]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
bhnd(9): Fix a few mandoc related issues
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42
43 /*
44  *      Main Entry: witness
45  *      Pronunciation: 'wit-n&s
46  *      Function: noun
47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *          testimony, witness, from 2wit
49  *      Date: before 12th century
50  *      1 : attestation of a fact or event : TESTIMONY
51  *      2 : one that gives evidence; specifically : one who testifies in
52  *          a cause or before a judicial tribunal
53  *      3 : one asked to be present at a transaction so as to be able to
54  *          testify to its having taken place
55  *      4 : one who has personal knowledge of something
56  *      5 a : something serving as evidence or proof : SIGN
57  *        b : public affirmation by word or example of usually
58  *            religious faith or conviction <the heroic witness to divine
59  *            life -- Pilot>
60  *      6 capitalized : a member of the Jehovah's Witnesses 
61  */
62
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117
118 #include <machine/stdarg.h>
119
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define KTR_WITNESS     KTR_SUBSYS
127 #else
128 #define KTR_WITNESS     0
129 #endif
130
131 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
132 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
133 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
134 #define LI_SLEEPABLE    0x00040000      /* Lock may be held while sleeping. */
135
136 #ifndef WITNESS_COUNT
137 #define WITNESS_COUNT           1536
138 #endif
139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
140 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
141
142 /* Allocate 256 KB of stack data space */
143 #define WITNESS_LO_DATA_COUNT   2048
144
145 /* Prime, gives load factor of ~2 at full load */
146 #define WITNESS_LO_HASH_SIZE    1021
147
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define LOCK_NCHILDREN  5
154 #define LOCK_CHILDCOUNT 2048
155
156 #define MAX_W_NAME      64
157
158 #define FULLGRAPH_SBUF_SIZE     512
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283
284 struct witness_pendhelp {
285         const char              *wh_type;
286         struct lock_object      *wh_lock;
287 };
288
289 struct witness_order_list_entry {
290         const char              *w_name;
291         struct lock_class       *w_class;
292 };
293
294 /*
295  * Returns 0 if one of the locks is a spin lock and the other is not.
296  * Returns 1 otherwise.
297  */
298 static __inline int
299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
300 {
301
302         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
303                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
304 }
305
306 static __inline int
307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
308     const struct witness_lock_order_key *b)
309 {
310
311         return (a->from == b->from && a->to == b->to);
312 }
313
314 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
315                     const char *fname);
316 static void     adopt(struct witness *parent, struct witness *child);
317 static int      blessed(struct witness *, struct witness *);
318 static void     depart(struct witness *w);
319 static struct witness   *enroll(const char *description,
320                             struct lock_class *lock_class);
321 static struct lock_instance     *find_instance(struct lock_list_entry *list,
322                                     const struct lock_object *lock);
323 static int      isitmychild(struct witness *parent, struct witness *child);
324 static int      isitmydescendant(struct witness *parent, struct witness *child);
325 static void     itismychild(struct witness *parent, struct witness *child);
326 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
327 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
328 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
329 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
330 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
331 #ifdef DDB
332 static void     witness_ddb_compute_levels(void);
333 static void     witness_ddb_display(int(*)(const char *fmt, ...));
334 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
335                     struct witness *, int indent);
336 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
337                     struct witness_list *list);
338 static void     witness_ddb_level_descendants(struct witness *parent, int l);
339 static void     witness_ddb_list(struct thread *td);
340 #endif
341 static void     witness_enter_debugger(const char *msg);
342 static void     witness_debugger(int cond, const char *msg);
343 static void     witness_free(struct witness *m);
344 static struct witness   *witness_get(void);
345 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
346 static struct witness   *witness_hash_get(const char *key);
347 static void     witness_hash_put(struct witness *w);
348 static void     witness_init_hash_tables(void);
349 static void     witness_increment_graph_generation(void);
350 static void     witness_lock_list_free(struct lock_list_entry *lle);
351 static struct lock_list_entry   *witness_lock_list_get(void);
352 static int      witness_lock_order_add(struct witness *parent,
353                     struct witness *child);
354 static int      witness_lock_order_check(struct witness *parent,
355                     struct witness *child);
356 static struct witness_lock_order_data   *witness_lock_order_get(
357                                             struct witness *parent,
358                                             struct witness *child);
359 static void     witness_list_lock(struct lock_instance *instance,
360                     int (*prnt)(const char *fmt, ...));
361 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
362 static int      witness_output_drain(void *arg __unused, const char *data,
363                     int len);
364 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
365 static void     witness_setflag(struct lock_object *lock, int flag, int set);
366
367 FEATURE(witness, "kernel has witness(9) support");
368
369 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
370     "Witness Locking");
371
372 /*
373  * If set to 0, lock order checking is disabled.  If set to -1,
374  * witness is completely disabled.  Otherwise witness performs full
375  * lock order checking for all locks.  At runtime, lock order checking
376  * may be toggled.  However, witness cannot be reenabled once it is
377  * completely disabled.
