_level_descendants(struct witness *w, int l)
896 {
897         int i;
898
899         if (w->w_ddb_level >= l)
900                 return;
901
902         w->w_ddb_level = l;
903         l++;
904
905         for (i = 1; i <= w_max_used_index; i++) {
906                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
907                         witness_ddb_level_descendants(&w_data[i], l);
908         }
909 }
910
911 static void
912 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
913     struct witness *w, int indent)
914 {
915         int i;
916
917         for (i = 0; i < indent; i++)
918                 prnt(" ");
919         prnt("%s (type: %s, depth: %d, active refs: %d)",
920              w->w_name, w->w_class->lc_name,
921              w->w_ddb_level, w->w_refcount);
922         if (w->w_displayed) {
923                 prnt(" -- (already displayed)\n");
924                 return;
925         }
926         w->w_displayed = 1;
927         if (w->w_file != NULL && w->w_line != 0)
928                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
929                     w->w_line);
930         else
931                 prnt(" -- never acquired\n");
932         indent++;
933         WITNESS_INDEX_ASSERT(w->w_index);
934         for (i = 1; i <= w_max_used_index; i++) {
935                 if (db_pager_quit)
936                         return;
937                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
938                         witness_ddb_display_descendants(prnt, &w_data[i],
939                             indent);
940         }
941 }
942
943 static void
944 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
945     struct witness_list *list)
946 {
947         struct witness *w;
948
949         STAILQ_FOREACH(w, list, w_typelist) {
950                 if (w->w_file == NULL || w->w_ddb_level > 0)
951                         continue;
952
953                 /* This lock has no anscestors - display its descendants. */
954                 witness_ddb_display_descendants(prnt, w, 0);
955                 if (db_pager_quit)
956                         return;
957         }
958 }
959         
960 static void
961 witness_ddb_display(int(*prnt)(const char *fmt, ...))
962 {
963         struct witness *w;
964
965         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
966         witness_ddb_compute_levels();
967
968         /* Clear all the displayed flags. */
969         STAILQ_FOREACH(w, &w_all, w_list)
970                 w->w_displayed = 0;
971
972         /*
973          * First, handle sleep locks which have been acquired at least
974          * once.
975          */
976         prnt("Sleep locks:\n");
977         witness_ddb_display_list(prnt, &w_sleep);
978         if (db_pager_quit)
979                 return;
980         
981         /*
982          * Now do spin locks which have been acquired at least once.
983          */
984         prnt("\nSpin locks:\n");
985         witness_ddb_display_list(prnt, &w_spin);
986         if (db_pager_quit)
987                 return;
988         
989         /*
990          * Finally, any locks which have not been acquired yet.
991          */
992         prnt("\nLocks which were never acquired:\n");
993         STAILQ_FOREACH(w, &w_all, w_list) {
994                 if (w->w_file != NULL || w->w_refcount == 0)
995                         continue;
996                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
997                     w->w_class->lc_name, w->w_ddb_level);
998                 if (db_pager_quit)
999                         return;
1000         }
1001 }
1002 #endif /* DDB */
1003
1004 int
1005 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1006 {
1007
1008         if (witness_watch == -1 || panicstr != NULL)
1009                 return (0);
1010
1011         /* Require locks that witness knows about. */
1012         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1013             lock2->lo_witness == NULL)
1014                 return (EINVAL);
1015
1016         mtx_assert(&w_mtx, MA_NOTOWNED);
1017         mtx_lock_spin(&w_mtx);
1018
1019         /*
1020          * If we already have either an explicit or implied lock order that
1021          * is the other way around, then return an error.
1022          */
1023         if (witness_watch &&
1024             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1025                 mtx_unlock_spin(&w_mtx);
1026                 return (EDOOFUS);
1027         }
1028         
1029         /* Try to add the new order. */
1030         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1031             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1032         itismychild(lock1->lo_witness, lock2->lo_witness);
1033         mtx_unlock_spin(&w_mtx);
1034         return (0);
1035 }
1036
1037 void
1038 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1039     int line, struct lock_object *interlock)
1040 {
1041         struct lock_list_entry *lock_list, *lle;
1042         struct lock_instance *lock1, *lock2, *plock;
1043         struct lock_class *class, *iclass;
1044         struct witness *w, *w1;
1045         struct thread *td;
1046         int i, j;
1047
1048         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1049             panicstr != NULL)
1050                 return;
1051
1052         w = lock->lo_witness;
1053         class = LOCK_CLASS(lock);
1054         td = curthread;
1055
1056         if (class->lc_flags & LC_SLEEPLOCK) {
1057
1058                 /*
1059                  * Since spin locks include a critical section, this check
1060                  * implicitly enforces a lock order of all sleep locks before
1061                  * all spin locks.
1062                  */
1063                 if (td->td_critnest != 0 && !kdb_active)
1064                         kassert_panic("acquiring blockable sleep lock with "
1065                             "spinlock or critical section held (%s) %s @ %s:%d",
1066                             class->lc_name, lock->lo_name,
1067                             fixup_filename(file), line);
1068
1069                 /*
1070                  * If this is the first lock acquired then just return as
1071                  * no order checking is needed.
1072                  */
1073                 lock_list = td->td_sleeplocks;
1074                 if (lock_list == NULL || lock_list->ll_count == 0)
1075                         return;
1076         } else {
1077
1078                 /*
1079                  * If this is the first lock, just return as no order
1080                  * checking is needed.  Avoid problems with thread
1081                  * migration pinning the thread while checking if
1082                  * spinlocks are held.  If at least one spinlock is held
1083                  * the thread is in a safe path and it is allowed to
1084                  * unpin it.
1085                  */
1086                 sched_pin();
1087                 lock_list = PCPU_GET(spinlocks);
1088                 if (lock_list == NULL || lock_list->ll_count == 0) {
1089                         sched_unpin();
1090                         return;
1091                 }
1092                 sched_unpin();
1093         }
1094
1095         /*
1096          * Check to see if we are recursing on a lock we already own.  If
1097          * so, make sure that we don't mismatch exclusive and shared lock
1098          * acquires.
1099          */
1100         lock1 = find_instance(lock_list, lock);
1101         if (lock1 != NULL) {
1102                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1103                     (flags & LOP_EXCLUSIVE) == 0) {
1104                         printf("shared lock of (%s) %s @ %s:%d\n",
1105                             class->lc_name, lock->lo_name,
1106                             fixup_filename(file), line);
1107                         printf("while exclusively locked from %s:%d\n",
1108                             fixup_filename(lock1->li_file), lock1->li_line);
1109                         kassert_panic("excl->share");
1110                 }
1111                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1112                     (flags & LOP_EXCLUSIVE) != 0) {
1113                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1114                             class->lc_name, lock->lo_name,
1115                             fixup_filename(file), line);
1116                         printf("while share locked from %s:%d\n",
1117                             fixup_filename(lock1->li_file), lock1->li_line);
1118                         kassert_panic("share->excl");
1119                 }
1120                 return;
1121         }
1122
1123         /* Warn if the interlock is not locked exactly once. */
1124         if (interlock != NULL) {
1125                 iclass = LOCK_CLASS(interlock);
1126                 lock1 = find_instance(lock_list, interlock);
1127                 if (lock1 == NULL)
1128                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1129                             iclass->lc_name, interlock->lo_name,
1130                             fixup_filename(file), line);
1131                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1132                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1133                             iclass->lc_name, interlock->lo_name,
1134                             fixup_filename(file), line);
1135         }
1136
1137         /*
1138          * Find the previously acquired lock, but ignore interlocks.
