]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
Introduce ofw_bus_reg_to_rl() to replace part of common bus code
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #ifndef WITNESS_COUNT
136 #define WITNESS_COUNT           1536
137 #endif
138 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
139 #define WITNESS_PENDLIST        (1024 + MAXCPU)
140
141 /* Allocate 256 KB of stack data space */
142 #define WITNESS_LO_DATA_COUNT   2048
143
144 /* Prime, gives load factor of ~2 at full load */
145 #define WITNESS_LO_HASH_SIZE    1021
146
147 /*
148  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
149  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
150  * probably be safe for the most part, but it's still a SWAG.
151  */
152 #define LOCK_NCHILDREN  5
153 #define LOCK_CHILDCOUNT 2048
154
155 #define MAX_W_NAME      64
156
157 #define FULLGRAPH_SBUF_SIZE     512
158
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define WITNESS_RELATED_MASK                                            \
171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173                                           * observed. */
174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178 /* Descendant to ancestor flags */
179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
180
181 /* Ancestor to descendant flags */
182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
183
184 #define WITNESS_INDEX_ASSERT(i)                                         \
185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
186
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196         struct lock_object      *li_lock;
197         const char              *li_file;
198         int                     li_line;
199         u_int                   li_flags;
200 };
201
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213         struct lock_list_entry  *ll_next;
214         struct lock_instance    ll_children[LOCK_NCHILDREN];
215         u_int                   ll_count;
216 };
217
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223         char                    w_name[MAX_W_NAME];
224         uint32_t                w_index;  /* Index in the relationship matrix */
225         struct lock_class       *w_class;
226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
229         const char              *w_file; /* File where last acquired */
230         uint32_t                w_line; /* Line where last acquired */
231         uint32_t                w_refcount;
232         uint16_t                w_num_ancestors; /* direct/indirect
233                                                   * ancestor count */
234         uint16_t                w_num_descendants; /* direct/indirect
235                                                     * descendant count */
236         int16_t                 w_ddb_level;
237         unsigned                w_displayed:1;
238         unsigned                w_reversed:1;
239 };
240
241 STAILQ_HEAD(witness_list, witness);
242
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248         struct witness  *wh_array[WITNESS_HASH_SIZE];
249         uint32_t        wh_size;
250         uint32_t        wh_count;
251 };
252
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257         uint16_t        from;
258         uint16_t        to;
259 };
260
261 struct witness_lock_order_data {
262         struct stack                    wlod_stack;
263         struct witness_lock_order_key   wlod_key;
264         struct witness_lock_order_data  *wlod_next;
265 };
266
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data). 
271  */
272 struct witness_lock_order_hash {
273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
274         u_int   wloh_size;
275         u_int   wloh_count;
276 };
277
278 #ifdef BLESSING
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283 #endif
284
285 struct witness_pendhelp {
286         const char              *wh_type;
287         struct lock_object      *wh_lock;
288 };
289
290 struct witness_order_list_entry {
291         const char              *w_name;
292         struct lock_class       *w_class;
293 };
294
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302
303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306
307 static __inline int
308 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
309     const struct witness_lock_order_key *b)
310 {
311
312         return (a->from == b->from && a->to == b->to);
313 }
314
315 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
316                     const char *fname);
317 #ifdef KDB
318 static void     _witness_debugger(int cond, const char *msg);
319 #endif
320 static void     adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int      blessed(struct witness *, struct witness *);
323 #endif
324 static void     depart(struct witness *w);
325 static struct witness   *enroll(const char *description,
326                             struct lock_class *lock_class);
327 static struct lock_instance     *find_instance(struct lock_list_entry *list,
328                                     const struct lock_object *lock);
329 static int      isitmychild(struct witness *parent, struct witness *child);
330 static int      isitmydescendant(struct witness *parent, struct witness *child);
331 static void     itismychild(struct witness *parent, struct witness *child);
332 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
336 #ifdef DDB
337 static void     witness_ddb_compute_levels(void);
338 static void     witness_ddb_display(int(*)(const char *fmt, ...));
339 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
340                     struct witness *, int indent);
341 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
342                     struct witness_list *list);
343 static void     witness_ddb_level_descendants(struct witness *parent, int l);
344 static void     witness_ddb_list(struct thread *td);
345 #endif
346 static void     witness_free(struct witness *m);
347 static struct witness   *witness_get(void);
348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness   *witness_hash_get(const char *key);
350 static void     witness_hash_put(struct witness *w);
351 static void     witness_init_hash_tables(void);
352 static void     witness_increment_graph_generation(void);
353 static void     witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry   *witness_lock_list_get(void);
355 static int      witness_lock_order_add(struct witness *parent,
356                     struct witness *child);
357 static int      witness_lock_order_check(struct witness *parent,
358                     struct witness *child);
359 static struct witness_lock_order_data   *witness_lock_order_get(
360                                             struct witness *parent,
361                                             struct witness *child);
362 static void     witness_list_lock(struct lock_instance *instance,
363                     int (*prnt)(const char *fmt, ...));
364 static void     witness_setflag(struct lock_object *lock, int flag, int set);
365
366 #ifdef KDB
367 #define witness_debugger(c)     _witness_debugger(c, __func__)
368 #else
369 #define witness_debugger(c)
370 #endif
371
372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
373     "Witness Locking");
374
375 /*
376  * If set to 0, lock order checking is disabled.  If set to -1,
377  * witness is completely disabled.  Otherwise witness performs full
378  * lock order checking for all locks.  At runtime, lock order checking
379  * may be toggled.  However, witness cannot be reenabled once it is
380  * completely disabled.
381  */
382 static int witness_watch = 1;
383 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
384     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
385
386 #ifdef KDB
387 /*
388  * When KDB is enabled and witness_kdb is 1, it will cause the system
389  * to drop into kdebug() when:
390  *      - a lock hierarchy violation occurs
391  *      - locks are held when going to sleep.
392  */
393 #ifdef WITNESS_KDB
394 int     witness_kdb = 1;
395 #else
396 int     witness_kdb = 0;
397 #endif
398 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
399
400 /*
401  * When KDB is enabled and witness_trace is 1, it will cause the system
402  * to print a stack trace:
403  *      - a lock hierarchy violation occurs
404  *      - locks are held when going to sleep.
405  */
406 int     witness_trace = 1;
407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
408 #endif /* KDB */
409
410 #ifdef WITNESS_SKIPSPIN
411 int     witness_skipspin = 1;
412 #else
413 int     witness_skipspin = 0;
414 #endif
415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
416
417 int badstack_sbuf_size;
418
419 int witness_count = WITNESS_COUNT;
420 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
421     &witness_count, 0, "");
422
423 /*
424  * Call this to print out the relations between locks.
425  */
426 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
427     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
428
429 /*
430  * Call this to print out the witness faulty stacks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
434
435 static struct mtx w_mtx;
436
437 /* w_list */
438 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
439 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
440
441 /* w_typelist */
442 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
443 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
444
445 /* lock list */
446 static struct lock_list_entry *w_lock_list_free = NULL;
447 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
448 static u_int pending_cnt;
449
450 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
451 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
452 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
453 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
454     "");
455
456 static struct witness *w_data;
457 static uint8_t **w_rmatrix;
458 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
459 static struct witness_hash w_hash;      /* The witness hash table. */
460
461 /* The lock order data hash */
462 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
463 static struct witness_lock_order_data *w_lofree = NULL;
464 static struct witness_lock_order_hash w_lohash;
465 static int w_max_used_index = 0;
466 static unsigned int w_generation = 0;
467 static const char w_notrunning[] = "Witness not running\n";
468 static const char w_stillcold[] = "Witness is still cold\n";
469
470
471 static struct witness_order_list_entry order_lists[] = {
472         /*
473          * sx locks
474          */
475         { "proctree", &lock_class_sx },
476         { "allproc", &lock_class_sx },
477         { "allprison", &lock_class_sx },
478         { NULL, NULL },
479         /*
480          * Various mutexes
481          */
482         { "Giant", &lock_class_mtx_sleep },
483         { "pipe mutex", &lock_class_mtx_sleep },
484         { "sigio lock", &lock_class_mtx_sleep },
485         { "process group", &lock_class_mtx_sleep },
486         { "process lock", &lock_class_mtx_sleep },
487         { "session", &lock_class_mtx_sleep },
488         { "uidinfo hash", &lock_class_rw },
489 #ifdef  HWPMC_HOOKS
490         { "pmc-sleep", &lock_class_mtx_sleep },
491 #endif
492         { "time lock", &lock_class_mtx_sleep },
493         { NULL, NULL },
494         /*
495          * Sockets
496          */
497         { "accept", &lock_class_mtx_sleep },
498         { "so_snd", &lock_class_mtx_sleep },
499         { "so_rcv", &lock_class_mtx_sleep },
500         { "sellck", &lock_class_mtx_sleep },
501         { NULL, NULL },
502         /*
503          * Routing
504          */
505         { "so_rcv", &lock_class_mtx_sleep },
506         { "radix node head", &lock_class_rw },
507         { "rtentry", &lock_class_mtx_sleep },
508         { "ifaddr", &lock_class_mtx_sleep },
509         { NULL, NULL },
510         /*
511          * IPv4 multicast:
512          * protocol locks before interface locks, after UDP locks.
513          */
514         { "udpinp", &lock_class_rw },
515         { "in_multi_mtx", &lock_class_mtx_sleep },
516         { "igmp_mtx", &lock_class_mtx_sleep },
517         { "if_addr_lock", &lock_class_rw },
518         { NULL, NULL },
519         /*
520          * IPv6 multicast:
521          * protocol locks before interface locks, after UDP locks.