378  */
379 static int witness_watch = 1;
380 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
381     CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
382     sysctl_debug_witness_watch, "I",
383     "witness is watching lock operations");
384
385 #ifdef KDB
386 /*
387  * When KDB is enabled and witness_kdb is 1, it will cause the system
388  * to drop into kdebug() when:
389  *      - a lock hierarchy violation occurs
390  *      - locks are held when going to sleep.
391  */
392 #ifdef WITNESS_KDB
393 int     witness_kdb = 1;
394 #else
395 int     witness_kdb = 0;
396 #endif
397 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
398 #endif /* KDB */
399
400 #if defined(DDB) || defined(KDB)
401 /*
402  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
403  * to print a stack trace:
404  *      - a lock hierarchy violation occurs
405  *      - locks are held when going to sleep.
406  */
407 int     witness_trace = 1;
408 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
409 #endif /* DDB || KDB */
410
411 #ifdef WITNESS_SKIPSPIN
412 int     witness_skipspin = 1;
413 #else
414 int     witness_skipspin = 0;
415 #endif
416 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
417
418 int badstack_sbuf_size;
419
420 int witness_count = WITNESS_COUNT;
421 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
422     &witness_count, 0, "");
423
424 /*
425  * Output channel for witness messages.  By default we print to the console.
426  */
427 enum witness_channel {
428         WITNESS_CONSOLE,
429         WITNESS_LOG,
430         WITNESS_NONE,
431 };
432
433 static enum witness_channel witness_channel = WITNESS_CONSOLE;
434 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
435     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
436     sysctl_debug_witness_channel, "A",
437     "Output channel for warnings");
438
439 /*
440  * Call this to print out the relations between locks.
441  */
442 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
443     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
444     sysctl_debug_witness_fullgraph, "A",
445     "Show locks relation graphs");
446
447 /*
448  * Call this to print out the witness faulty stacks.
449  */
450 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
451     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
452     sysctl_debug_witness_badstacks, "A",
453     "Show bad witness stacks");
454
455 static struct mtx w_mtx;
456
457 /* w_list */
458 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
459 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
460
461 /* w_typelist */
462 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
463 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
464
465 /* lock list */
466 static struct lock_list_entry *w_lock_list_free = NULL;
467 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
468 static u_int pending_cnt;
469
470 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
471 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
472 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
473 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
474     "");
475
476 static struct witness *w_data;
477 static uint8_t **w_rmatrix;
478 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
479 static struct witness_hash w_hash;      /* The witness hash table. */
480
481 /* The lock order data hash */
482 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
483 static struct witness_lock_order_data *w_lofree = NULL;
484 static struct witness_lock_order_hash w_lohash;
485 static int w_max_used_index = 0;
486 static unsigned int w_generation = 0;
487 static const char w_notrunning[] = "Witness not running\n";
488 static const char w_stillcold[] = "Witness is still cold\n";
489 #ifdef __i386__
490 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
491 #endif
492
493 static struct witness_order_list_entry order_lists[] = {
494         /*
495          * sx locks
496          */
497         { "proctree", &lock_class_sx },
498         { "allproc", &lock_class_sx },
499         { "allprison", &lock_class_sx },
500         { NULL, NULL },
501         /*
502          * Various mutexes
503          */
504         { "Giant", &lock_class_mtx_sleep },
505         { "pipe mutex", &lock_class_mtx_sleep },
506         { "sigio lock", &lock_class_mtx_sleep },
507         { "process group", &lock_class_mtx_sleep },
508 #ifdef  HWPMC_HOOKS
509         { "pmc-sleep", &lock_class_mtx_sleep },
510 #endif
511         { "process lock", &lock_class_mtx_sleep },
512         { "session", &lock_class_mtx_sleep },
513         { "uidinfo hash", &lock_class_rw },
514         { "time lock", &lock_class_mtx_sleep },
515         { NULL, NULL },
516         /*
517          * umtx
518          */
519         { "umtx lock", &lock_class_mtx_sleep },
520         { NULL, NULL },
521         /*
522          * Sockets
523          */
524         { "accept", &lock_class_mtx_sleep },
525         { "so_snd", &lock_class_mtx_sleep },
526         { "so_rcv", &lock_class_mtx_sleep },
527         { "sellck", &lock_class_mtx_sleep },
528         { NULL, NULL },
529         /*
530          * Routing
531          */
532         { "so_rcv", &lock_class_mtx_sleep },
533         { "radix node head", &lock_class_rm },
534         { "ifaddr", &lock_class_mtx_sleep },
535         { NULL, NULL },
536         /*
537          * IPv4 multicast:
538          * protocol locks before interface locks, after UDP locks.