1139          */
1140         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1141         if (interlock != NULL && plock->li_lock == interlock) {
1142                 if (lock_list->ll_count > 1)
1143                         plock =
1144                             &lock_list->ll_children[lock_list->ll_count - 2];
1145                 else {
1146                         lle = lock_list->ll_next;
1147
1148                         /*
1149                          * The interlock is the only lock we hold, so
1150                          * simply return.
1151                          */
1152                         if (lle == NULL)
1153                                 return;
1154                         plock = &lle->ll_children[lle->ll_count - 1];
1155                 }
1156         }
1157         
1158         /*
1159          * Try to perform most checks without a lock.  If this succeeds we
1160          * can skip acquiring the lock and return success.
1161          */
1162         w1 = plock->li_lock->lo_witness;
1163         if (witness_lock_order_check(w1, w))
1164                 return;
1165
1166         /*
1167          * Check for duplicate locks of the same type.  Note that we only
1168          * have to check for this on the last lock we just acquired.  Any
1169          * other cases will be caught as lock order violations.
1170          */
1171         mtx_lock_spin(&w_mtx);
1172         witness_lock_order_add(w1, w);
1173         if (w1 == w) {
1174                 i = w->w_index;
1175                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1176                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1177                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1178                         w->w_reversed = 1;
1179                         mtx_unlock_spin(&w_mtx);
1180                         printf(
1181                             "acquiring duplicate lock of same type: \"%s\"\n", 
1182                             w->w_name);
1183                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1184                             fixup_filename(plock->li_file), plock->li_line);
1185                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1186                             fixup_filename(file), line);
1187                         witness_debugger(1);
1188                 } else
1189                         mtx_unlock_spin(&w_mtx);
1190                 return;
1191         }
1192         mtx_assert(&w_mtx, MA_OWNED);
1193
1194         /*
1195          * If we know that the lock we are acquiring comes after
1196          * the lock we most recently acquired in the lock order tree,
1197          * then there is no need for any further checks.
1198          */
1199         if (isitmychild(w1, w))
1200                 goto out;
1201
1202         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1203                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1204
1205                         MPASS(j < WITNESS_COUNT);
1206                         lock1 = &lle->ll_children[i];
1207
1208                         /*
1209                          * Ignore the interlock.
1210                          */
1211                         if (interlock == lock1->li_lock)
1212                                 continue;
1213
1214                         /*
1215                          * If this lock doesn't undergo witness checking,
1216                          * then skip it.
1217                          */
1218                         w1 = lock1->li_lock->lo_witness;
1219                         if (w1 == NULL) {
1220                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1221                                     ("lock missing witness structure"));
1222                                 continue;
1223                         }
1224
1225                         /*
1226                          * If we are locking Giant and this is a sleepable
1227                          * lock, then skip it.
1228                          */
1229                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1230                             lock == &Giant.lock_object)
1231                                 continue;
1232
1233                         /*
1234                          * If we are locking a sleepable lock and this lock
1235                          * is Giant, then skip it.
1236                          */
1237                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1238                             lock1->li_lock == &Giant.lock_object)
1239                                 continue;
1240
1241                         /*
1242                          * If we are locking a sleepable lock and this lock
1243                          * isn't sleepable, we want to treat it as a lock
1244                          * order violation to enfore a general lock order of
1245                          * sleepable locks before non-sleepable locks.
1246                          */
1247                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1248                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1249                                 goto reversal;
1250
1251                         /*
1252                          * If we are locking Giant and this is a non-sleepable
1253                          * lock, then treat it as a reversal.
1254                          */
1255                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1256                             lock == &Giant.lock_object)
1257                                 goto reversal;
1258
1259                         /*
1260                          * Check the lock order hierarchy for a reveresal.
1261                          */
1262                         if (!isitmydescendant(w, w1))
1263                                 continue;
1264                 reversal:
1265
1266                         /*
1267                          * We have a lock order violation, check to see if it
1268                          * is allowed or has already been yelled about.
1269                          */
1270 #ifdef BLESSING
1271
1272                         /*
1273                          * If the lock order is blessed, just bail.  We don't
1274                          * look for other lock order violations though, which
1275                          * may be a bug.
1276                          */
1277                         if (blessed(w, w1))
1278                                 goto out;
1279 #endif
1280
1281                         /* Bail if this violation is known */
1282                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1283                                 goto out;
1284
1285                         /* Record this as a violation */
1286                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1287                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1288                         w->w_reversed = w1->w_reversed = 1;
1289                         witness_increment_graph_generation();
1290                         mtx_unlock_spin(&w_mtx);
1291
1292 #ifdef WITNESS_NO_VNODE
1293                         /*
1294                          * There are known LORs between VNODE locks. They are
1295                          * not an indication of a bug. VNODE locks are flagged
1296                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1297                          * is between 2 VNODE locks.
1298                          */
1299                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1300                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1301                                 return;
1302 #endif
1303
1304                         /*
1305                          * Ok, yell about it.
1306                          */
1307                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1308                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1309                                 printf(
1310                 "lock order reversal: (sleepable after non-sleepable)\n");
1311                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1312                             && lock == &Giant.lock_object)
1313                                 printf(
1314                 "lock order reversal: (Giant after non-sleepable)\n");
1315                         else
1316                                 printf("lock order reversal:\n");
1317
1318                         /*
1319                          * Try to locate an earlier lock with
1320                          * witness w in our list.
1321                          */
1322                         do {
1323                                 lock2 = &lle->ll_children[i];
1324                                 MPASS(lock2->li_lock != NULL);
1325                                 if (lock2->li_lock->lo_witness == w)
1326                                         break;
1327                                 if (i == 0 && lle->ll_next != NULL) {
1328                                         lle = lle->ll_next;
1329                                         i = lle->ll_count - 1;
1330                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1331                                 } else
1332                                         i--;
1333                         } while (i >= 0);
1334                         if (i < 0) {
1335                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1336                                     lock1->li_lock, lock1->li_lock->lo_name,
1337                                     w1->w_name, fixup_filename(lock1->li_file),
1338                                     lock1->li_line);
1339                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1340                                     lock->lo_name, w->w_name,
1341                                     fixup_filename(file), line);
1342                         } else {
1343                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1344                                     lock2->li_lock, lock2->li_lock->lo_name,
1345                                     lock2->li_lock->lo_witness->w_name,
1346                                     fixup_filename(lock2->li_file),
1347                                     lock2->li_line);
1348                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1349                                     lock1->li_lock, lock1->li_lock->lo_name,
1350                                     w1->w_name, fixup_filename(lock1->li_file),
1351                                     lock1->li_line);
1352                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1353                                     lock->lo_name, w->w_name,
1354                                     fixup_filename(file), line);
1355                         }
1356                         witness_debugger(1);
1357                         return;
1358                 }
1359         }
1360
1361         /*
1362          * If requested, build a new lock order.  However, don't build a new
1363          * relationship between a sleepable lock and Giant if it is in the
1364          * wrong direction.  The correct lock order is that sleepable locks
1365          * always come before Giant.