522          */
523         { "udpinp", &lock_class_rw },
524         { "in6_multi_mtx", &lock_class_mtx_sleep },
525         { "mld_mtx", &lock_class_mtx_sleep },
526         { "if_addr_lock", &lock_class_rw },
527         { NULL, NULL },
528         /*
529          * UNIX Domain Sockets
530          */
531         { "unp_link_rwlock", &lock_class_rw },
532         { "unp_list_lock", &lock_class_mtx_sleep },
533         { "unp", &lock_class_mtx_sleep },
534         { "so_snd", &lock_class_mtx_sleep },
535         { NULL, NULL },
536         /*
537          * UDP/IP
538          */
539         { "udp", &lock_class_rw },
540         { "udpinp", &lock_class_rw },
541         { "so_snd", &lock_class_mtx_sleep },
542         { NULL, NULL },
543         /*
544          * TCP/IP
545          */
546         { "tcp", &lock_class_rw },
547         { "tcpinp", &lock_class_rw },
548         { "so_snd", &lock_class_mtx_sleep },
549         { NULL, NULL },
550         /*
551          * BPF
552          */
553         { "bpf global lock", &lock_class_mtx_sleep },
554         { "bpf interface lock", &lock_class_rw },
555         { "bpf cdev lock", &lock_class_mtx_sleep },
556         { NULL, NULL },
557         /*
558          * NFS server
559          */
560         { "nfsd_mtx", &lock_class_mtx_sleep },
561         { "so_snd", &lock_class_mtx_sleep },
562         { NULL, NULL },
563
564         /*
565          * IEEE 802.11
566          */
567         { "802.11 com lock", &lock_class_mtx_sleep},
568         { NULL, NULL },
569         /*
570          * Network drivers
571          */
572         { "network driver", &lock_class_mtx_sleep},
573         { NULL, NULL },
574
575         /*
576          * Netgraph
577          */
578         { "ng_node", &lock_class_mtx_sleep },
579         { "ng_worklist", &lock_class_mtx_sleep },
580         { NULL, NULL },
581         /*
582          * CDEV
583          */
584         { "vm map (system)", &lock_class_mtx_sleep },
585         { "vm page queue", &lock_class_mtx_sleep },
586         { "vnode interlock", &lock_class_mtx_sleep },
587         { "cdev", &lock_class_mtx_sleep },
588         { NULL, NULL },
589         /*
590          * VM
591          */
592         { "vm map (user)", &lock_class_sx },
593         { "vm object", &lock_class_rw },
594         { "vm page", &lock_class_mtx_sleep },
595         { "vm page queue", &lock_class_mtx_sleep },
596         { "pmap pv global", &lock_class_rw },
597         { "pmap", &lock_class_mtx_sleep },
598         { "pmap pv list", &lock_class_rw },
599         { "vm page free queue", &lock_class_mtx_sleep },
600         { NULL, NULL },
601         /*
602          * kqueue/VFS interaction
603          */
604         { "kqueue", &lock_class_mtx_sleep },
605         { "struct mount mtx", &lock_class_mtx_sleep },
606         { "vnode interlock", &lock_class_mtx_sleep },
607         { NULL, NULL },
608         /*
609          * ZFS locking
610          */
611         { "dn->dn_mtx", &lock_class_sx },
612         { "dr->dt.di.dr_mtx", &lock_class_sx },
613         { "db->db_mtx", &lock_class_sx },
614         { NULL, NULL },
615         /*
616          * spin locks
617          */
618 #ifdef SMP
619         { "ap boot", &lock_class_mtx_spin },
620 #endif
621         { "rm.mutex_mtx", &lock_class_mtx_spin },
622         { "sio", &lock_class_mtx_spin },
623         { "scrlock", &lock_class_mtx_spin },
624 #ifdef __i386__
625         { "cy", &lock_class_mtx_spin },
626 #endif
627 #ifdef __sparc64__
628         { "pcib_mtx", &lock_class_mtx_spin },
629         { "rtc_mtx", &lock_class_mtx_spin },
630 #endif
631         { "scc_hwmtx", &lock_class_mtx_spin },
632         { "uart_hwmtx", &lock_class_mtx_spin },
633         { "fast_taskqueue", &lock_class_mtx_spin },
634         { "intr table", &lock_class_mtx_spin },
635 #ifdef  HWPMC_HOOKS
636         { "pmc-per-proc", &lock_class_mtx_spin },
637 #endif
638         { "process slock", &lock_class_mtx_spin },
639         { "sleepq chain", &lock_class_mtx_spin },
640         { "umtx lock", &lock_class_mtx_spin },
641         { "rm_spinlock", &lock_class_mtx_spin },
642         { "turnstile chain", &lock_class_mtx_spin },
643         { "turnstile lock", &lock_class_mtx_spin },
644         { "sched lock", &lock_class_mtx_spin },
645         { "td_contested", &lock_class_mtx_spin },
646         { "callout", &lock_class_mtx_spin },
647         { "entropy harvest mutex", &lock_class_mtx_spin },
648         { "syscons video lock", &lock_class_mtx_spin },
649 #ifdef SMP
650         { "smp rendezvous", &lock_class_mtx_spin },
651 #endif
652 #ifdef __powerpc__
653         { "tlb0", &lock_class_mtx_spin },
654 #endif
655         /*
656          * leaf locks
657          */
658         { "intrcnt", &lock_class_mtx_spin },
659         { "icu", &lock_class_mtx_spin },
660 #ifdef __i386__
661         { "allpmaps", &lock_class_mtx_spin },
662         { "descriptor tables", &lock_class_mtx_spin },
663 #endif
664         { "clk", &lock_class_mtx_spin },
665         { "cpuset", &lock_class_mtx_spin },
666         { "mprof lock", &lock_class_mtx_spin },
667         { "zombie lock", &lock_class_mtx_spin },
668         { "ALD Queue", &lock_class_mtx_spin },
669 #if defined(__i386__) || defined(__amd64__)
670         { "pcicfg", &lock_class_mtx_spin },
671         { "NDIS thread lock", &lock_class_mtx_spin },
672 #endif
673         { "tw_osl_io_lock", &lock_class_mtx_spin },
674         { "tw_osl_q_lock", &lock_class_mtx_spin },
675         { "tw_cl_io_lock", &lock_class_mtx_spin },
676         { "tw_cl_intr_lock", &lock_class_mtx_spin },
677         { "tw_cl_gen_lock", &lock_class_mtx_spin },
678 #ifdef  HWPMC_HOOKS
679         { "pmc-leaf", &lock_class_mtx_spin },
680 #endif
681         { "blocked lock", &lock_class_mtx_spin },
682         { NULL, NULL },
683         { NULL, NULL }
684 };
685
686 #ifdef BLESSING
687 /*
688  * Pairs of locks which have been blessed
689  * Don't complain about order problems with blessed locks
690  */
691 static struct witness_blessed blessed_list[] = {
692 };
693 static int blessed_count =
694         sizeof(blessed_list) / sizeof(struct witness_blessed);
695 #endif
696
697 /*
698  * This global is set to 0 once it becomes safe to use the witness code.
699  */
700 static int witness_cold = 1;
701
702 /*
703  * This global is set to 1 once the static lock orders have been enrolled
704  * so that a warning can be issued for any spin locks enrolled later.
705  */
706 static int witness_spin_warn = 0;
707
708 /* Trim useless garbage from filenames. */
709 static const char *
710 fixup_filename(const char *file)
711 {
712
713         if (file == NULL)
714                 return (NULL);
715         while (strncmp(file, "../", 3) == 0)
716                 file += 3;
717         return (file);
718 }
719
720 /*
721  * The WITNESS-enabled diagnostic code.  Note that the witness code does
722  * assume that the early boot is single-threaded at least until after this
723  * routine is completed.
724  */
725 static void
726 witness_initialize(void *dummy __unused)
727 {
728         struct lock_object *lock;
729         struct witness_order_list_entry *order;
730         struct witness *w, *w1;
731         int i;
732
733         w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS,
734             M_WAITOK | M_ZERO);
735
736         w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1),
737             M_WITNESS, M_WAITOK | M_ZERO);
738
739         for (i = 0; i < witness_count + 1; i++) {
740                 w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) *
741                     (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO);
742         }
743         badstack_sbuf_size = witness_count * 256;
744
745         /*
746          * We have to release Giant before initializing its witness
747          * structure so that WITNESS doesn't get confused.
748          */
749         mtx_unlock(&Giant);
750         mtx_assert(&Giant, MA_NOTOWNED);
751
752         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
753         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
754             MTX_NOWITNESS | MTX_NOPROFILE);
755         for (i = witness_count - 1; i >= 0; i--) {
756                 w = &w_data[i];
757                 memset(w, 0, sizeof(*w));
758                 w_data[i].w_index = i;  /* Witness index never changes. */
759                 witness_free(w);
760         }
761         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
762             ("%s: Invalid list of free witness objects", __func__));
763
764         /* Witness with index 0 is not used to aid in debugging. */
765         STAILQ_REMOVE_HEAD(&w_free, w_list);
766         w_free_cnt--;
767
768         for (i = 0; i < witness_count; i++) {
769                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
770                     (witness_count + 1));
771         }
772
773         for (i = 0; i < LOCK_CHILDCOUNT; i++)
774                 witness_lock_list_free(&w_locklistdata[i]);
775         witness_init_hash_tables();
776
777         /* First add in all the specified order lists. */
778         for (order = order_lists; order->w_name != NULL; order++) {
779                 w = enroll(order->w_name, order->w_class);
780                 if (w == NULL)
781                         continue;
782                 w->w_file = "order list";
783                 for (order++; order->w_name != NULL; order++) {
784                         w1 = enroll(order->w_name, order->w_class);
785                         if (w1 == NULL)
786                                 continue;
787                         w1->w_file = "order list";
788                         itismychild(w, w1);
789                         w = w1;
790                 }
791         }
792         witness_spin_warn = 1;
793
794         /* Iterate through all locks and add them to witness. */
795         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
796                 lock = pending_locks[i].wh_lock;
797                 KASSERT(lock->lo_flags & LO_WITNESS,
798                     ("%s: lock %s is on pending list but not LO_WITNESS",
799                     __func__, lock->lo_name));
800                 lock->lo_witness = enroll(pending_locks[i].wh_type,
801                     LOCK_CLASS(lock));
802         }
803
804         /* Mark the witness code as being ready for use. */
805         witness_cold = 0;
806
807         mtx_lock(&Giant);
808 }
809 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
810     NULL);
811
812 void
813 witness_init(struct lock_object *lock, const char *type)
814 {
815         struct lock_class *class;
816
817         /* Various sanity checks. */
818         class = LOCK_CLASS(lock);
819         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
820             (class->lc_flags & LC_RECURSABLE) == 0)
821                 kassert_panic("%s: lock (%s) %s can not be recursable",
822                     __func__, class->lc_name, lock->lo_name);
823         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
824             (class->lc_flags & LC_SLEEPABLE) == 0)
825                 kassert_panic("%s: lock (%s) %s can not be sleepable",
826                     __func__, class->lc_name, lock->lo_name);
827         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
828             (class->lc_flags & LC_UPGRADABLE) == 0)
829                 kassert_panic("%s: lock (%s) %s can not be upgradable",
830                     __func__, class->lc_name, lock->lo_name);
831
832         /*
833          * If we shouldn't watch this lock, then just clear lo_witness.