539          */
540         { "in_multi_sx", &lock_class_sx },
541         { "udpinp", &lock_class_rw },
542         { "in_multi_list_mtx", &lock_class_mtx_sleep },
543         { "igmp_mtx", &lock_class_mtx_sleep },
544         { "ifnet_rw", &lock_class_rw },
545         { "if_addr_lock", &lock_class_mtx_sleep },
546         { NULL, NULL },
547         /*
548          * IPv6 multicast:
549          * protocol locks before interface locks, after UDP locks.
550          */
551         { "in6_multi_sx", &lock_class_sx },
552         { "udpinp", &lock_class_rw },
553         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
554         { "mld_mtx", &lock_class_mtx_sleep },
555         { "ifnet_rw", &lock_class_rw },
556         { "if_addr_lock", &lock_class_mtx_sleep },
557         { NULL, NULL },
558         /*
559          * UNIX Domain Sockets
560          */
561         { "unp_link_rwlock", &lock_class_rw },
562         { "unp_list_lock", &lock_class_mtx_sleep },
563         { "unp", &lock_class_mtx_sleep },
564         { "so_snd", &lock_class_mtx_sleep },
565         { NULL, NULL },
566         /*
567          * UDP/IP
568          */
569         { "udp", &lock_class_mtx_sleep },
570         { "udpinp", &lock_class_rw },
571         { "so_snd", &lock_class_mtx_sleep },
572         { NULL, NULL },
573         /*
574          * TCP/IP
575          */
576         { "tcp", &lock_class_mtx_sleep },
577         { "tcpinp", &lock_class_rw },
578         { "so_snd", &lock_class_mtx_sleep },
579         { NULL, NULL },
580         /*
581          * BPF
582          */
583         { "bpf global lock", &lock_class_sx },
584         { "bpf cdev lock", &lock_class_mtx_sleep },
585         { NULL, NULL },
586         /*
587          * NFS server
588          */
589         { "nfsd_mtx", &lock_class_mtx_sleep },
590         { "so_snd", &lock_class_mtx_sleep },
591         { NULL, NULL },
592
593         /*
594          * IEEE 802.11
595          */
596         { "802.11 com lock", &lock_class_mtx_sleep},
597         { NULL, NULL },
598         /*
599          * Network drivers
600          */
601         { "network driver", &lock_class_mtx_sleep},
602         { NULL, NULL },
603
604         /*
605          * Netgraph
606          */
607         { "ng_node", &lock_class_mtx_sleep },
608         { "ng_worklist", &lock_class_mtx_sleep },
609         { NULL, NULL },
610         /*
611          * CDEV
612          */
613         { "vm map (system)", &lock_class_mtx_sleep },
614         { "vnode interlock", &lock_class_mtx_sleep },
615         { "cdev", &lock_class_mtx_sleep },
616         { "devthrd", &lock_class_mtx_sleep },
617         { NULL, NULL },
618         /*
619          * VM
620          */
621         { "vm map (user)", &lock_class_sx },
622         { "vm object", &lock_class_rw },
623         { "vm page", &lock_class_mtx_sleep },
624         { "pmap pv global", &lock_class_rw },
625         { "pmap", &lock_class_mtx_sleep },
626         { "pmap pv list", &lock_class_rw },
627         { "vm page free queue", &lock_class_mtx_sleep },
628         { "vm pagequeue", &lock_class_mtx_sleep },
629         { NULL, NULL },
630         /*
631          * kqueue/VFS interaction
632          */
633         { "kqueue", &lock_class_mtx_sleep },
634         { "struct mount mtx", &lock_class_mtx_sleep },
635         { "vnode interlock", &lock_class_mtx_sleep },
636         { NULL, NULL },
637         /*
638          * VFS namecache
639          */
640         { "ncvn", &lock_class_mtx_sleep },