1366          */
1367         if (flags & LOP_NEWORDER &&
1368             !(plock->li_lock == &Giant.lock_object &&
1369             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1370                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1371                     w->w_name, plock->li_lock->lo_witness->w_name);
1372                 itismychild(plock->li_lock->lo_witness, w);
1373         }
1374 out:
1375         mtx_unlock_spin(&w_mtx);
1376 }
1377
1378 void
1379 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1380 {
1381         struct lock_list_entry **lock_list, *lle;
1382         struct lock_instance *instance;
1383         struct witness *w;
1384         struct thread *td;
1385
1386         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1387             panicstr != NULL)
1388                 return;
1389         w = lock->lo_witness;
1390         td = curthread;
1391
1392         /* Determine lock list for this lock. */
1393         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1394                 lock_list = &td->td_sleeplocks;
1395         else
1396                 lock_list = PCPU_PTR(spinlocks);
1397
1398         /* Check to see if we are recursing on a lock we already own. */
1399         instance = find_instance(*lock_list, lock);
1400         if (instance != NULL) {
1401                 instance->li_flags++;
1402                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1403                     td->td_proc->p_pid, lock->lo_name,
1404                     instance->li_flags & LI_RECURSEMASK);
1405                 instance->li_file = file;
1406                 instance->li_line = line;
1407                 return;
1408         }
1409
1410         /* Update per-witness last file and line acquire. */
1411         w->w_file = file;
1412         w->w_line = line;
1413
1414         /* Find the next open lock instance in the list and fill it. */
1415         lle = *lock_list;
1416         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1417                 lle = witness_lock_list_get();
1418                 if (lle == NULL)
1419                         return;
1420                 lle->ll_next = *lock_list;
1421                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1422                     td->td_proc->p_pid, lle);
1423                 *lock_list = lle;
1424         }
1425         instance = &lle->ll_children[lle->ll_count++];
1426         instance->li_lock = lock;
1427         instance->li_line = line;
1428         instance->li_file = file;
1429         if ((flags & LOP_EXCLUSIVE) != 0)
1430                 instance->li_flags = LI_EXCLUSIVE;
1431         else
1432                 instance->li_flags = 0;
1433         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1434             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1435 }
1436
1437 void
1438 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1439 {
1440         struct lock_instance *instance;
1441         struct lock_class *class;
1442
1443         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1444         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1445                 return;
1446         class = LOCK_CLASS(lock);
1447         if (witness_watch) {
1448                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1449                         kassert_panic(
1450                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1451                             class->lc_name, lock->lo_name,
1452                             fixup_filename(file), line);
1453                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1454                         kassert_panic(
1455                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1456                             class->lc_name, lock->lo_name,
1457                             fixup_filename(file), line);
1458         }
1459         instance = find_instance(curthread->td_sleeplocks, lock);
1460         if (instance == NULL) {
1461                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1462                     class->lc_name, lock->lo_name,
1463                     fixup_filename(file), line);
1464                 return;
1465         }
1466         if (witness_watch) {
1467                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1468                         kassert_panic(
1469                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1470                             class->lc_name, lock->lo_name,
1471                             fixup_filename(file), line);
1472                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1473                         kassert_panic(
1474                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1475                             class->lc_name, lock->lo_name,
1476                             instance->li_flags & LI_RECURSEMASK,
1477                             fixup_filename(file), line);
1478         }
1479         instance->li_flags |= LI_EXCLUSIVE;
1480 }
1481
1482 void
1483 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1484     int line)
1485 {
1486         struct lock_instance *instance;
1487         struct lock_class *class;
1488
1489         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1490         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1491                 return;
1492         class = LOCK_CLASS(lock);
1493         if (witness_watch) {
1494                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1495                         kassert_panic(
1496                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1497                             class->lc_name, lock->lo_name,
1498                             fixup_filename(file), line);
1499                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1500                         kassert_panic(
1501                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1502                             class->lc_name, lock->lo_name,
1503                             fixup_filename(file), line);
1504         }
1505         instance = find_instance(curthread->td_sleeplocks, lock);
1506         if (instance == NULL) {
1507                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1508                     class->lc_name, lock->lo_name,
1509                     fixup_filename(file), line);
1510                 return;
1511         }
1512         if (witness_watch) {
1513                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1514                         kassert_panic(
1515                             "downgrade of shared lock (%s) %s @ %s:%d",
1516                             class->lc_name, lock->lo_name,
1517                             fixup_filename(file), line);
1518                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1519                         kassert_panic(
1520                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1521                             class->lc_name, lock->lo_name,
1522                             instance->li_flags & LI_RECURSEMASK,
1523                             fixup_filename(file), line);
1524         }
1525         instance->li_flags &= ~LI_EXCLUSIVE;
1526 }
1527
1528 void
1529 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1530 {
1531         struct lock_list_entry **lock_list, *lle;
1532         struct lock_instance *instance;
1533         struct lock_class *class;
1534         struct thread *td;
1535         register_t s;
1536         int i, j;
1537
1538         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1539                 return;
1540         td = curthread;
1541         class = LOCK_CLASS(lock);
1542
1543         /* Find lock instance associated with this lock. */
1544         if (class->lc_flags & LC_SLEEPLOCK)
1545                 lock_list = &td->td_sleeplocks;
1546         else
1547                 lock_list = PCPU_PTR(spinlocks);
1548         lle = *lock_list;
1549         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1550                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1551                         instance = &(*lock_list)->ll_children[i];
1552                         if (instance->li_lock == lock)
1553                                 goto found;
1554                 }
1555
1556         /*
1557          * When disabling WITNESS through witness_watch we could end up in
1558          * having registered locks in the td_sleeplocks queue.
1559          * We have to make sure we flush these queues, so just search for
1560          * eventual register locks and remove them.
1561          */
1562         if (witness_watch > 0) {
1563                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1564                     lock->lo_name, fixup_filename(file), line);
1565                 return;
1566         } else {
1567                 return;
1568         }
1569 found:
1570
1571         /* First, check for shared/exclusive mismatches. */
1572         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1573             (flags & LOP_EXCLUSIVE) == 0) {
1574                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1575                     lock->lo_name, fixup_filename(file), line);
1576                 printf("while exclusively locked from %s:%d\n",
1577                     fixup_filename(instance->li_file), instance->li_line);
1578                 kassert_panic("excl->ushare");
1579         }
1580         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1581             (flags & LOP_EXCLUSIVE) != 0) {
1582                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1583                     lock->lo_name, fixup_filename(file), line);
1584                 printf("while share locked from %s:%d\n",
1585                     fixup_filename(instance->li_file),
1586                     instance->li_line);
1587                 kassert_panic("share->uexcl");
1588         }
1589         /* If we are recursed, unrecurse. */
1590         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1591                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1592                     td->td_proc->p_pid, instance->li_lock->lo_name,
1593                     instance->li_flags);
1594                 instance->li_flags--;
1595                 return;
1596         }
1597         /* The lock is now being dropped, check for NORELEASE flag */
1598         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1599                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1600                     lock->lo_name, fixup_filename(file), line);
1601                 kassert_panic("lock marked norelease");
1602         }
1603
1604         /* Otherwise, remove this item from the list. */
1605         s = intr_disable();
1606         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1607             td->td_proc->p_pid, instance->li_lock->lo_name,
1608             (*lock_list)->ll_count - 1);
1609         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1610                 (*lock_list)->ll_children[j] =
1611                     (*lock_list)->ll_children[j + 1];
1612         (*lock_list)->ll_count--;
1613         intr_restore(s);
1614
1615         /*
1616          * In order to reduce contention on w_mtx, we want to keep always an
1617          * head object into lists so that frequent allocation from the 
1618          * free witness pool (and subsequent locking) is avoided.
1619          * In order to maintain the current code simple, when the head
1620          * object is totally unloaded it means also that we do not have
1621          * further objects in the list, so the list ownership needs to be
1622          * hand over to another object if the current head needs to be freed.