834          * Otherwise, if witness_cold is set, then it is too early to
835          * enroll this lock, so defer it to witness_initialize() by adding
836          * it to the pending_locks list.  If it is not too early, then enroll
837          * the lock now.
838          */
839         if (witness_watch < 1 || panicstr != NULL ||
840             (lock->lo_flags & LO_WITNESS) == 0)
841                 lock->lo_witness = NULL;
842         else if (witness_cold) {
843                 pending_locks[pending_cnt].wh_lock = lock;
844                 pending_locks[pending_cnt++].wh_type = type;
845                 if (pending_cnt > WITNESS_PENDLIST)
846                         panic("%s: pending locks list is too small, "
847                             "increase WITNESS_PENDLIST\n",
848                             __func__);
849         } else
850                 lock->lo_witness = enroll(type, class);
851 }
852
853 void
854 witness_destroy(struct lock_object *lock)
855 {
856         struct lock_class *class;
857         struct witness *w;
858
859         class = LOCK_CLASS(lock);
860
861         if (witness_cold)
862                 panic("lock (%s) %s destroyed while witness_cold",
863                     class->lc_name, lock->lo_name);
864
865         /* XXX: need to verify that no one holds the lock */
866         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
867                 return;
868         w = lock->lo_witness;
869
870         mtx_lock_spin(&w_mtx);
871         MPASS(w->w_refcount > 0);
872         w->w_refcount--;
873
874         if (w->w_refcount == 0)
875                 depart(w);
876         mtx_unlock_spin(&w_mtx);
877 }
878
879 #ifdef DDB
880 static void
881 witness_ddb_compute_levels(void)
882 {
883         struct witness *w;
884
885         /*
886          * First clear all levels.
887          */
888         STAILQ_FOREACH(w, &w_all, w_list)
889                 w->w_ddb_level = -1;
890
891         /*
892          * Look for locks with no parents and level all their descendants.
893          */
894         STAILQ_FOREACH(w, &w_all, w_list) {
895
896                 /* If the witness has ancestors (is not a root), skip it. */
897                 if (w->w_num_ancestors > 0)
898                         continue;
899                 witness_ddb_level_descendants(w, 0);
900         }
901 }
902
903 static void
904 witness_ddb_level_descendants(struct witness *w, int l)
905 {
906         int i;
907
908         if (w->w_ddb_level >= l)
909                 return;
910
911         w->w_ddb_level = l;
912         l++;
913
914         for (i = 1; i <= w_max_used_index; i++) {
915                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
916                         witness_ddb_level_descendants(&w_data[i], l);
917         }
918 }
919
920 static void
921 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
922     struct witness *w, int indent)
923 {
924         int i;
925
926         for (i = 0; i < indent; i++)
927                 prnt(" ");
928         prnt("%s (type: %s, depth: %d, active refs: %d)",
929              w->w_name, w->w_class->lc_name,
930              w->w_ddb_level, w->w_refcount);
931         if (w->w_displayed) {
932                 prnt(" -- (already displayed)\n");
933                 return;
934         }
935         w->w_displayed = 1;
936         if (w->w_file != NULL && w->w_line != 0)
937                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
938                     w->w_line);
939         else
940                 prnt(" -- never acquired\n");
941         indent++;
942         WITNESS_INDEX_ASSERT(w->w_index);
943         for (i = 1; i <= w_max_used_index; i++) {
944                 if (db_pager_quit)
945                         return;
946                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
947                         witness_ddb_display_descendants(prnt, &w_data[i],
948                             indent);
949         }
950 }
951
952 static void
953 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
954     struct witness_list *list)
955 {
956         struct witness *w;
957
958         STAILQ_FOREACH(w, list, w_typelist) {
959                 if (w->w_file == NULL || w->w_ddb_level > 0)
960                         continue;
961
962                 /* This lock has no anscestors - display its descendants. */
963                 witness_ddb_display_descendants(prnt, w, 0);
964                 if (db_pager_quit)
965                         return;
966         }
967 }
968         
969 static void
970 witness_ddb_display(int(*prnt)(const char *fmt, ...))
971 {
972         struct witness *w;
973
974         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
975         witness_ddb_compute_levels();
976
977         /* Clear all the displayed flags. */
978         STAILQ_FOREACH(w, &w_all, w_list)
979                 w->w_displayed = 0;
980
981         /*
982          * First, handle sleep locks which have been acquired at least
983          * once.
984          */
985         prnt("Sleep locks:\n");
986         witness_ddb_display_list(prnt, &w_sleep);
987         if (db_pager_quit)
988                 return;
989         
990         /*
991          * Now do spin locks which have been acquired at least once.
992          */
993         prnt("\nSpin locks:\n");
994         witness_ddb_display_list(prnt, &w_spin);
995         if (db_pager_quit)
996                 return;
997         
998         /*
999          * Finally, any locks which have not been acquired yet.
1000          */
1001         prnt("\nLocks which were never acquired:\n");
1002         STAILQ_FOREACH(w, &w_all, w_list) {
1003                 if (w->w_file != NULL || w->w_refcount == 0)
1004                         continue;
1005                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1006                     w->w_class->lc_name, w->w_ddb_level);
1007                 if (db_pager_quit)
1008                         return;
1009         }
1010 }
1011 #endif /* DDB */
1012
1013 int
1014 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1015 {
1016
1017         if (witness_watch == -1 || panicstr != NULL)
1018                 return (0);
1019
1020         /* Require locks that witness knows about. */
1021         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1022             lock2->lo_witness == NULL)
1023                 return (EINVAL);
1024
1025         mtx_assert(&w_mtx, MA_NOTOWNED);
1026         mtx_lock_spin(&w_mtx);
1027
1028         /*
1029          * If we already have either an explicit or implied lock order that
1030          * is the other way around, then return an error.
1031          */
1032         if (witness_watch &&
1033             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1034                 mtx_unlock_spin(&w_mtx);
1035                 return (EDOOFUS);
1036         }
1037         
1038         /* Try to add the new order. */
1039         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1040             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1041         itismychild(lock1->lo_witness, lock2->lo_witness);
1042         mtx_unlock_spin(&w_mtx);
1043         return (0);
1044 }
1045
1046 void
1047 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1048     int line, struct lock_object *interlock)
1049 {
1050         struct lock_list_entry *lock_list, *lle;
1051         struct lock_instance *lock1, *lock2, *plock;
1052         struct lock_class *class, *iclass;
1053         struct witness *w, *w1;
1054         struct thread *td;
1055         int i, j;
1056
1057         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1058             panicstr != NULL)
1059                 return;
1060
1061         w = lock->lo_witness;
1062         class = LOCK_CLASS(lock);
1063         td = curthread;
1064
1065         if (class->lc_flags & LC_SLEEPLOCK) {
1066
1067                 /*
1068                  * Since spin locks include a critical section, this check
1069                  * implicitly enforces a lock order of all sleep locks before
1070                  * all spin locks.
1071                  */
1072                 if (td->td_critnest != 0 && !kdb_active)
1073                         kassert_panic("acquiring blockable sleep lock with "
1074                             "spinlock or critical section held (%s) %s @ %s:%d",
1075                             class->lc_name, lock->lo_name,
1076                             fixup_filename(file), line);
1077
1078                 /*
1079                  * If this is the first lock acquired then just return as
1080                  * no order checking is needed.
1081                  */
1082                 lock_list = td->td_sleeplocks;
1083                 if (lock_list == NULL || lock_list->ll_count == 0)
1084                         return;
1085         } else {
1086
1087                 /*
1088                  * If this is the first lock, just return as no order
1089                  * checking is needed.  Avoid problems with thread
1090                  * migration pinning the thread while checking if
1091                  * spinlocks are held.  If at least one spinlock is held
1092                  * the thread is in a safe path and it is allowed to
1093                  * unpin it.
1094                  */
1095                 sched_pin();
1096                 lock_list = PCPU_GET(spinlocks);
1097                 if (lock_list == NULL || lock_list->ll_count == 0) {
1098                         sched_unpin();
1099                         return;
1100                 }
1101                 sched_unpin();
1102         }
1103
1104         /*
1105          * Check to see if we are recursing on a lock we already own.  If
1106          * so, make sure that we don't mismatch exclusive and shared lock
1107          * acquires.
1108          */
1109         lock1 = find_instance(lock_list, lock);
1110         if (lock1 != NULL) {
1111                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1112                     (flags & LOP_EXCLUSIVE) == 0) {
1113                         printf("shared lock of (%s) %s @ %s:%d\n",
1114                             class->lc_name, lock->lo_name,
1115                             fixup_filename(file), line);
1116                         printf("while exclusively locked from %s:%d\n",
1117                             fixup_filename(lock1->li_file), lock1->li_line);
1118                         kassert_panic("excl->share");
1119                 }
1120                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1121                     (flags & LOP_EXCLUSIVE) != 0) {
1122                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1123                             class->lc_name, lock->lo_name,
1124                             fixup_filename(file), line);
1125                         printf("while share locked from %s:%d\n",
1126                             fixup_filename(lock1->li_file), lock1->li_line);
1127                         kassert_panic("share->excl");
1128                 }
1129                 return;
1130         }
1131
1132         /* Warn if the interlock is not locked exactly once. */
1133         if (interlock != NULL) {
1134                 iclass = LOCK_CLASS(interlock);
1135                 lock1 = find_instance(lock_list, interlock);
1136                 if (lock1 == NULL)
1137                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1138                             iclass->lc_name, interlock->lo_name,
1139                             fixup_filename(file), line);
1140                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1141                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1142                             iclass->lc_name, interlock->lo_name,
1143                             fixup_filename(file), line);
1144         }
1145
1146         /*
1147          * Find the previously acquired lock, but ignore interlocks.
1148          */
1149         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1150         if (interlock != NULL && plock->li_lock == interlock) {
1151                 if (lock_list->ll_count > 1)
1152                         plock =
1153                             &lock_list->ll_children[lock_list->ll_count - 2];
1154                 else {
1155                         lle = lock_list->ll_next;
1156
1157                         /*
1158                          * The interlock is the only lock we hold, so
1159                          * simply return.
1160                          */
1161                         if (lle == NULL)
1162                                 return;
1163                         plock = &lle->ll_children[lle->ll_count - 1];
1164                 }
1165         }
1166         
1167         /*
1168          * Try to perform most checks without a lock.  If this succeeds we
1169          * can skip acquiring the lock and return success.