641         { "ncbuc", &lock_class_mtx_sleep },
642         { "vnode interlock", &lock_class_mtx_sleep },
643         { "ncneg", &lock_class_mtx_sleep },
644         { NULL, NULL },
645         /*
646          * ZFS locking
647          */
648         { "dn->dn_mtx", &lock_class_sx },
649         { "dr->dt.di.dr_mtx", &lock_class_sx },
650         { "db->db_mtx", &lock_class_sx },
651         { NULL, NULL },
652         /*
653          * TCP log locks
654          */
655         { "TCP ID tree", &lock_class_rw },
656         { "tcp log id bucket", &lock_class_mtx_sleep },
657         { "tcpinp", &lock_class_rw },
658         { "TCP log expireq", &lock_class_mtx_sleep },
659         { NULL, NULL },
660         /*
661          * spin locks
662          */
663 #ifdef SMP
664         { "ap boot", &lock_class_mtx_spin },
665 #endif
666         { "rm.mutex_mtx", &lock_class_mtx_spin },
667         { "sio", &lock_class_mtx_spin },
668 #ifdef __i386__
669         { "cy", &lock_class_mtx_spin },
670 #endif
671         { "scc_hwmtx", &lock_class_mtx_spin },
672         { "uart_hwmtx", &lock_class_mtx_spin },
673         { "fast_taskqueue", &lock_class_mtx_spin },
674         { "intr table", &lock_class_mtx_spin },
675         { "process slock", &lock_class_mtx_spin },
676         { "syscons video lock", &lock_class_mtx_spin },
677         { "sleepq chain", &lock_class_mtx_spin },
678         { "rm_spinlock", &lock_class_mtx_spin },
679         { "turnstile chain", &lock_class_mtx_spin },
680         { "turnstile lock", &lock_class_mtx_spin },
681         { "sched lock", &lock_class_mtx_spin },
682         { "td_contested", &lock_class_mtx_spin },
683         { "callout", &lock_class_mtx_spin },
684         { "entropy harvest mutex", &lock_class_mtx_spin },
685 #ifdef SMP
686         { "smp rendezvous", &lock_class_mtx_spin },
687 #endif
688 #ifdef __powerpc__
689         { "tlb0", &lock_class_mtx_spin },
690 #endif
691         { NULL, NULL },
692         { "sched lock", &lock_class_mtx_spin },
693 #ifdef  HWPMC_HOOKS
694         { "pmc-per-proc", &lock_class_mtx_spin },
695 #endif
696         { NULL, NULL },
697         /*
698          * leaf locks
699          */
700         { "intrcnt", &lock_class_mtx_spin },
701         { "icu", &lock_class_mtx_spin },
702 #ifdef __i386__
703         { "allpmaps", &lock_class_mtx_spin },
704         { "descriptor tables", &lock_class_mtx_spin },
705 #endif
706         { "clk", &lock_class_mtx_spin },
707         { "cpuset", &lock_class_mtx_spin },
708         { "mprof lock", &lock_class_mtx_spin },
709         { "zombie lock", &lock_class_mtx_spin },
710         { "ALD Queue", &lock_class_mtx_spin },
711 #if defined(__i386__) || defined(__amd64__)
712         { "pcicfg", &lock_class_mtx_spin },
713         { "NDIS thread lock", &lock_class_mtx_spin },
714 #endif
715         { "tw_osl_io_lock", &lock_class_mtx_spin },
716         { "tw_osl_q_lock", &lock_class_mtx_spin },
717         { "tw_cl_io_lock", &lock_class_mtx_spin },
718         { "tw_cl_intr_lock", &lock_class_mtx_spin },
719         { "tw_cl_gen_lock", &lock_class_mtx_spin },
720 #ifdef  HWPMC_HOOKS
721         { "pmc-leaf", &lock_class_mtx_spin },
722 #endif
723         { "blocked lock", &lock_class_mtx_spin },
724         { NULL, NULL },
725         { NULL, NULL }
726 };
727
728 /*
729  * Pairs of locks which have been blessed.  Witness does not complain about
730  * order problems with blessed lock pairs.  Please do not add an entry to the
731  * table without an explanatory comment.