1623          */
1624         if ((*lock_list)->ll_count == 0) {
1625                 if (*lock_list == lle) {
1626                         if (lle->ll_next == NULL)
1627                                 return;
1628                 } else
1629                         lle = *lock_list;
1630                 *lock_list = lle->ll_next;
1631                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1632                     td->td_proc->p_pid, lle);
1633                 witness_lock_list_free(lle);
1634         }
1635 }
1636
1637 void
1638 witness_thread_exit(struct thread *td)
1639 {
1640         struct lock_list_entry *lle;
1641         int i, n;
1642
1643         lle = td->td_sleeplocks;
1644         if (lle == NULL || panicstr != NULL)
1645                 return;
1646         if (lle->ll_count != 0) {
1647                 for (n = 0; lle != NULL; lle = lle->ll_next)
1648                         for (i = lle->ll_count - 1; i >= 0; i--) {
1649                                 if (n == 0)
1650                 printf("Thread %p exiting with the following locks held:\n",
1651                                             td);
1652                                 n++;
1653                                 witness_list_lock(&lle->ll_children[i], printf);
1654                                 
1655                         }
1656                 kassert_panic(
1657                     "Thread %p cannot exit while holding sleeplocks\n", td);
1658         }
1659         witness_lock_list_free(lle);
1660 }
1661
1662 /*
1663  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1664  * exempt Giant and sleepable locks from the checks as well.  If any
1665  * non-exempt locks are held, then a supplied message is printed to the
1666  * console along with a list of the offending locks.  If indicated in the
1667  * flags then a failure results in a panic as well.
1668  */
1669 int
1670 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1671 {
1672         struct lock_list_entry *lock_list, *lle;
1673         struct lock_instance *lock1;
1674         struct thread *td;
1675         va_list ap;
1676         int i, n;
1677
1678         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1679                 return (0);
1680         n = 0;
1681         td = curthread;
1682         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1683                 for (i = lle->ll_count - 1; i >= 0; i--) {
1684                         lock1 = &lle->ll_children[i];
1685                         if (lock1->li_lock == lock)
1686                                 continue;
1687                         if (flags & WARN_GIANTOK &&
1688                             lock1->li_lock == &Giant.lock_object)
1689                                 continue;
1690                         if (flags & WARN_SLEEPOK &&
1691                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1692                                 continue;
1693                         if (n == 0) {
1694                                 va_start(ap, fmt);
1695                                 vprintf(fmt, ap);
1696                                 va_end(ap);
1697                                 printf(" with the following");
1698                                 if (flags & WARN_SLEEPOK)
1699                                         printf(" non-sleepable");
1700                                 printf(" locks held:\n");
1701                         }
1702                         n++;
1703                         witness_list_lock(lock1, printf);
1704                 }
1705
1706         /*
1707          * Pin the thread in order to avoid problems with thread migration.
1708          * Once that all verifies are passed about spinlocks ownership,
1709          * the thread is in a safe path and it can be unpinned.
1710          */
1711         sched_pin();
1712         lock_list = PCPU_GET(spinlocks);
1713         if (lock_list != NULL && lock_list->ll_count != 0) {
1714                 sched_unpin();
1715
1716                 /*
1717                  * We should only have one spinlock and as long as
1718                  * the flags cannot match for this locks class,
1719                  * check if the first spinlock is the one curthread
1720                  * should hold.
1721                  */
1722                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1723                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1724                     lock1->li_lock == lock && n == 0)
1725                         return (0);
1726
1727                 va_start(ap, fmt);
1728                 vprintf(fmt, ap);
1729                 va_end(ap);
1730                 printf(" with the following");
1731                 if (flags & WARN_SLEEPOK)
1732                         printf(" non-sleepable");
1733                 printf(" locks held:\n");
1734                 n += witness_list_locks(&lock_list, printf);
1735         } else
1736                 sched_unpin();
1737         if (flags & WARN_PANIC && n)
1738                 kassert_panic("%s", __func__);
1739         else
1740                 witness_debugger(n);
1741         return (n);
1742 }
1743
1744 const char *
1745 witness_file(struct lock_object *lock)
1746 {
1747         struct witness *w;
1748
1749         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1750                 return ("?");
1751         w = lock->lo_witness;
1752         return (w->w_file);
1753 }
1754
1755 int
1756 witness_line(struct lock_object *lock)
1757 {
1758         struct witness *w;
1759
1760         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1761                 return (0);
1762         w = lock->lo_witness;
1763         return (w->w_line);
1764 }
1765
1766 static struct witness *
1767 enroll(const char *description, struct lock_class *lock_class)
1768 {
1769         struct witness *w;
1770         struct witness_list *typelist;
1771
1772         MPASS(description != NULL);
1773
1774         if (witness_watch == -1 || panicstr != NULL)
1775                 return (NULL);
1776         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1777                 if (witness_skipspin)
1778                         return (NULL);
1779                 else
1780                         typelist = &w_spin;
1781         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1782                 typelist = &w_sleep;
1783         } else {
1784                 kassert_panic("lock class %s is not sleep or spin",
1785                     lock_class->lc_name);
1786                 return (NULL);
1787         }
1788
1789         mtx_lock_spin(&w_mtx);
1790         w = witness_hash_get(description);
1791         if (w)
1792                 goto found;
1793         if ((w = witness_get()) == NULL)
1794                 return (NULL);
1795         MPASS(strlen(description) < MAX_W_NAME);
1796         strcpy(w->w_name, description);
1797         w->w_class = lock_class;
1798         w->w_refcount = 1;
1799         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1800         if (lock_class->lc_flags & LC_SPINLOCK) {
1801                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1802                 w_spin_cnt++;
1803         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1804                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1805                 w_sleep_cnt++;
1806         }
1807
1808         /* Insert new witness into the hash */
1809         witness_hash_put(w);
1810         witness_increment_graph_generation();
1811         mtx_unlock_spin(&w_mtx);
1812         return (w);
1813 found:
1814         w->w_refcount++;
1815         mtx_unlock_spin(&w_mtx);
1816         if (lock_class != w->w_class)
1817                 kassert_panic(
1818                         "lock (%s) %s does not match earlier (%s) lock",
1819                         description, lock_class->lc_name,
1820                         w->w_class->lc_name);
1821         return (w);
1822 }
1823
1824 static void
1825 depart(struct witness *w)
1826 {
1827         struct witness_list *list;
1828
1829         MPASS(w->w_refcount == 0);
1830         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1831                 list = &w_sleep;
1832                 w_sleep_cnt--;
1833         } else {
1834                 list = &w_spin;
1835                 w_spin_cnt--;
1836         }
1837         /*
1838          * Set file to NULL as it may point into a loadable module.
1839          */
1840         w->w_file = NULL;
1841         w->w_line = 0;
1842         witness_increment_graph_generation();
1843 }
1844
1845
1846 static void
1847 adopt(struct witness *parent, struct witness *child)
1848 {
1849         int pi, ci, i, j;
1850
1851         if (witness_cold == 0)
1852                 mtx_assert(&w_mtx, MA_OWNED);
1853
1854         /* If the relationship is already known, there's no work to be done. */
1855         if (isitmychild(parent, child))
1856                 return;
1857
1858         /* When the structure of the graph changes, bump up the generation. */
1859         witness_increment_graph_generation();
1860
1861         /*
1862          * The hard part ... create the direct relationship, then propagate all
1863          * indirect relationships.
1864          */
1865         pi = parent->w_index;
1866         ci = child->w_index;
1867         WITNESS_INDEX_ASSERT(pi);
1868         WITNESS_INDEX_ASSERT(ci);
1869         MPASS(pi != ci);
1870         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1871         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1872
1873         /*
1874          * If parent was not already an ancestor of child,
1875          * then we increment the descendant and ancestor counters.
1876          */
1877         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1878                 parent->w_num_descendants++;
1879                 child->w_num_ancestors++;
1880         }
1881
1882         /* 
1883          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1884          * an ancestor of 'pi' during this loop.