1170          */
1171         w1 = plock->li_lock->lo_witness;
1172         if (witness_lock_order_check(w1, w))
1173                 return;
1174
1175         /*
1176          * Check for duplicate locks of the same type.  Note that we only
1177          * have to check for this on the last lock we just acquired.  Any
1178          * other cases will be caught as lock order violations.
1179          */
1180         mtx_lock_spin(&w_mtx);
1181         witness_lock_order_add(w1, w);
1182         if (w1 == w) {
1183                 i = w->w_index;
1184                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1185                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1186                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1187                         w->w_reversed = 1;
1188                         mtx_unlock_spin(&w_mtx);
1189                         printf(
1190                             "acquiring duplicate lock of same type: \"%s\"\n", 
1191                             w->w_name);
1192                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1193                             fixup_filename(plock->li_file), plock->li_line);
1194                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1195                             fixup_filename(file), line);
1196                         witness_debugger(1);
1197                 } else
1198                         mtx_unlock_spin(&w_mtx);
1199                 return;
1200         }
1201         mtx_assert(&w_mtx, MA_OWNED);
1202
1203         /*
1204          * If we know that the lock we are acquiring comes after
1205          * the lock we most recently acquired in the lock order tree,
1206          * then there is no need for any further checks.
1207          */
1208         if (isitmychild(w1, w))
1209                 goto out;
1210
1211         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1212                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1213
1214                         MPASS(j < witness_count);
1215                         lock1 = &lle->ll_children[i];
1216
1217                         /*
1218                          * Ignore the interlock.
1219                          */
1220                         if (interlock == lock1->li_lock)
1221                                 continue;
1222
1223                         /*
1224                          * If this lock doesn't undergo witness checking,
1225                          * then skip it.
1226                          */
1227                         w1 = lock1->li_lock->lo_witness;
1228                         if (w1 == NULL) {
1229                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1230                                     ("lock missing witness structure"));
1231                                 continue;
1232                         }
1233
1234                         /*
1235                          * If we are locking Giant and this is a sleepable
1236                          * lock, then skip it.
1237                          */
1238                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1239                             lock == &Giant.lock_object)
1240                                 continue;
1241
1242                         /*
1243                          * If we are locking a sleepable lock and this lock
1244                          * is Giant, then skip it.
1245                          */
1246                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1247                             lock1->li_lock == &Giant.lock_object)
1248                                 continue;
1249
1250                         /*
1251                          * If we are locking a sleepable lock and this lock
1252                          * isn't sleepable, we want to treat it as a lock
1253                          * order violation to enfore a general lock order of
1254                          * sleepable locks before non-sleepable locks.
1255                          */
1256                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1257                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1258                                 goto reversal;
1259
1260                         /*
1261                          * If we are locking Giant and this is a non-sleepable
1262                          * lock, then treat it as a reversal.
1263                          */
1264                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1265                             lock == &Giant.lock_object)
1266                                 goto reversal;
1267
1268                         /*
1269                          * Check the lock order hierarchy for a reveresal.
1270                          */
1271                         if (!isitmydescendant(w, w1))
1272                                 continue;
1273                 reversal:
1274
1275                         /*
1276                          * We have a lock order violation, check to see if it
1277                          * is allowed or has already been yelled about.
1278                          */
1279 #ifdef BLESSING
1280
1281                         /*
1282                          * If the lock order is blessed, just bail.  We don't
1283                          * look for other lock order violations though, which
1284                          * may be a bug.
1285                          */
1286                         if (blessed(w, w1))
1287                                 goto out;
1288 #endif
1289
1290                         /* Bail if this violation is known */
1291                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1292                                 goto out;
1293
1294                         /* Record this as a violation */
1295                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1296                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1297                         w->w_reversed = w1->w_reversed = 1;
1298                         witness_increment_graph_generation();
1299                         mtx_unlock_spin(&w_mtx);
1300
1301 #ifdef WITNESS_NO_VNODE
1302                         /*
1303                          * There are known LORs between VNODE locks. They are
1304                          * not an indication of a bug. VNODE locks are flagged
1305                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1306                          * is between 2 VNODE locks.
1307                          */
1308                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1309                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1310                                 return;
1311 #endif
1312
1313                         /*
1314                          * Ok, yell about it.
1315                          */
1316                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1317                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1318                                 printf(
1319                 "lock order reversal: (sleepable after non-sleepable)\n");
1320                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1321                             && lock == &Giant.lock_object)
1322                                 printf(
1323                 "lock order reversal: (Giant after non-sleepable)\n");
1324                         else
1325                                 printf("lock order reversal:\n");
1326
1327                         /*
1328                          * Try to locate an earlier lock with
1329                          * witness w in our list.
1330                          */
1331                         do {
1332                                 lock2 = &lle->ll_children[i];
1333                                 MPASS(lock2->li_lock != NULL);
1334                                 if (lock2->li_lock->lo_witness == w)
1335                                         break;
1336                                 if (i == 0 && lle->ll_next != NULL) {
1337                                         lle = lle->ll_next;
1338                                         i = lle->ll_count - 1;
1339                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1340                                 } else
1341                                         i--;
1342                         } while (i >= 0);
1343                         if (i < 0) {
1344                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1345                                     lock1->li_lock, lock1->li_lock->lo_name,
1346                                     w1->w_name, fixup_filename(lock1->li_file),
1347                                     lock1->li_line);
1348                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1349                                     lock->lo_name, w->w_name,
1350                                     fixup_filename(file), line);
1351                         } else {
1352                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1353                                     lock2->li_lock, lock2->li_lock->lo_name,
1354                                     lock2->li_lock->lo_witness->w_name,
1355                                     fixup_filename(lock2->li_file),
1356                                     lock2->li_line);
1357                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1358                                     lock1->li_lock, lock1->li_lock->lo_name,
1359                                     w1->w_name, fixup_filename(lock1->li_file),
1360                                     lock1->li_line);
1361                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1362                                     lock->lo_name, w->w_name,
1363                                     fixup_filename(file), line);
1364                         }
1365                         witness_debugger(1);
1366                         return;
1367                 }
1368         }
1369
1370         /*
1371          * If requested, build a new lock order.  However, don't build a new
1372          * relationship between a sleepable lock and Giant if it is in the
1373          * wrong direction.  The correct lock order is that sleepable locks
1374          * always come before Giant.
1375          */
1376         if (flags & LOP_NEWORDER &&
1377             !(plock->li_lock == &Giant.lock_object &&
1378             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1379                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1380                     w->w_name, plock->li_lock->lo_witness->w_name);
1381                 itismychild(plock->li_lock->lo_witness, w);
1382         }
1383 out:
1384         mtx_unlock_spin(&w_mtx);
1385 }
1386
1387 void
1388 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1389 {
1390         struct lock_list_entry **lock_list, *lle;
1391         struct lock_instance *instance;
1392         struct witness *w;
1393         struct thread *td;
1394
1395         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1396             panicstr != NULL)
1397                 return;
1398         w = lock->lo_witness;
1399         td = curthread;
1400
1401         /* Determine lock list for this lock. */
1402         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1403                 lock_list = &td->td_sleeplocks;
1404         else
1405                 lock_list = PCPU_PTR(spinlocks);
1406
1407         /* Check to see if we are recursing on a lock we already own. */
1408         instance = find_instance(*lock_list, lock);
1409         if (instance != NULL) {
1410                 instance->li_flags++;
1411                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1412                     td->td_proc->p_pid, lock->lo_name,
1413                     instance->li_flags & LI_RECURSEMASK);
1414                 instance->li_file = file;
1415                 instance->li_line = line;
1416                 return;
1417         }
1418
1419         /* Update per-witness last file and line acquire. */
1420         w->w_file = file;
1421         w->w_line = line;
1422
1423         /* Find the next open lock instance in the list and fill it. */
1424         lle = *lock_list;
1425         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1426                 lle = witness_lock_list_get();
1427                 if (lle == NULL)
1428                         return;
1429                 lle->ll_next = *lock_list;
1430                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1431                     td->td_proc->p_pid, lle);
1432                 *lock_list = lle;
1433         }
1434         instance = &lle->ll_children[lle->ll_count++];
1435         instance->li_lock = lock;
1436         instance->li_line = line;
1437         instance->li_file = file;
1438         if ((flags & LOP_EXCLUSIVE) != 0)
1439                 instance->li_flags = LI_EXCLUSIVE;
1440         else
1441                 instance->li_flags = 0;
1442         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1443             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1444 }
1445
1446 void
1447 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1448 {
1449         struct lock_instance *instance;
1450         struct lock_class *class;
1451
1452         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1453         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1454                 return;
1455         class = LOCK_CLASS(lock);
1456         if (witness_watch) {
1457                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1458                         kassert_panic(
1459                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1460                             class->lc_name, lock->lo_name,
1461                             fixup_filename(file), line);
1462                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1463                         kassert_panic(
1464                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1465                             class->lc_name, lock->lo_name,
1466                             fixup_filename(file), line);
1467         }
1468         instance = find_instance(curthread->td_sleeplocks, lock);
1469         if (instance == NULL) {
1470                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1471                     class->lc_name, lock->lo_name,
1472                     fixup_filename(file), line);
1473                 return;
1474         }
1475         if (witness_watch) {
1476                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1477                         kassert_panic(
1478                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1479                             class->lc_name, lock->lo_name,
1480                             fixup_filename(file), line);
1481                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1482                         kassert_panic(
1483                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1484                             class->lc_name, lock->lo_name,
1485                             instance->li_flags & LI_RECURSEMASK,
1486                             fixup_filename(file), line);
1487         }
1488         instance->li_flags |= LI_EXCLUSIVE;
1489 }
1490
1491 void
1492 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1493     int line)
1494 {
1495         struct lock_instance *instance;
1496         struct lock_class *class;
1497
1498         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1499         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1500                 return;
1501         class = LOCK_CLASS(lock);
1502         if (witness_watch) {
1503                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1504                         kassert_panic(
1505                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1506                             class->lc_name, lock->lo_name,
1507                             fixup_filename(file), line);
1508                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1509                         kassert_panic(
1510                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1511                             class->lc_name, lock->lo_name,
1512                             fixup_filename(file), line);
1513         }
1514         instance = find_instance(curthread->td_sleeplocks, lock);
1515         if (instance == NULL) {
1516                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1517                     class->lc_name, lock->lo_name,
1518                     fixup_filename(file), line);
1519                 return;
1520         }
1521         if (witness_watch) {
1522                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1523                         kassert_panic(
1524                             "downgrade of shared lock (%s) %s @ %s:%d",
1525                             class->lc_name, lock->lo_name,
1526                             fixup_filename(file), line);
1527                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1528                         kassert_panic(
1529                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1530                             class->lc_name, lock->lo_name,
1531                             instance->li_flags & LI_RECURSEMASK,
1532                             fixup_filename(file), line);
1533         }
1534         instance->li_flags &= ~LI_EXCLUSIVE;
1535 }
1536
1537 void
1538 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1539 {
1540         struct lock_list_entry **lock_list, *lle;
1541         struct lock_instance *instance;
1542         struct lock_class *class;
1543         struct thread *td;
1544         register_t s;
1545         int i, j;
1546
1547         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1548                 return;
1549         td = curthread;
1550         class = LOCK_CLASS(lock);
1551
1552         /* Find lock instance associated with this lock. */
1553         if (class->lc_flags & LC_SLEEPLOCK)
1554                 lock_list = &td->td_sleeplocks;
1555         else
1556                 lock_list = PCPU_PTR(spinlocks);
1557         lle = *lock_list;
1558         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1559                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1560                         instance = &(*lock_list)->ll_children[i];
1561                         if (instance->li_lock == lock)
1562                                 goto found;
1563                 }
1564
1565         /*
1566          * When disabling WITNESS through witness_watch we could end up in
1567          * having registered locks in the td_sleeplocks queue.