732  */
733 static struct witness_blessed blessed_list[] = {
734         /*
735          * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
736          * both lock orders, so a deadlock cannot happen as a result of this
737          * LOR.
738          */
739         { "dirhash",    "bufwait" },
740
741         /*
742          * A UFS vnode may be locked in vget() while a buffer belonging to the
743          * parent directory vnode is locked.
744          */
745         { "ufs",        "bufwait" },
746 };
747
748 /*
749  * This global is set to 0 once it becomes safe to use the witness code.
750  */
751 static int witness_cold = 1;
752
753 /*
754  * This global is set to 1 once the static lock orders have been enrolled
755  * so that a warning can be issued for any spin locks enrolled later.
756  */
757 static int witness_spin_warn = 0;
758
759 /* Trim useless garbage from filenames. */
760 static const char *
761 fixup_filename(const char *file)
762 {
763
764         if (file == NULL)
765                 return (NULL);
766         while (strncmp(file, "../", 3) == 0)
767                 file += 3;
768         return (file);
769 }
770
771 /*
772  * Calculate the size of early witness structures.
773  */
774 int
775 witness_startup_count(void)
776 {
777         int sz;
778
779         sz = sizeof(struct witness) * witness_count;
780         sz += sizeof(*w_rmatrix) * (witness_count + 1);
781         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
782             (witness_count + 1);
783
784         return (sz);
785 }
786
787 /*
788  * The WITNESS-enabled diagnostic code.  Note that the witness code does
789  * assume that the early boot is single-threaded at least until after this
790  * routine is completed.
791  */
792 void
793 witness_startup(void *mem)
794 {
795         struct lock_object *lock;
796         struct witness_order_list_entry *order;
797         struct witness *w, *w1;
798         uintptr_t p;
799         int i;
800
801         p = (uintptr_t)mem;
802         w_data = (void *)p;
803         p += sizeof(struct witness) * witness_count;
804
805         w_rmatrix = (void *)p;
806         p += sizeof(*w_rmatrix) * (witness_count + 1);
807
808         for (i = 0; i < witness_count + 1; i++) {
809                 w_rmatrix[i] = (void *)p;
810                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
811         }
812         badstack_sbuf_size = witness_count * 256;
813
814         /*
815          * We have to release Giant before initializing its witness
816          * structure so that WITNESS doesn't get confused.
817          */
818         mtx_unlock(&Giant);
819         mtx_assert(&Giant, MA_NOTOWNED);
820
821         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
822         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
823             MTX_NOWITNESS | MTX_NOPROFILE);
824         for (i = witness_count - 1; i >= 0; i--) {
825                 w = &w_data[i];
826                 memset(w, 0, sizeof(*w));
827                 w_data[i].w_index = i;  /* Witness index never changes. */
828                 witness_free(w);
829         }
830         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
831             ("%s: Invalid list of free witness objects", __func__));
832
833         /* Witness with index 0 is not used to aid in debugging. */
834         STAILQ_REMOVE_HEAD(&w_free, w_list);
835         w_free_cnt--;
836
837         for (i = 0; i < witness_count; i++) {
838                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
839                     (witness_count + 1));
840         }
841
842         for (i = 0; i < LOCK_CHILDCOUNT; i++)
843                 witness_lock_list_free(&w_locklistdata[i]);
844         witness_init_hash_tables();
845
846         /* First add in all the specified order lists. */
847         for (order = order_lists; order->w_name != NULL; order++) {
848                 w = enroll(order->w_name, order->w_class);
849                 if (w == NULL)
850                         continue;
851                 w->w_file = "order list";
852                 for (order++; order->w_name != NULL; order++) {