1885          */
1886         for (i = 1; i <= w_max_used_index; i++) {
1887                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1888                     (i != pi))
1889                         continue;
1890
1891                 /* Find each descendant of 'i' and mark it as a descendant. */
1892                 for (j = 1; j <= w_max_used_index; j++) {
1893
1894                         /* 
1895                          * Skip children that are already marked as
1896                          * descendants of 'i'.
1897                          */
1898                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1899                                 continue;
1900
1901                         /*
1902                          * We are only interested in descendants of 'ci'. Note
1903                          * that 'ci' itself is counted as a descendant of 'ci'.
1904                          */
1905                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1906                             (j != ci))
1907                                 continue;
1908                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1909                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1910                         w_data[i].w_num_descendants++;
1911                         w_data[j].w_num_ancestors++;
1912
1913                         /* 
1914                          * Make sure we aren't marking a node as both an
1915                          * ancestor and descendant. We should have caught 
1916                          * this as a lock order reversal earlier.
1917                          */
1918                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1919                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1920                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1921                                     "both ancestor and descendant\n",
1922                                     i, j, w_rmatrix[i][j]); 
1923                                 kdb_backtrace();
1924                                 printf("Witness disabled.\n");
1925                                 witness_watch = -1;
1926                         }
1927                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1928                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1929                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1930                                     "both ancestor and descendant\n",
1931                                     j, i, w_rmatrix[j][i]); 
1932                                 kdb_backtrace();
1933                                 printf("Witness disabled.\n");
1934                                 witness_watch = -1;
1935                         }
1936                 }
1937         }
1938 }
1939
1940 static void
1941 itismychild(struct witness *parent, struct witness *child)
1942 {
1943         int unlocked;
1944
1945         MPASS(child != NULL && parent != NULL);
1946         if (witness_cold == 0)
1947                 mtx_assert(&w_mtx, MA_OWNED);
1948
1949         if (!witness_lock_type_equal(parent, child)) {
1950                 if (witness_cold == 0) {
1951                         unlocked = 1;
1952                         mtx_unlock_spin(&w_mtx);
1953                 } else {
1954                         unlocked = 0;
1955                 }
1956                 kassert_panic(
1957                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1958                     "the same lock type", __func__, parent->w_name,
1959                     parent->w_class->lc_name, child->w_name,
1960                     child->w_class->lc_name);
1961                 if (unlocked)
1962                         mtx_lock_spin(&w_mtx);
1963         }
1964         adopt(parent, child);
1965 }
1966
1967 /*
1968  * Generic code for the isitmy*() functions. The rmask parameter is the
1969  * expected relationship of w1 to w2.
1970  */
1971 static int
1972 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1973 {
1974         unsigned char r1, r2;
1975         int i1, i2;
1976
1977         i1 = w1->w_index;
1978         i2 = w2->w_index;
1979         WITNESS_INDEX_ASSERT(i1);
1980         WITNESS_INDEX_ASSERT(i2);
1981         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1982         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1983
1984         /* The flags on one better be the inverse of the flags on the other */
1985         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1986                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1987                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1988                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1989                     "w_rmatrix[%d][%d] == %hhx\n",
1990                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1991                     i2, i1, r2);
1992                 kdb_backtrace();
1993                 printf("Witness disabled.\n");
1994                 witness_watch = -1;
1995         }
1996         return (r1 & rmask);
1997 }
1998
1999 /*
2000  * Checks if @child is a direct child of @parent.
2001  */
2002 static int
2003 isitmychild(struct witness *parent, struct witness *child)
2004 {
2005
2006         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2007 }
2008
2009 /*
2010  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2011  */
2012 static int
2013 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2014 {
2015
2016         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2017             __func__));
2018 }
2019
2020 #ifdef BLESSING
2021 static int
2022 blessed(struct witness *w1, struct witness *w2)
2023 {
2024         int i;
2025         struct witness_blessed *b;
2026
2027         for (i = 0; i < blessed_count; i++) {
2028                 b = &blessed_list[i];
2029                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2030                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2031                                 return (1);
2032                         continue;
2033                 }
2034                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2035                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2036                                 return (1);
2037         }
2038         return (0);
2039 }
2040 #endif
2041
2042 static struct witness *
2043 witness_get(void)
2044 {
2045         struct witness *w;
2046         int index;
2047
2048         if (witness_cold == 0)
2049                 mtx_assert(&w_mtx, MA_OWNED);
2050
2051         if (witness_watch == -1) {
2052                 mtx_unlock_spin(&w_mtx);
2053                 return (NULL);
2054         }
2055         if (STAILQ_EMPTY(&w_free)) {
2056                 witness_watch = -1;
2057                 mtx_unlock_spin(&w_mtx);
2058                 printf("WITNESS: unable to allocate a new witness object\n");
2059                 return (NULL);
2060         }
2061         w = STAILQ_FIRST(&w_free);
2062         STAILQ_REMOVE_HEAD(&w_free, w_list);
2063         w_free_cnt--;
2064         index = w->w_index;
2065         MPASS(index > 0 && index == w_max_used_index+1 &&
2066             index < WITNESS_COUNT);
2067         bzero(w, sizeof(*w));
2068         w->w_index = index;
2069         if (index > w_max_used_index)
2070                 w_max_used_index = index;
2071         return (w);
2072 }
2073
2074 static void
2075 witness_free(struct witness *w)
2076 {
2077
2078         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2079         w_free_cnt++;
2080 }
2081
2082 static struct lock_list_entry *
2083 witness_lock_list_get(void)
2084 {
2085         struct lock_list_entry *lle;
2086
2087         if (witness_watch == -1)
2088                 return (NULL);
2089         mtx_lock_spin(&w_mtx);
2090         lle = w_lock_list_free;
2091         if (lle == NULL) {
2092                 witness_watch = -1;
2093                 mtx_unlock_spin(&w_mtx);
2094                 printf("%s: witness exhausted\n", __func__);
2095                 return (NULL);
2096         }
2097         w_lock_list_free = lle->ll_next;
2098         mtx_unlock_spin(&w_mtx);
2099         bzero(lle, sizeof(*lle));
2100         return (lle);
2101 }
2102                 
2103 static void
2104 witness_lock_list_free(struct lock_list_entry *lle)
2105 {
2106
2107         mtx_lock_spin(&w_mtx);
2108         lle->ll_next = w_lock_list_free;
2109         w_lock_list_free = lle;
2110         mtx_unlock_spin(&w_mtx);
2111 }
2112
2113 static struct lock_instance *
2114 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2115 {
2116         struct lock_list_entry *lle;
2117         struct lock_instance *instance;
2118         int i;
2119
2120         for (lle = list; lle != NULL; lle = lle->ll_next)
2121                 for (i = lle->ll_count - 1; i >= 0; i--) {
2122                         instance = &lle->ll_children[i];
2123                         if (instance->li_lock == lock)
2124                                 return (instance);
2125                 }
2126         return (NULL);
2127 }
2128
2129 static void
2130 witness_list_lock(struct lock_instance *instance,
2131     int (*prnt)(const char *fmt, ...))