1568          * We have to make sure we flush these queues, so just search for
1569          * eventual register locks and remove them.
1570          */
1571         if (witness_watch > 0) {
1572                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1573                     lock->lo_name, fixup_filename(file), line);
1574                 return;
1575         } else {
1576                 return;
1577         }
1578 found:
1579
1580         /* First, check for shared/exclusive mismatches. */
1581         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1582             (flags & LOP_EXCLUSIVE) == 0) {
1583                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1584                     lock->lo_name, fixup_filename(file), line);
1585                 printf("while exclusively locked from %s:%d\n",
1586                     fixup_filename(instance->li_file), instance->li_line);
1587                 kassert_panic("excl->ushare");
1588         }
1589         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1590             (flags & LOP_EXCLUSIVE) != 0) {
1591                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1592                     lock->lo_name, fixup_filename(file), line);
1593                 printf("while share locked from %s:%d\n",
1594                     fixup_filename(instance->li_file),
1595                     instance->li_line);
1596                 kassert_panic("share->uexcl");
1597         }
1598         /* If we are recursed, unrecurse. */
1599         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1600                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1601                     td->td_proc->p_pid, instance->li_lock->lo_name,
1602                     instance->li_flags);
1603                 instance->li_flags--;
1604                 return;
1605         }
1606         /* The lock is now being dropped, check for NORELEASE flag */
1607         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1608                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1609                     lock->lo_name, fixup_filename(file), line);
1610                 kassert_panic("lock marked norelease");
1611         }
1612
1613         /* Otherwise, remove this item from the list. */
1614         s = intr_disable();
1615         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1616             td->td_proc->p_pid, instance->li_lock->lo_name,
1617             (*lock_list)->ll_count - 1);
1618         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1619                 (*lock_list)->ll_children[j] =
1620                     (*lock_list)->ll_children[j + 1];
1621         (*lock_list)->ll_count--;
1622         intr_restore(s);
1623
1624         /*
1625          * In order to reduce contention on w_mtx, we want to keep always an
1626          * head object into lists so that frequent allocation from the 
1627          * free witness pool (and subsequent locking) is avoided.
1628          * In order to maintain the current code simple, when the head
1629          * object is totally unloaded it means also that we do not have
1630          * further objects in the list, so the list ownership needs to be
1631          * hand over to another object if the current head needs to be freed.
1632          */
1633         if ((*lock_list)->ll_count == 0) {
1634                 if (*lock_list == lle) {
1635                         if (lle->ll_next == NULL)
1636                                 return;
1637                 } else
1638                         lle = *lock_list;
1639                 *lock_list = lle->ll_next;
1640                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1641                     td->td_proc->p_pid, lle);
1642                 witness_lock_list_free(lle);
1643         }
1644 }
1645
1646 void
1647 witness_thread_exit(struct thread *td)
1648 {
1649         struct lock_list_entry *lle;
1650         int i, n;
1651
1652         lle = td->td_sleeplocks;
1653         if (lle == NULL || panicstr != NULL)
1654                 return;
1655         if (lle->ll_count != 0) {
1656                 for (n = 0; lle != NULL; lle = lle->ll_next)
1657                         for (i = lle->ll_count - 1; i >= 0; i--) {
1658                                 if (n == 0)
1659                 printf("Thread %p exiting with the following locks held:\n",
1660                                             td);
1661                                 n++;
1662                                 witness_list_lock(&lle->ll_children[i], printf);
1663                                 
1664                         }
1665                 kassert_panic(
1666                     "Thread %p cannot exit while holding sleeplocks\n", td);
1667         }
1668         witness_lock_list_free(lle);
1669 }
1670
1671 /*
1672  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1673  * exempt Giant and sleepable locks from the checks as well.  If any
1674  * non-exempt locks are held, then a supplied message is printed to the
1675  * console along with a list of the offending locks.  If indicated in the
1676  * flags then a failure results in a panic as well.
1677  */
1678 int
1679 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1680 {
1681         struct lock_list_entry *lock_list, *lle;
1682         struct lock_instance *lock1;
1683         struct thread *td;
1684         va_list ap;
1685         int i, n;
1686
1687         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1688                 return (0);
1689         n = 0;
1690         td = curthread;
1691         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1692                 for (i = lle->ll_count - 1; i >= 0; i--) {
1693                         lock1 = &lle->ll_children[i];
1694                         if (lock1->li_lock == lock)
1695                                 continue;
1696                         if (flags & WARN_GIANTOK &&
1697                             lock1->li_lock == &Giant.lock_object)
1698                                 continue;
1699                         if (flags & WARN_SLEEPOK &&
1700                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1701                                 continue;
1702                         if (n == 0) {
1703                                 va_start(ap, fmt);
1704                                 vprintf(fmt, ap);
1705                                 va_end(ap);
1706                                 printf(" with the following");
1707                                 if (flags & WARN_SLEEPOK)
1708                                         printf(" non-sleepable");
1709                                 printf(" locks held:\n");
1710                         }
1711                         n++;
1712                         witness_list_lock(lock1, printf);
1713                 }
1714
1715         /*
1716          * Pin the thread in order to avoid problems with thread migration.
1717          * Once that all verifies are passed about spinlocks ownership,
1718          * the thread is in a safe path and it can be unpinned.
1719          */
1720         sched_pin();
1721         lock_list = PCPU_GET(spinlocks);
1722         if (lock_list != NULL && lock_list->ll_count != 0) {
1723                 sched_unpin();
1724
1725                 /*
1726                  * We should only have one spinlock and as long as
1727                  * the flags cannot match for this locks class,
1728                  * check if the first spinlock is the one curthread
1729                  * should hold.
1730                  */
1731                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1732                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1733                     lock1->li_lock == lock && n == 0)
1734                         return (0);
1735
1736                 va_start(ap, fmt);
1737                 vprintf(fmt, ap);
1738                 va_end(ap);
1739                 printf(" with the following");
1740                 if (flags & WARN_SLEEPOK)
1741                         printf(" non-sleepable");
1742                 printf(" locks held:\n");
1743                 n += witness_list_locks(&lock_list, printf);
1744         } else
1745                 sched_unpin();
1746         if (flags & WARN_PANIC && n)
1747                 kassert_panic("%s", __func__);
1748         else
1749                 witness_debugger(n);
1750         return (n);
1751 }
1752
1753 const char *
1754 witness_file(struct lock_object *lock)
1755 {
1756         struct witness *w;
1757
1758         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1759                 return ("?");
1760         w = lock->lo_witness;
1761         return (w->w_file);
1762 }
1763
1764 int
1765 witness_line(struct lock_object *lock)
1766 {
1767         struct witness *w;
1768
1769         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1770                 return (0);
1771         w = lock->lo_witness;
1772         return (w->w_line);
1773 }
1774
1775 static struct witness *
1776 enroll(const char *description, struct lock_class *lock_class)
1777 {
1778         struct witness *w;
1779         struct witness_list *typelist;
1780
1781         MPASS(description != NULL);
1782
1783         if (witness_watch == -1 || panicstr != NULL)
1784                 return (NULL);
1785         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1786                 if (witness_skipspin)
1787                         return (NULL);
1788                 else
1789                         typelist = &w_spin;
1790         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1791                 typelist = &w_sleep;
1792         } else {
1793                 kassert_panic("lock class %s is not sleep or spin",
1794                     lock_class->lc_name);
1795                 return (NULL);
1796         }
1797
1798         mtx_lock_spin(&w_mtx);
1799         w = witness_hash_get(description);
1800         if (w)
1801                 goto found;
1802         if ((w = witness_get()) == NULL)
1803                 return (NULL);
1804         MPASS(strlen(description) < MAX_W_NAME);
1805         strcpy(w->w_name, description);
1806         w->w_class = lock_class;
1807         w->w_refcount = 1;
1808         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1809         if (lock_class->lc_flags & LC_SPINLOCK) {
1810                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1811                 w_spin_cnt++;
1812         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1813                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1814                 w_sleep_cnt++;
1815         }
1816
1817         /* Insert new witness into the hash */
1818         witness_hash_put(w);
1819         witness_increment_graph_generation();
1820         mtx_unlock_spin(&w_mtx);
1821         return (w);
1822 found:
1823         w->w_refcount++;
1824         mtx_unlock_spin(&w_mtx);
1825         if (lock_class != w->w_class)
1826                 kassert_panic(
1827                         "lock (%s) %s does not match earlier (%s) lock",
1828                         description, lock_class->lc_name,
1829                         w->w_class->lc_name);
1830         return (w);
1831 }
1832
1833 static void
1834 depart(struct witness *w)
1835 {
1836         struct witness_list *list;
1837
1838         MPASS(w->w_refcount == 0);
1839         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1840                 list = &w_sleep;
1841                 w_sleep_cnt--;
1842         } else {
1843                 list = &w_spin;
1844                 w_spin_cnt--;
1845         }
1846         /*
1847          * Set file to NULL as it may point into a loadable module.