853                         w1 = enroll(order->w_name, order->w_class);
854                         if (w1 == NULL)
855                                 continue;
856                         w1->w_file = "order list";
857                         itismychild(w, w1);
858                         w = w1;
859                 }
860         }
861         witness_spin_warn = 1;
862
863         /* Iterate through all locks and add them to witness. */
864         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
865                 lock = pending_locks[i].wh_lock;
866                 KASSERT(lock->lo_flags & LO_WITNESS,
867                     ("%s: lock %s is on pending list but not LO_WITNESS",
868                     __func__, lock->lo_name));
869                 lock->lo_witness = enroll(pending_locks[i].wh_type,
870                     LOCK_CLASS(lock));
871         }
872
873         /* Mark the witness code as being ready for use. */
874         witness_cold = 0;
875
876         mtx_lock(&Giant);
877 }
878
879 void
880 witness_init(struct lock_object *lock, const char *type)
881 {
882         struct lock_class *class;
883
884         /* Various sanity checks. */
885         class = LOCK_CLASS(lock);
886         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
887             (class->lc_flags & LC_RECURSABLE) == 0)
888                 kassert_panic("%s: lock (%s) %s can not be recursable",
889                     __func__, class->lc_name, lock->lo_name);
890         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
891             (class->lc_flags & LC_SLEEPABLE) == 0)
892                 kassert_panic("%s: lock (%s) %s can not be sleepable",
893                     __func__, class->lc_name, lock->lo_name);
894         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
895             (class->lc_flags & LC_UPGRADABLE) == 0)
896                 kassert_panic("%s: lock (%s) %s can not be upgradable",
897                     __func__, class->lc_name, lock->lo_name);
898
899         /*
900          * If we shouldn't watch this lock, then just clear lo_witness.
901          * Otherwise, if witness_cold is set, then it is too early to
902          * enroll this lock, so defer it to witness_initialize() by adding
903          * it to the pending_locks list.  If it is not too early, then enroll
904          * the lock now.
905          */
906         if (witness_watch < 1 || KERNEL_PANICKED() ||
907             (lock->lo_flags & LO_WITNESS) == 0)
908                 lock->lo_witness = NULL;
909         else if (witness_cold) {
910                 pending_locks[pending_cnt].wh_lock = lock;
911                 pending_locks[pending_cnt++].wh_type = type;
912                 if (pending_cnt > WITNESS_PENDLIST)
913                         panic("%s: pending locks list is too small, "
914                             "increase WITNESS_PENDLIST\n",
915                             __func__);
916         } else
917                 lock->lo_witness = enroll(type, class);
918 }
919
920 void
921 witness_destroy(struct lock_object *lock)
922 {
923         struct lock_class *class;
924         struct witness *w;
925
926         class = LOCK_CLASS(lock);
927
928         if (witness_cold)
929                 panic("lock (%s) %s destroyed while witness_cold",
930                     class->lc_name, lock->lo_name);
931
932         /* XXX: need to verify that no one holds the lock */
933         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
934                 return;
935         w = lock->lo_witness;
936
937         mtx_lock_spin(&w_mtx);
938         MPASS(w->w_refcount > 0);
939         w->w_refcount--;
940
941         if (w->w_refcount == 0)
942                 depart(w);
943         mtx_unlock_spin(&w_mtx);
944 }
945
946 #ifdef DDB
947 static void
948 witness_ddb_compute_levels(void)
949 {
950         struct witness *w;
951
952         /*
953          * First clear all levels.
954          */
955         STAILQ_FOREACH(w, &w_all, w_list)
956                 w->w_ddb_level = -1;
957
958         /*
959          * Look for locks with no parents and level all their descendants.