2132 {
2133         struct lock_object *lock;
2134
2135         lock = instance->li_lock;
2136         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2137             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2138         if (lock->lo_witness->w_name != lock->lo_name)
2139                 prnt(" (%s)", lock->lo_witness->w_name);
2140         prnt(" r = %d (%p) locked @ %s:%d\n",
2141             instance->li_flags & LI_RECURSEMASK, lock,
2142             fixup_filename(instance->li_file), instance->li_line);
2143 }
2144
2145 #ifdef DDB
2146 static int
2147 witness_thread_has_locks(struct thread *td)
2148 {
2149
2150         if (td->td_sleeplocks == NULL)
2151                 return (0);
2152         return (td->td_sleeplocks->ll_count != 0);
2153 }
2154
2155 static int
2156 witness_proc_has_locks(struct proc *p)
2157 {
2158         struct thread *td;
2159
2160         FOREACH_THREAD_IN_PROC(p, td) {
2161                 if (witness_thread_has_locks(td))
2162                         return (1);
2163         }
2164         return (0);
2165 }
2166 #endif
2167
2168 int
2169 witness_list_locks(struct lock_list_entry **lock_list,
2170     int (*prnt)(const char *fmt, ...))
2171 {
2172         struct lock_list_entry *lle;
2173         int i, nheld;
2174
2175         nheld = 0;
2176         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2177                 for (i = lle->ll_count - 1; i >= 0; i--) {
2178                         witness_list_lock(&lle->ll_children[i], prnt);
2179                         nheld++;
2180                 }
2181         return (nheld);
2182 }
2183
2184 /*
2185  * This is a bit risky at best.  We call this function when we have timed
2186  * out acquiring a spin lock, and we assume that the other CPU is stuck
2187  * with this lock held.  So, we go groveling around in the other CPU's
2188  * per-cpu data to try to find the lock instance for this spin lock to
2189  * see when it was last acquired.
2190  */
2191 void
2192 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2193     int (*prnt)(const char *fmt, ...))
2194 {
2195         struct lock_instance *instance;
2196         struct pcpu *pc;
2197
2198         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2199                 return;
2200         pc = pcpu_find(owner->td_oncpu);
2201         instance = find_instance(pc->pc_spinlocks, lock);
2202         if (instance != NULL)
2203                 witness_list_lock(instance, prnt);
2204 }
2205
2206 void
2207 witness_save(struct lock_object *lock, const char **filep, int *linep)
2208 {
2209         struct lock_list_entry *lock_list;
2210         struct lock_instance *instance;
2211         struct lock_class *class;
2212
2213         /*
2214          * This function is used independently in locking code to deal with
2215          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2216          * is gone.
2217          */
2218         if (SCHEDULER_STOPPED())
2219                 return;
2220         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2221         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2222                 return;
2223         class = LOCK_CLASS(lock);
2224         if (class->lc_flags & LC_SLEEPLOCK)
2225                 lock_list = curthread->td_sleeplocks;
2226         else {
2227                 if (witness_skipspin)
2228                         return;
2229                 lock_list = PCPU_GET(spinlocks);
2230         }
2231         instance = find_instance(lock_list, lock);
2232         if (instance == NULL) {
2233                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2234                     class->lc_name, lock->lo_name);
2235                 return;
2236         }
2237         *filep = instance->li_file;
2238         *linep = instance->li_line;
2239 }
2240
2241 void
2242 witness_restore(struct lock_object *lock, const char *file, int line)
2243 {
2244         struct lock_list_entry *lock_list;
2245         struct lock_instance *instance;
2246         struct lock_class *class;
2247
2248         /*
2249          * This function is used independently in locking code to deal with
2250          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2251          * is gone.
2252          */
2253         if (SCHEDULER_STOPPED())
2254                 return;
2255         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2256         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2257                 return;
2258         class = LOCK_CLASS(lock);
2259         if (class->lc_flags & LC_SLEEPLOCK)
2260                 lock_list = curthread->td_sleeplocks;
2261         else {
2262                 if (witness_skipspin)
2263                         return;
2264                 lock_list = PCPU_GET(spinlocks);
2265         }
2266         instance = find_instance(lock_list, lock);
2267         if (instance == NULL)
2268                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2269                     class->lc_name, lock->lo_name);
2270         lock->lo_witness->w_file = file;
2271         lock->lo_witness->w_line = line;
2272         if (instance == NULL)
2273                 return;
2274         instance->li_file = file;
2275         instance->li_line = line;
2276 }
2277
2278 void
2279 witness_assert(const struct lock_object *lock, int flags, const char *file,
2280     int line)
2281 {
2282 #ifdef INVARIANT_SUPPORT
2283         struct lock_instance *instance;
2284         struct lock_class *class;
2285
2286         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2287                 return;
2288         class = LOCK_CLASS(lock);
2289         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2290                 instance = find_instance(curthread->td_sleeplocks, lock);
2291         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2292                 instance = find_instance(PCPU_GET(spinlocks), lock);
2293         else {
2294                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2295                     class->lc_name, lock->lo_name);
2296                 return;
2297         }
2298         switch (flags) {
2299         case LA_UNLOCKED:
2300                 if (instance != NULL)
2301                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2302                             class->lc_name, lock->lo_name,
2303                             fixup_filename(file), line);
2304                 break;
2305         case LA_LOCKED:
2306         case LA_LOCKED | LA_RECURSED:
2307         case LA_LOCKED | LA_NOTRECURSED:
2308         case LA_SLOCKED:
2309         case LA_SLOCKED | LA_RECURSED:
2310         case LA_SLOCKED | LA_NOTRECURSED:
2311         case LA_XLOCKED:
2312         case LA_XLOCKED | LA_RECURSED:
2313         case LA_XLOCKED | LA_NOTRECURSED:
2314                 if (instance == NULL) {
2315                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2316                             class->lc_name, lock->lo_name,
2317                             fixup_filename(file), line);
2318                         break;
2319                 }
2320                 if ((flags & LA_XLOCKED) != 0 &&
2321                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2322                         kassert_panic(
2323                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2324                             class->lc_name, lock->lo_name,
2325                             fixup_filename(file), line);
2326                 if ((flags & LA_SLOCKED) != 0 &&
2327                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2328                         kassert_panic(
2329                             "Lock (%s) %s exclusively locked @ %s:%d.",
2330                             class->lc_name, lock->lo_name,
2331                             fixup_filename(file), line);
2332                 if ((flags & LA_RECURSED) != 0 &&
2333                     (instance->li_flags & LI_RECURSEMASK) == 0)
2334                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2335                             class->lc_name, lock->lo_name,
2336                             fixup_filename(file), line);
2337                 if ((flags & LA_NOTRECURSED) != 0 &&
2338                     (instance->li_flags & LI_RECURSEMASK) != 0)
2339                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2340                             class->lc_name, lock->lo_name,
2341                             fixup_filename(file), line);
2342                 break;
2343         default:
2344                 kassert_panic("Invalid lock assertion at %s:%d.",
2345                     fixup_filename(file), line);
2346
2347         }
2348 #endif  /* INVARIANT_SUPPORT */
2349 }
2350
2351 static void
2352 witness_setflag(struct lock_object *lock, int flag, int set)
2353 {
2354         struct lock_list_entry *lock_list;
2355         struct lock_instance *instance;
2356         struct lock_class *class;
2357
2358         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2359                 return;
2360         class = LOCK_CLASS(lock);
2361         if (class->lc_flags & LC_SLEEPLOCK)
2362                 lock_list = curthread->td_sleeplocks;
2363         else {
2364                 if (witness_skipspin)
2365                         return;
2366                 lock_list = PCPU_GET(spinlocks);
2367         }
2368         instance = find_instance(lock_list, lock);
2369         if (instance == NULL) {
2370                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2371                     class->lc_name, lock->lo_name);
2372                 return;
2373         }
2374
2375         if (set)
2376                 instance->li_flags |= flag;
2377         else
2378                 instance->li_flags &= ~flag;
2379 }
2380
2381 void
2382 witness_norelease(struct lock_object *lock)
2383 {
2384
2385         witness_setflag(lock, LI_NORELEASE, 1);
2386 }
2387
2388 void
2389 witness_releaseok(struct lock_object *lock)
2390 {
2391
2392         witness_setflag(lock, LI_NORELEASE, 0);
2393 }
2394
2395 #ifdef DDB
2396 static void
2397 witness_ddb_list(struct thread *td)
2398 {
2399
2400         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2401         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2402
2403         if (witness_watch < 1)
2404                 return;
2405
2406         witness_list_locks(&td->td_sleeplocks, db_printf);
2407
2408         /*
2409          * We only handle spinlocks if td == curthread.  This is somewhat broken
2410          * if td is currently executing on some other CPU and holds spin locks
2411          * as we won't display those locks.  If we had a MI way of getting
2412          * the per-cpu data for a given cpu then we could use
2413          * td->td_oncpu to get the list of spinlocks for this thread
2414          * and "fix" this.