1848          */
1849         w->w_file = NULL;
1850         w->w_line = 0;
1851         witness_increment_graph_generation();
1852 }
1853
1854
1855 static void
1856 adopt(struct witness *parent, struct witness *child)
1857 {
1858         int pi, ci, i, j;
1859
1860         if (witness_cold == 0)
1861                 mtx_assert(&w_mtx, MA_OWNED);
1862
1863         /* If the relationship is already known, there's no work to be done. */
1864         if (isitmychild(parent, child))
1865                 return;
1866
1867         /* When the structure of the graph changes, bump up the generation. */
1868         witness_increment_graph_generation();
1869
1870         /*
1871          * The hard part ... create the direct relationship, then propagate all
1872          * indirect relationships.
1873          */
1874         pi = parent->w_index;
1875         ci = child->w_index;
1876         WITNESS_INDEX_ASSERT(pi);
1877         WITNESS_INDEX_ASSERT(ci);
1878         MPASS(pi != ci);
1879         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1880         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1881
1882         /*
1883          * If parent was not already an ancestor of child,
1884          * then we increment the descendant and ancestor counters.
1885          */
1886         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1887                 parent->w_num_descendants++;
1888                 child->w_num_ancestors++;
1889         }
1890
1891         /* 
1892          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1893          * an ancestor of 'pi' during this loop.
1894          */
1895         for (i = 1; i <= w_max_used_index; i++) {
1896                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1897                     (i != pi))
1898                         continue;
1899
1900                 /* Find each descendant of 'i' and mark it as a descendant. */
1901                 for (j = 1; j <= w_max_used_index; j++) {
1902
1903                         /* 
1904                          * Skip children that are already marked as
1905                          * descendants of 'i'.
1906                          */
1907                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1908                                 continue;
1909
1910                         /*
1911                          * We are only interested in descendants of 'ci'. Note
1912                          * that 'ci' itself is counted as a descendant of 'ci'.
1913                          */
1914                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1915                             (j != ci))
1916                                 continue;
1917                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1918                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1919                         w_data[i].w_num_descendants++;
1920                         w_data[j].w_num_ancestors++;
1921
1922                         /* 
1923                          * Make sure we aren't marking a node as both an
1924                          * ancestor and descendant. We should have caught 
1925                          * this as a lock order reversal earlier.
1926                          */
1927                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1928                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1929                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1930                                     "both ancestor and descendant\n",
1931                                     i, j, w_rmatrix[i][j]); 
1932                                 kdb_backtrace();
1933                                 printf("Witness disabled.\n");
1934                                 witness_watch = -1;
1935                         }
1936                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1937                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1938                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1939                                     "both ancestor and descendant\n",
1940                                     j, i, w_rmatrix[j][i]); 
1941                                 kdb_backtrace();
1942                                 printf("Witness disabled.\n");
1943                                 witness_watch = -1;
1944                         }
1945                 }
1946         }
1947 }
1948
1949 static void
1950 itismychild(struct witness *parent, struct witness *child)
1951 {
1952         int unlocked;
1953
1954         MPASS(child != NULL && parent != NULL);
1955         if (witness_cold == 0)
1956                 mtx_assert(&w_mtx, MA_OWNED);
1957
1958         if (!witness_lock_type_equal(parent, child)) {
1959                 if (witness_cold == 0) {
1960                         unlocked = 1;
1961                         mtx_unlock_spin(&w_mtx);
1962                 } else {
1963                         unlocked = 0;
1964                 }
1965                 kassert_panic(
1966                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1967                     "the same lock type", __func__, parent->w_name,
1968                     parent->w_class->lc_name, child->w_name,
1969                     child->w_class->lc_name);
1970                 if (unlocked)
1971                         mtx_lock_spin(&w_mtx);
1972         }
1973         adopt(parent, child);
1974 }
1975
1976 /*
1977  * Generic code for the isitmy*() functions. The rmask parameter is the
1978  * expected relationship of w1 to w2.
1979  */
1980 static int
1981 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1982 {
1983         unsigned char r1, r2;
1984         int i1, i2;
1985
1986         i1 = w1->w_index;
1987         i2 = w2->w_index;
1988         WITNESS_INDEX_ASSERT(i1);
1989         WITNESS_INDEX_ASSERT(i2);
1990         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1991         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1992
1993         /* The flags on one better be the inverse of the flags on the other */
1994         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1995                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1996                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1997                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1998                     "w_rmatrix[%d][%d] == %hhx\n",
1999                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2000                     i2, i1, r2);
2001                 kdb_backtrace();
2002                 printf("Witness disabled.\n");
2003                 witness_watch = -1;
2004         }
2005         return (r1 & rmask);
2006 }
2007
2008 /*
2009  * Checks if @child is a direct child of @parent.
2010  */
2011 static int
2012 isitmychild(struct witness *parent, struct witness *child)
2013 {
2014
2015         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2016 }
2017
2018 /*
2019  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2020  */
2021 static int
2022 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2023 {
2024
2025         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2026             __func__));
2027 }
2028
2029 #ifdef BLESSING
2030 static int
2031 blessed(struct witness *w1, struct witness *w2)
2032 {
2033         int i;
2034         struct witness_blessed *b;
2035
2036         for (i = 0; i < blessed_count; i++) {
2037                 b = &blessed_list[i];
2038                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2039                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2040                                 return (1);
2041                         continue;
2042                 }
2043                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2044                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2045                                 return (1);
2046         }
2047         return (0);
2048 }
2049 #endif
2050
2051 static struct witness *
2052 witness_get(void)
2053 {
2054         struct witness *w;
2055         int index;
2056
2057         if (witness_cold == 0)
2058                 mtx_assert(&w_mtx, MA_OWNED);
2059
2060         if (witness_watch == -1) {
2061                 mtx_unlock_spin(&w_mtx);
2062                 return (NULL);
2063         }
2064         if (STAILQ_EMPTY(&w_free)) {
2065                 witness_watch = -1;
2066                 mtx_unlock_spin(&w_mtx);
2067                 printf("WITNESS: unable to allocate a new witness object\n");
2068                 return (NULL);
2069         }
2070         w = STAILQ_FIRST(&w_free);
2071         STAILQ_REMOVE_HEAD(&w_free, w_list);
2072         w_free_cnt--;
2073         index = w->w_index;
2074         MPASS(index > 0 && index == w_max_used_index+1 &&
2075             index < witness_count);
2076         bzero(w, sizeof(*w));
2077         w->w_index = index;
2078         if (index > w_max_used_index)
2079                 w_max_used_index = index;
2080         return (w);
2081 }
2082
2083 static void
2084 witness_free(struct witness *w)
2085 {
2086
2087         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2088         w_free_cnt++;
2089 }
2090
2091 static struct lock_list_entry *
2092 witness_lock_list_get(void)
2093 {
2094         struct lock_list_entry *lle;
2095
2096         if (witness_watch == -1)
2097                 return (NULL);
2098         mtx_lock_spin(&w_mtx);
2099         lle = w_lock_list_free;
2100         if (lle == NULL) {
2101                 witness_watch = -1;
2102                 mtx_unlock_spin(&w_mtx);
2103                 printf("%s: witness exhausted\n", __func__);
2104                 return (NULL);
2105         }
2106         w_lock_list_free = lle->ll_next;
2107         mtx_unlock_spin(&w_mtx);
2108         bzero(lle, sizeof(*lle));
2109         return (lle);
2110 }
2111                 
2112 static void
2113 witness_lock_list_free(struct lock_list_entry *lle)
2114 {
2115
2116         mtx_lock_spin(&w_mtx);
2117         lle->ll_next = w_lock_list_free;
2118         w_lock_list_free = lle;
2119         mtx_unlock_spin(&w_mtx);
2120 }
2121
2122 static struct lock_instance *
2123 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2124 {
2125         struct lock_list_entry *lle;
2126         struct lock_instance *instance;
2127         int i;
2128
2129         for (lle = list; lle != NULL; lle = lle->ll_next)
2130                 for (i = lle->ll_count - 1; i >= 0; i--) {
2131                         instance = &lle->ll_children[i];
2132                         if (instance->li_lock == lock)
2133                                 return (instance);
2134                 }
2135         return (NULL);
2136 }
2137
2138 static void
2139 witness_list_lock(struct lock_instance *instance,
2140     int (*prnt)(const char *fmt, ...))
2141 {
2142         struct lock_object *lock;
2143
2144         lock = instance->li_lock;
2145         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2146             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2147         if (lock->lo_witness->w_name != lock->lo_name)
2148                 prnt(" (%s)", lock->lo_witness->w_name);
2149         prnt(" r = %d (%p) locked @ %s:%d\n",
2150             instance->li_flags & LI_RECURSEMASK, lock,
2151             fixup_filename(instance->li_file), instance->li_line);
2152 }
2153
2154 #ifdef DDB
2155 static int
2156 witness_thread_has_locks(struct thread *td)
2157 {
2158
2159         if (td->td_sleeplocks == NULL)
2160                 return (0);
2161         return (td->td_sleeplocks->ll_count != 0);
2162 }
2163
2164 static int
2165 witness_proc_has_locks(struct proc *p)
2166 {
2167         struct thread *td;
2168
2169         FOREACH_THREAD_IN_PROC(p, td) {
2170                 if (witness_thread_has_locks(td))
2171                         return (1);
2172         }
2173         return (0);
2174 }
2175 #endif
2176
2177 int
2178 witness_list_locks(struct lock_list_entry **lock_list,
2179     int (*prnt)(const char *fmt, ...))
2180 {
2181         struct lock_list_entry *lle;
2182         int i, nheld;
2183
2184         nheld = 0;
2185         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2186                 for (i = lle->ll_count - 1; i >= 0; i--) {
2187                         witness_list_lock(&lle->ll_children[i], prnt);
2188                         nheld++;
2189                 }
2190         return (nheld);
2191 }
2192
2193 /*
2194  * This is a bit risky at best.  We call this function when we have timed
2195  * out acquiring a spin lock, and we assume that the other CPU is stuck
2196  * with this lock held.  So, we go groveling around in the other CPU's
2197  * per-cpu data to try to find the lock instance for this spin lock to
2198  * see when it was last acquired.
2199  */
2200 void
2201 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2202     int (*prnt)(const char *fmt, ...))
2203 {
2204         struct lock_instance *instance;
2205         struct pcpu *pc;
2206
2207         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2208                 return;
2209         pc = pcpu_find(owner->td_oncpu);
2210         instance = find_instance(pc->pc_spinlocks, lock);
2211         if (instance != NULL)
2212                 witness_list_lock(instance, prnt);
2213 }
2214
2215 void
2216 witness_save(struct lock_object *lock, const char **filep, int *linep)
2217 {
2218         struct lock_list_entry *lock_list;
2219         struct lock_instance *instance;
2220         struct lock_class *class;
2221
2222         /*
2223          * This function is used independently in locking code to deal with
2224          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2225          * is gone.
2226          */
2227         if (SCHEDULER_STOPPED())
2228                 return;
2229         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2230         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2231                 return;
2232         class = LOCK_CLASS(lock);
2233         if (class->lc_flags & LC_SLEEPLOCK)
2234                 lock_list = curthread->td_sleeplocks;
2235         else {
2236                 if (witness_skipspin)
2237                         return;
2238                 lock_list = PCPU_GET(spinlocks);
2239         }
2240         instance = find_instance(lock_list, lock);
2241         if (instance == NULL) {
2242                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2243                     class->lc_name, lock->lo_name);
2244                 return;
2245         }
2246         *filep = instance->li_file;
2247         *linep = instance->li_line;
2248 }
2249
2250 void
2251 witness_restore(struct lock_object *lock, const char *file, int line)
2252 {
2253         struct lock_list_entry *lock_list;
2254         struct lock_instance *instance;
2255         struct lock_class *class;
2256
2257         /*
2258          * This function is used independently in locking code to deal with
2259          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2260          * is gone.
2261          */
2262         if (SCHEDULER_STOPPED())
2263                 return;
2264         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2265         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2266                 return;
2267         class = LOCK_CLASS(lock);
2268         if (class->lc_flags & LC_SLEEPLOCK)
2269                 lock_list = curthread->td_sleeplocks;
2270         else {
2271                 if (witness_skipspin)
2272                         return;
2273                 lock_list = PCPU_GET(spinlocks);
2274         }
2275         instance = find_instance(lock_list, lock);
2276         if (instance == NULL)
2277                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2278                     class->lc_name, lock->lo_name);
2279         lock->lo_witness->w_file = file;
2280         lock->lo_witness->w_line = line;
2281         if (instance == NULL)
2282                 return;
2283         instance->li_file = file;
2284         instance->li_line = line;
2285 }
2286
2287 void
2288 witness_assert(const struct lock_object *lock, int flags, const char *file,
2289     int line)
2290 {
2291 #ifdef INVARIANT_SUPPORT
2292         struct lock_instance *instance;
2293         struct lock_class *class;
2294
2295         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2296                 return;
2297         class = LOCK_CLASS(lock);
2298         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2299                 instance = find_instance(curthread->td_sleeplocks, lock);
2300         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2301                 instance = find_instance(PCPU_GET(spinlocks), lock);
2302         else {
2303                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2304                     class->lc_name, lock->lo_name);
2305                 return;
2306         }
2307         switch (flags) {
2308         case LA_UNLOCKED:
2309                 if (instance != NULL)
2310                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2311                             class->lc_name, lock->lo_name,
2312                             fixup_filename(file), line);
2313                 break;
2314         case LA_LOCKED:
2315         case LA_LOCKED | LA_RECURSED:
2316         case LA_LOCKED | LA_NOTRECURSED:
2317         case LA_SLOCKED:
2318         case LA_SLOCKED | LA_RECURSED:
2319         case LA_SLOCKED | LA_NOTRECURSED:
2320         case LA_XLOCKED:
2321         case LA_XLOCKED | LA_RECURSED:
2322         case LA_XLOCKED | LA_NOTRECURSED:
2323                 if (instance == NULL) {
2324                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2325                             class->lc_name, lock->lo_name,
2326                             fixup_filename(file), line);
2327                         break;
2328                 }
2329                 if ((flags & LA_XLOCKED) != 0 &&
2330                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2331                         kassert_panic(
2332                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2333                             class->lc_name, lock->lo_name,
2334                             fixup_filename(file), line);
2335                 if ((flags & LA_SLOCKED) != 0 &&
2336                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2337                         kassert_panic(
2338                             "Lock (%s) %s exclusively locked @ %s:%d.",
2339                             class->lc_name, lock->lo_name,
2340                             fixup_filename(file), line);
2341                 if ((flags & LA_RECURSED) != 0 &&
2342                     (instance->li_flags & LI_RECURSEMASK) == 0)
2343                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2344                             class->lc_name, lock->lo_name,
2345                             fixup_filename(file), line);
2346                 if ((flags & LA_NOTRECURSED) != 0 &&
2347                     (instance->li_flags & LI_RECURSEMASK) != 0)
2348                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2349                             class->lc_name, lock->lo_name,
2350                             fixup_filename(file), line);
2351                 break;
2352         default:
2353                 kassert_panic("Invalid lock assertion at %s:%d.",
2354                     fixup_filename(file), line);
2355
2356         }
2357 #endif  /* INVARIANT_SUPPORT */
2358 }
2359
2360 static void
2361 witness_setflag(struct lock_object *lock, int flag, int set)
2362 {
2363         struct lock_list_entry *lock_list;
2364         struct lock_instance *instance;
2365         struct lock_class *class;
2366
2367         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2368                 return;
2369         class = LOCK_CLASS(lock);
2370         if (class->lc_flags & LC_SLEEPLOCK)
2371                 lock_list = curthread->td_sleeplocks;
2372         else {
2373                 if (witness_skipspin)
2374                         return;
2375                 lock_list = PCPU_GET(spinlocks);
2376         }
2377         instance = find_instance(lock_list, lock);
2378         if (instance == NULL) {
2379                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2380                     class->lc_name, lock->lo_name);
2381                 return;
2382         }
2383
2384         if (set)
2385                 instance->li_flags |= flag;
2386         else
2387                 instance->li_flags &= ~flag;
2388 }
2389
2390 void
2391 witness_norelease(struct lock_object *lock)
2392 {
2393
2394         witness_setflag(lock, LI_NORELEASE, 1);
2395 }
2396
2397 void
2398 witness_releaseok(struct lock_object *lock)
2399 {
2400
2401         witness_setflag(lock, LI_NORELEASE, 0);
2402 }
2403
2404 #ifdef DDB
2405 static void
2406 witness_ddb_list(struct thread *td)
2407 {
2408
2409         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2410         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2411
2412         if (witness_watch < 1)
2413                 return;
2414
2415         witness_list_locks(&td->td_sleeplocks, db_printf);
2416
2417         /*
2418          * We only handle spinlocks if td == curthread.  This is somewhat broken
2419          * if td is currently executing on some other CPU and holds spin locks
2420          * as we won't display those locks.  If we had a MI way of getting
2421          * the per-cpu data for a given cpu then we could use
2422          * td->td_oncpu to get the list of spinlocks for this thread
2423          * and "fix" this.
2424          *
2425          * That still wouldn't really fix this unless we locked the scheduler
2426          * lock or stopped the other CPU to make sure it wasn't changing the
2427          * list out from under us.  It is probably best to just not try to
2428          * handle threads on other CPU's for now.
2429          */
2430         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2431                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2432 }
2433
2434 DB_SHOW_COMMAND(locks, db_witness_list)
2435 {
2436         struct thread *td;
2437
2438         if (have_addr)
2439                 td = db_lookup_thread(addr, TRUE);
2440         else
2441                 td = kdb_thread;
2442         witness_ddb_list(td);
2443 }
2444
2445 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2446 {
2447         struct thread *td;
2448         struct proc *p;
2449
2450         /*
2451          * It would be nice to list only threads and processes that actually
2452          * held sleep locks, but that information is currently not exported
2453          * by WITNESS.
2454          */
2455         FOREACH_PROC_IN_SYSTEM(p) {
2456                 if (!witness_proc_has_locks(p))
2457                         continue;
2458                 FOREACH_THREAD_IN_PROC(p, td) {
2459                         if (!witness_thread_has_locks(td))
2460                                 continue;
2461                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2462                             p->p_comm, td, td->td_tid);
2463                         witness_ddb_list(td);
2464                         if (db_pager_quit)
2465                                 return;
2466                 }
2467         }
2468 }
2469 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2470
2471 DB_SHOW_COMMAND(witness, db_witness_display)
2472 {
2473
2474         witness_ddb_display(db_printf);
2475 }
2476 #endif
2477
2478 static int
2479 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2480 {
2481         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2482         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2483         struct sbuf *sb;
2484         u_int w_rmatrix1, w_rmatrix2;
2485         int error, generation, i, j;
2486
2487         tmp_data1 = NULL;
2488         tmp_data2 = NULL;
2489         tmp_w1 = NULL;
2490         tmp_w2 = NULL;
2491         if (witness_watch < 1) {
2492                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2493                 return (error);
2494         }
2495         if (witness_cold) {
2496                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2497                 return (error);
2498         }
2499         error = 0;
2500         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2501         if (sb == NULL)
2502                 return (ENOMEM);
2503
2504         /* Allocate and init temporary storage space. */
2505         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2506         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2507         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2508             M_WAITOK | M_ZERO);
2509         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2510             M_WAITOK | M_ZERO);
2511         stack_zero(&tmp_data1->wlod_stack);
2512         stack_zero(&tmp_data2->wlod_stack);
2513
2514 restart:
2515         mtx_lock_spin(&w_mtx);
2516         generation = w_generation;
2517         mtx_unlock_spin(&w_mtx);
2518         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2519             w_lohash.wloh_count);
2520         for (i = 1; i < w_max_used_index; i++) {
2521                 mtx_lock_spin(&w_mtx);
2522                 if (generation != w_generation) {
2523                         mtx_unlock_spin(&w_mtx);
2524
2525                         /* The graph has changed, try again. */
2526                         req->oldidx = 0;
2527                         sbuf_clear(sb);
2528                         goto restart;
2529                 }
2530
2531                 w1 = &w_data[i];
2532                 if (w1->w_reversed == 0) {
2533                         mtx_unlock_spin(&w_mtx);
2534                         continue;
2535                 }
2536
2537                 /* Copy w1 locally so we can release the spin lock. */
2538                 *tmp_w1 = *w1;
2539                 mtx_unlock_spin(&w_mtx);
2540
2541                 if (tmp_w1->w_reversed == 0)
2542                         continue;
2543                 for (j = 1; j < w_max_used_index; j++) {
2544                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2545                                 continue;
2546
2547                         mtx_lock_spin(&w_mtx);
2548                         if (generation != w_generation) {
2549                                 mtx_unlock_spin(&w_mtx);
2550
2551                                 /* The graph has changed, try again. */
2552                                 req->oldidx = 0;
2553                                 sbuf_clear(sb);
2554                                 goto restart;
2555                         }
2556
2557                         w2 = &w_data[j];
2558                         data1 = witness_lock_order_get(w1, w2);
2559                         data2 = witness_lock_order_get(w2, w1);
2560
2561                         /*
2562                          * Copy information locally so we can release the
2563                          * spin lock.