2415          *
2416          * That still wouldn't really fix this unless we locked the scheduler
2417          * lock or stopped the other CPU to make sure it wasn't changing the
2418          * list out from under us.  It is probably best to just not try to
2419          * handle threads on other CPU's for now.
2420          */
2421         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2422                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2423 }
2424
2425 DB_SHOW_COMMAND(locks, db_witness_list)
2426 {
2427         struct thread *td;
2428
2429         if (have_addr)
2430                 td = db_lookup_thread(addr, TRUE);
2431         else
2432                 td = kdb_thread;
2433         witness_ddb_list(td);
2434 }
2435
2436 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2437 {
2438         struct thread *td;
2439         struct proc *p;
2440
2441         /*
2442          * It would be nice to list only threads and processes that actually
2443          * held sleep locks, but that information is currently not exported
2444          * by WITNESS.
2445          */
2446         FOREACH_PROC_IN_SYSTEM(p) {
2447                 if (!witness_proc_has_locks(p))
2448                         continue;
2449                 FOREACH_THREAD_IN_PROC(p, td) {
2450                         if (!witness_thread_has_locks(td))
2451                                 continue;
2452                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2453                             p->p_comm, td, td->td_tid);
2454                         witness_ddb_list(td);
2455                         if (db_pager_quit)
2456                                 return;
2457                 }
2458         }
2459 }
2460 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2461
2462 DB_SHOW_COMMAND(witness, db_witness_display)
2463 {
2464
2465         witness_ddb_display(db_printf);
2466 }
2467 #endif
2468
2469 static int
2470 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2471 {
2472         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2473         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2474         struct sbuf *sb;
2475         u_int w_rmatrix1, w_rmatrix2;
2476         int error, generation, i, j;
2477
2478         tmp_data1 = NULL;
2479         tmp_data2 = NULL;
2480         tmp_w1 = NULL;
2481         tmp_w2 = NULL;
2482         if (witness_watch < 1) {
2483                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2484                 return (error);
2485         }
2486         if (witness_cold) {
2487                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2488                 return (error);
2489         }
2490         error = 0;
2491         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2492         if (sb == NULL)
2493                 return (ENOMEM);
2494
2495         /* Allocate and init temporary storage space. */
2496         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2497         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2498         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2499             M_WAITOK | M_ZERO);
2500         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2501             M_WAITOK | M_ZERO);
2502         stack_zero(&tmp_data1->wlod_stack);
2503         stack_zero(&tmp_data2->wlod_stack);
2504
2505 restart:
2506         mtx_lock_spin(&w_mtx);
2507         generation = w_generation;
2508         mtx_unlock_spin(&w_mtx);
2509         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2510             w_lohash.wloh_count);
2511         for (i = 1; i < w_max_used_index; i++) {
2512                 mtx_lock_spin(&w_mtx);
2513                 if (generation != w_generation) {
2514                         mtx_unlock_spin(&w_mtx);
2515
2516                         /* The graph has changed, try again. */
2517                         req->oldidx = 0;
2518                         sbuf_clear(sb);
2519                         goto restart;
2520                 }
2521
2522                 w1 = &w_data[i];
2523                 if (w1->w_reversed == 0) {
2524                         mtx_unlock_spin(&w_mtx);
2525                         continue;
2526                 }
2527
2528                 /* Copy w1 locally so we can release the spin lock. */
2529                 *tmp_w1 = *w1;
2530                 mtx_unlock_spin(&w_mtx);
2531
2532                 if (tmp_w1->w_reversed == 0)
2533                         continue;
2534                 for (j = 1; j < w_max_used_index; j++) {
2535                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2536                                 continue;
2537
2538                         mtx_lock_spin(&w_mtx);
2539                         if (generation != w_generation) {
2540                                 mtx_unlock_spin(&w_mtx);
2541
2542                                 /* The graph has changed, try again. */
2543                                 req->oldidx = 0;
2544                                 sbuf_clear(sb);
2545                                 goto restart;
2546                         }
2547
2548                         w2 = &w_data[j];
2549                         data1 = witness_lock_order_get(w1, w2);
2550                         data2 = witness_lock_order_get(w2, w1);
2551
2552                         /*
2553                          * Copy information locally so we can release the
2554                          * spin lock.
2555                          */
2556                         *tmp_w2 = *w2;
2557                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2558                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2559
2560                         if (data1) {
2561                                 stack_zero(&tmp_data1->wlod_stack);
2562                                 stack_copy(&data1->wlod_stack,
2563                                     &tmp_data1->wlod_stack);
2564                         }
2565                         if (data2 && data2 != data1) {
2566                                 stack_zero(&tmp_data2->wlod_stack);
2567                                 stack_copy(&data2->wlod_stack,
2568                                     &tmp_data2->wlod_stack);
2569                         }
2570                         mtx_unlock_spin(&w_mtx);
2571
2572                         sbuf_printf(sb,
2573             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2574                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2575                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2576 #if 0
2577                         sbuf_printf(sb,
2578                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2579                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2580                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2581 #endif
2582                         if (data1) {
2583                                 sbuf_printf(sb,
2584                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2585                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2586                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2587                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2588                                 sbuf_printf(sb, "\n");
2589                         }
2590                         if (data2 && data2 != data1) {
2591                                 sbuf_printf(sb,
2592                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2593                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2594                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2595                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2596                                 sbuf_printf(sb, "\n");
2597                         }
2598                 }
2599         }
2600         mtx_lock_spin(&w_mtx);
2601         if (generation != w_generation) {
2602                 mtx_unlock_spin(&w_mtx);
2603
2604                 /*
2605                  * The graph changed while we were printing stack data,
2606                  * try again.
2607                  */
2608                 req->oldidx = 0;
2609                 sbuf_clear(sb);
2610                 goto restart;
2611         }
2612         mtx_unlock_spin(&w_mtx);
2613
2614         /* Free temporary storage space. */
2615         free(tmp_data1, M_TEMP);
2616         free(tmp_data2, M_TEMP);
2617         free(tmp_w1, M_TEMP);
2618         free(tmp_w2, M_TEMP);
2619
2620         sbuf_finish(sb);
2621         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2622         sbuf_delete(sb);
2623
2624         return (error);
2625 }
2626
2627 static int
2628 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2629 {
2630         struct witness *w;
2631         struct sbuf *sb;
2632         int error;
2633
2634         if (witness_watch < 1) {
2635                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2636                 return (error);
2637         }
2638         if (witness_cold) {
2639                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2640                 return (error);
2641         }
2642         error = 0;
2643
2644         error = sysctl_wire_old_buffer(req, 0);
2645         if (error != 0)
2646                 return (error);
2647         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2648         if (sb == NULL)
2649                 return (ENOMEM);
2650         sbuf_printf(sb, "\n");
2651
2652         mtx_lock_spin(&w_mtx);
2653         STAILQ_FOREACH(w, &w_all, w_list)
2654                 w->w_displayed = 0;
2655         STAILQ_FOREACH(w, &w_all, w_list)
2656                 witness_add_fullgraph(sb, w);
2657         mtx_unlock_spin(&w_mtx);
2658
2659         /*
2660          * Close the sbuf and return to userland.