2564                          */
2565                         *tmp_w2 = *w2;
2566                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2567                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2568
2569                         if (data1) {
2570                                 stack_zero(&tmp_data1->wlod_stack);
2571                                 stack_copy(&data1->wlod_stack,
2572                                     &tmp_data1->wlod_stack);
2573                         }
2574                         if (data2 && data2 != data1) {
2575                                 stack_zero(&tmp_data2->wlod_stack);
2576                                 stack_copy(&data2->wlod_stack,
2577                                     &tmp_data2->wlod_stack);
2578                         }
2579                         mtx_unlock_spin(&w_mtx);
2580
2581                         sbuf_printf(sb,
2582             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2583                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2584                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2585 #if 0
2586                         sbuf_printf(sb,
2587                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2588                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2589                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2590 #endif
2591                         if (data1) {
2592                                 sbuf_printf(sb,
2593                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2594                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2595                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2596                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2597                                 sbuf_printf(sb, "\n");
2598                         }
2599                         if (data2 && data2 != data1) {
2600                                 sbuf_printf(sb,
2601                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2602                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2603                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2604                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2605                                 sbuf_printf(sb, "\n");
2606                         }
2607                 }
2608         }
2609         mtx_lock_spin(&w_mtx);
2610         if (generation != w_generation) {
2611                 mtx_unlock_spin(&w_mtx);
2612
2613                 /*
2614                  * The graph changed while we were printing stack data,
2615                  * try again.
2616                  */
2617                 req->oldidx = 0;
2618                 sbuf_clear(sb);
2619                 goto restart;
2620         }
2621         mtx_unlock_spin(&w_mtx);
2622
2623         /* Free temporary storage space. */
2624         free(tmp_data1, M_TEMP);
2625         free(tmp_data2, M_TEMP);
2626         free(tmp_w1, M_TEMP);
2627         free(tmp_w2, M_TEMP);
2628
2629         sbuf_finish(sb);
2630         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2631         sbuf_delete(sb);
2632
2633         return (error);
2634 }
2635
2636 static int
2637 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2638 {
2639         struct witness *w;
2640         struct sbuf *sb;
2641         int error;
2642
2643         if (witness_watch < 1) {
2644                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2645                 return (error);
2646         }
2647         if (witness_cold) {
2648                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2649                 return (error);
2650         }
2651         error = 0;
2652
2653         error = sysctl_wire_old_buffer(req, 0);
2654         if (error != 0)
2655                 return (error);
2656         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2657         if (sb == NULL)
2658                 return (ENOMEM);
2659         sbuf_printf(sb, "\n");
2660
2661         mtx_lock_spin(&w_mtx);
2662         STAILQ_FOREACH(w, &w_all, w_list)
2663                 w->w_displayed = 0;
2664         STAILQ_FOREACH(w, &w_all, w_list)
2665                 witness_add_fullgraph(sb, w);
2666         mtx_unlock_spin(&w_mtx);
2667
2668         /*
2669          * Close the sbuf and return to userland.
2670          */
2671         error = sbuf_finish(sb);
2672         sbuf_delete(sb);
2673
2674         return (error);
2675 }
2676
2677 static int
2678 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2679 {
2680         int error, value;
2681
2682         value = witness_watch;
2683         error = sysctl_handle_int(oidp, &value, 0, req);
2684         if (error != 0 || req->newptr == NULL)
2685                 return (error);
2686         if (value > 1 || value < -1 ||
2687             (witness_watch == -1 && value != witness_watch))
2688                 return (EINVAL);
2689         witness_watch = value;
2690         return (0);
2691 }
2692
2693 static void
2694 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2695 {
2696         int i;
2697
2698         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2699                 return;
2700         w->w_displayed = 1;
2701
2702         WITNESS_INDEX_ASSERT(w->w_index);
2703         for (i = 1; i <= w_max_used_index; i++) {
2704                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2705                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2706                             w_data[i].w_name);
2707                         witness_add_fullgraph(sb, &w_data[i]);
2708                 }
2709         }
2710 }
2711
2712 /*
2713  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2714  * interprets the key as a string and reads until the null
2715  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2716  * hash value computed from the key.
2717  */
2718 static uint32_t
2719 witness_hash_djb2(const uint8_t *key, uint32_t size)
2720 {
2721         unsigned int hash = 5381;
2722         int i;
2723
2724         /* hash = hash * 33 + key[i] */
2725         if (size)
2726                 for (i = 0; i < size; i++)
2727                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2728         else
2729                 for (i = 0; key[i] != 0; i++)
2730                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2731
2732         return (hash);
2733 }
2734
2735
2736 /*
2737  * Initializes the two witness hash tables. Called exactly once from
2738  * witness_initialize().
2739  */
2740 static void
2741 witness_init_hash_tables(void)
2742 {
2743         int i;
2744
2745         MPASS(witness_cold);
2746
2747         /* Initialize the hash tables. */
2748         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2749                 w_hash.wh_array[i] = NULL;
2750
2751         w_hash.wh_size = WITNESS_HASH_SIZE;
2752         w_hash.wh_count = 0;
2753
2754         /* Initialize the lock order data hash. */
2755         w_lofree = NULL;
2756         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2757                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2758                 w_lodata[i].wlod_next = w_lofree;
2759                 w_lofree = &w_lodata[i];
2760         }
2761         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2762         w_lohash.wloh_count = 0;
2763         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2764                 w_lohash.wloh_array[i] = NULL;
2765 }
2766
2767 static struct witness *
2768 witness_hash_get(const char *key)
2769 {
2770         struct witness *w;
2771         uint32_t hash;
2772         
2773         MPASS(key != NULL);
2774         if (witness_cold == 0)
2775                 mtx_assert(&w_mtx, MA_OWNED);
2776         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2777         w = w_hash.wh_array[hash];
2778         while (w != NULL) {
2779                 if (strcmp(w->w_name, key) == 0)
2780                         goto out;
2781                 w = w->w_hash_next;
2782         }
2783
2784 out:
2785         return (w);
2786 }
2787
2788 static void
2789 witness_hash_put(struct witness *w)
2790 {
2791         uint32_t hash;
2792
2793         MPASS(w != NULL);
2794         MPASS(w->w_name != NULL);
2795         if (witness_cold == 0)
2796                 mtx_assert(&w_mtx, MA_OWNED);
2797         KASSERT(witness_hash_get(w->w_name) == NULL,
2798             ("%s: trying to add a hash entry that already exists!", __func__));
2799         KASSERT(w->w_hash_next == NULL,
2800             ("%s: w->w_hash_next != NULL", __func__));
2801
2802         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2803         w->w_hash_next = w_hash.wh_array[hash];
2804         w_hash.wh_array[hash] = w;
2805         w_hash.wh_count++;
2806 }
2807
2808
2809 static struct witness_lock_order_data *
2810 witness_lock_order_get(struct witness *parent, struct witness *child)
2811 {
2812         struct witness_lock_order_data *data = NULL;
2813         struct witness_lock_order_key key;
2814         unsigned int hash;
2815
2816         MPASS(parent != NULL && child != NULL);
2817         key.from = parent->w_index;
2818         key.to = child->w_index;
2819         WITNESS_INDEX_ASSERT(key.from);
2820         WITNESS_INDEX_ASSERT(key.to);
2821         if ((w_rmatrix[parent->w_index][child->w_index]
2822             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2823                 goto out;
2824
2825         hash = witness_hash_djb2((const char*)&key,
2826             sizeof(key)) % w_lohash.wloh_size;
2827         data = w_lohash.wloh_array[hash];
2828         while (data != NULL) {
2829                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2830                         break;
2831                 data = data->wlod_next;
2832         }
2833
2834 out:
2835         return (data);
2836 }
2837
2838 /*
2839  * Verify that parent and child have a known relationship, are not the same,
2840  * and child is actually a child of parent.  This is done without w_mtx
2841  * to avoid contention in the common case.
2842  */
2843 static int
2844 witness_lock_order_check(struct witness *parent, struct witness *child)
2845 {
2846
2847         if (parent != child &&
2848             w_rmatrix[parent->w_index][child->w_index]
2849             & WITNESS_LOCK_ORDER_KNOWN &&
2850             isitmychild(parent, child))
2851                 return (1);
2852
2853         return (0);
2854 }
2855
2856 static int
2857 witness_lock_order_add(struct witness *parent, struct witness *child)
2858 {
2859         struct witness_lock_order_data *data = NULL;
2860         struct witness_lock_order_key key;
2861         unsigned int hash;
2862         
2863         MPASS(parent != NULL && child != NULL);
2864         key.from = parent->w_index;
2865         key.to = child->w_index;
2866         WITNESS_INDEX_ASSERT(key.from);
2867         WITNESS_INDEX_ASSERT(key.to);
2868         if (w_rmatrix[parent->w_index][child->w_index]
2869             & WITNESS_LOCK_ORDER_KNOWN)
2870                 return (1);
2871
2872         hash = witness_hash_djb2((const char*)&key,
2873             sizeof(key)) % w_lohash.wloh_size;
2874         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2875         data = w_lofree;
2876         if (data == NULL)
2877                 return (0);
2878         w_lofree = data->wlod_next;
2879         data->wlod_next = w_lohash.wloh_array[hash];
2880         data->wlod_key = key;
2881         w_lohash.wloh_array[hash] = data;
2882         w_lohash.wloh_count++;
2883         stack_zero(&data->wlod_stack);
2884         stack_save(&data->wlod_stack);
2885         return (1);
2886 }
2887
2888 /* Call this whenver the structure of the witness graph changes. */
2889 static void
2890 witness_increment_graph_generation(void)
2891 {
2892
2893         if (witness_cold == 0)
2894                 mtx_assert(&w_mtx, MA_OWNED);
2895         w_generation++;
2896 }
2897
2898 #ifdef KDB
2899 static void
2900 _witness_debugger(int cond, const char *msg)
2901 {
2902
2903         if (witness_trace && cond)
2904                 kdb_backtrace();
2905         if (witness_kdb && cond)
2906                 kdb_enter(KDB_WHY_WITNESS, msg);
2907 }
2908 #endif