2661          */
2662         error = sbuf_finish(sb);
2663         sbuf_delete(sb);
2664
2665         return (error);
2666 }
2667
2668 static int
2669 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2670 {
2671         int error, value;
2672
2673         value = witness_watch;
2674         error = sysctl_handle_int(oidp, &value, 0, req);
2675         if (error != 0 || req->newptr == NULL)
2676                 return (error);
2677         if (value > 1 || value < -1 ||
2678             (witness_watch == -1 && value != witness_watch))
2679                 return (EINVAL);
2680         witness_watch = value;
2681         return (0);
2682 }
2683
2684 static void
2685 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2686 {
2687         int i;
2688
2689         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2690                 return;
2691         w->w_displayed = 1;
2692
2693         WITNESS_INDEX_ASSERT(w->w_index);
2694         for (i = 1; i <= w_max_used_index; i++) {
2695                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2696                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2697                             w_data[i].w_name);
2698                         witness_add_fullgraph(sb, &w_data[i]);
2699                 }
2700         }
2701 }
2702
2703 /*
2704  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2705  * interprets the key as a string and reads until the null
2706  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2707  * hash value computed from the key.
2708  */
2709 static uint32_t
2710 witness_hash_djb2(const uint8_t *key, uint32_t size)
2711 {
2712         unsigned int hash = 5381;
2713         int i;
2714
2715         /* hash = hash * 33 + key[i] */
2716         if (size)
2717                 for (i = 0; i < size; i++)
2718                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2719         else
2720                 for (i = 0; key[i] != 0; i++)
2721                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2722
2723         return (hash);
2724 }
2725
2726
2727 /*
2728  * Initializes the two witness hash tables. Called exactly once from
2729  * witness_initialize().
2730  */
2731 static void
2732 witness_init_hash_tables(void)
2733 {
2734         int i;
2735
2736         MPASS(witness_cold);
2737
2738         /* Initialize the hash tables. */
2739         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2740                 w_hash.wh_array[i] = NULL;
2741
2742         w_hash.wh_size = WITNESS_HASH_SIZE;
2743         w_hash.wh_count = 0;
2744
2745         /* Initialize the lock order data hash. */
2746         w_lofree = NULL;
2747         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2748                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2749                 w_lodata[i].wlod_next = w_lofree;
2750                 w_lofree = &w_lodata[i];
2751         }
2752         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2753         w_lohash.wloh_count = 0;
2754         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2755                 w_lohash.wloh_array[i] = NULL;
2756 }
2757
2758 static struct witness *
2759 witness_hash_get(const char *key)
2760 {
2761         struct witness *w;
2762         uint32_t hash;
2763         
2764         MPASS(key != NULL);
2765         if (witness_cold == 0)
2766                 mtx_assert(&w_mtx, MA_OWNED);
2767         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2768         w = w_hash.wh_array[hash];
2769         while (w != NULL) {
2770                 if (strcmp(w->w_name, key) == 0)
2771                         goto out;
2772                 w = w->w_hash_next;
2773         }
2774
2775 out:
2776         return (w);
2777 }
2778
2779 static void
2780 witness_hash_put(struct witness *w)
2781 {
2782         uint32_t hash;
2783
2784         MPASS(w != NULL);
2785         MPASS(w->w_name != NULL);
2786         if (witness_cold == 0)
2787                 mtx_assert(&w_mtx, MA_OWNED);
2788         KASSERT(witness_hash_get(w->w_name) == NULL,
2789             ("%s: trying to add a hash entry that already exists!", __func__));
2790         KASSERT(w->w_hash_next == NULL,
2791             ("%s: w->w_hash_next != NULL", __func__));
2792
2793         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2794         w->w_hash_next = w_hash.wh_array[hash];
2795         w_hash.wh_array[hash] = w;
2796         w_hash.wh_count++;
2797 }
2798
2799
2800 static struct witness_lock_order_data *
2801 witness_lock_order_get(struct witness *parent, struct witness *child)
2802 {
2803         struct witness_lock_order_data *data = NULL;
2804         struct witness_lock_order_key key;
2805         unsigned int hash;
2806
2807         MPASS(parent != NULL && child != NULL);
2808         key.from = parent->w_index;
2809         key.to = child->w_index;
2810         WITNESS_INDEX_ASSERT(key.from);
2811         WITNESS_INDEX_ASSERT(key.to);
2812         if ((w_rmatrix[parent->w_index][child->w_index]
2813             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2814                 goto out;
2815
2816         hash = witness_hash_djb2((const char*)&key,
2817             sizeof(key)) % w_lohash.wloh_size;
2818         data = w_lohash.wloh_array[hash];
2819         while (data != NULL) {
2820                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2821                         break;
2822                 data = data->wlod_next;
2823         }
2824
2825 out:
2826         return (data);
2827 }
2828
2829 /*
2830  * Verify that parent and child have a known relationship, are not the same,
2831  * and child is actually a child of parent.  This is done without w_mtx
2832  * to avoid contention in the common case.
2833  */
2834 static int
2835 witness_lock_order_check(struct witness *parent, struct witness *child)
2836 {
2837
2838         if (parent != child &&
2839             w_rmatrix[parent->w_index][child->w_index]
2840             & WITNESS_LOCK_ORDER_KNOWN &&
2841             isitmychild(parent, child))
2842                 return (1);
2843
2844         return (0);
2845 }
2846
2847 static int
2848 witness_lock_order_add(struct witness *parent, struct witness *child)
2849 {
2850         struct witness_lock_order_data *data = NULL;
2851         struct witness_lock_order_key key;
2852         unsigned int hash;
2853         
2854         MPASS(parent != NULL && child != NULL);
2855         key.from = parent->w_index;
2856         key.to = child->w_index;
2857         WITNESS_INDEX_ASSERT(key.from);
2858         WITNESS_INDEX_ASSERT(key.to);
2859         if (w_rmatrix[parent->w_index][child->w_index]
2860             & WITNESS_LOCK_ORDER_KNOWN)
2861                 return (1);
2862
2863         hash = witness_hash_djb2((const char*)&key,
2864             sizeof(key)) % w_lohash.wloh_size;
2865         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2866         data = w_lofree;
2867         if (data == NULL)
2868                 return (0);
2869         w_lofree = data->wlod_next;
2870         data->wlod_next = w_lohash.wloh_array[hash];
2871         data->wlod_key = key;
2872         w_lohash.wloh_array[hash] = data;
2873         w_lohash.wloh_count++;
2874         stack_zero(&data->wlod_stack);
2875         stack_save(&data->wlod_stack);
2876         return (1);
2877 }
2878
2879 /* Call this whenver the structure of the witness graph changes. */
2880 static void
2881 witness_increment_graph_generation(void)
2882 {
2883
2884         if (witness_cold == 0)
2885                 mtx_assert(&w_mtx, MA_OWNED);
2886         w_generation++;
2887 }
2888
2889 #ifdef KDB
2890 static void
2891 _witness_debugger(int cond, const char *msg)
2892 {
2893
2894         if (witness_trace && cond)
2895                 kdb_backtrace();
2896         if (witness_kdb && cond)
2897                 kdb_enter(KDB_WHY_WITNESS, msg);
2898 }
2899 #endif