960          */
961         STAILQ_FOREACH(w, &w_all, w_list) {
962                 /* If the witness has ancestors (is not a root), skip it. */
963                 if (w->w_num_ancestors > 0)
964                         continue;
965                 witness_ddb_level_descendants(w, 0);
966         }
967 }
968
969 static void
970 witness_ddb_level_descendants(struct witness *w, int l)
971 {
972         int i;
973
974         if (w->w_ddb_level >= l)
975                 return;
976
977         w->w_ddb_level = l;
978         l++;
979
980         for (i = 1; i <= w_max_used_index; i++) {
981                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
982                         witness_ddb_level_descendants(&w_data[i], l);
983         }
984 }
985
986 static void
987 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
988     struct witness *w, int indent)
989 {
990         int i;
991
992         for (i = 0; i < indent; i++)
993                 prnt(" ");
994         prnt("%s (type: %s, depth: %d, active refs: %d)",
995              w->w_name, w->w_class->lc_name,
996              w->w_ddb_level, w->w_refcount);
997         if (w->w_displayed) {
998                 prnt(" -- (already displayed)\n");
999                 return;
1000         }
1001         w->w_displayed = 1;
1002         if (w->w_file != NULL && w->w_line != 0)
1003                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1004                     w->w_line);
1005         else
1006                 prnt(" -- never acquired\n");
1007         indent++;
1008         WITNESS_INDEX_ASSERT(w->w_index);
1009         for (i = 1; i <= w_max_used_index; i++) {
1010                 if (db_pager_quit)
1011                         return;
1012                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1013                         witness_ddb_display_descendants(prnt, &w_data[i],
1014                             indent);
1015         }
1016 }
1017
1018 static void
1019 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1020     struct witness_list *list)
1021 {
1022         struct witness *w;
1023
1024         STAILQ_FOREACH(w, list, w_typelist) {
1025                 if (w->w_file == NULL || w->w_ddb_level > 0)
1026                         continue;
1027
1028                 /* This lock has no anscestors - display its descendants. */
1029                 witness_ddb_display_descendants(prnt, w, 0);
1030                 if (db_pager_quit)
1031                         return;
1032         }
1033 }
1034
1035 static void
1036 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1037 {
1038         struct witness *w;
1039
1040         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1041         witness_ddb_compute_levels();
1042
1043         /* Clear all the displayed flags. */
1044         STAILQ_FOREACH(w, &w_all, w_list)
1045                 w->w_displayed = 0;
1046
1047         /*
1048          * First, handle sleep locks which have been acquired at least
1049          * once.
1050          */
1051         prnt("Sleep locks:\n");
1052         witness_ddb_display_list(prnt, &w_sleep);
1053         if (db_pager_quit)
1054                 return;
1055
1056         /*
1057          * Now do spin locks which have been acquired at least once.
1058          */
1059         prnt("\nSpin locks:\n");
1060         witness_ddb_display_list(prnt, &w_spin);
1061         if (db_pager_quit)
1062                 return;
1063
1064         /*
1065          * Finally, any locks which have not been acquired yet.
1066          */
1067         prnt("\nLocks which were never acquired:\n");
1068         STAILQ_FOREACH(w, &w_all, w_list) {
1069                 if (w->w_file != NULL || w->w_refcount == 0)
1070                         continue;
1071                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1072                     w->w_class->lc_name, w->w_ddb_level);
1073                 if (db_pager_quit)
1074                         return;
1075         }
1076 }
1077 #endif /* DDB */
1078
1079 int
1080 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1081 {
1082
1083         if (witness_watch == -1 || KERNEL_PANICKED())
1084                 return (0);
1085
1086         /* Require locks that witness knows about. */
1087         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1088             lock2->lo_witness == NULL)
1089                 return (EINVAL);
1090
1091         mtx_assert(&w_mtx, MA_NOTOWNED);
1092         mtx_lock_spin(&w_mtx);
1093
1094         /*
1095          * If we already have either an explicit or implied lock order that
1096          * is the other way around, then return an error.
1097          */
1098         if (witness_watch &&
1099             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1100                 mtx_unlock_spin(&w_mtx);
1101                 return (EDOOFUS);
1102         }
1103
1104         /* Try to add the new order. */
1105         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1106             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1107         itismychild(lock1->lo_witness, lock2->lo_witness);
1108         mtx_unlock_spin(&w_mtx);
1109         return (0);
1110 }
1111
1112 void
1113 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1114     int line, struct lock_object *interlock)
1115 {
1116         struct lock_list_entry *lock_list, *lle;
1117         struct lock_instance *lock1, *lock2, *plock;
1118         struct lock_class *class, *iclass;
1119         struct witness *w, *w1;
1120         struct thread *td;
1121         int i, j;
1122
1123         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1124             KERNEL_PANICKED())
1125                 return;
1126
1127         w = lock->lo_witness;
1128         class = LOCK_CLASS(lock);
1129         td = curthread;
1130
1131         if (class->lc_flags & LC_SLEEPLOCK) {
1132                 /*
1133                  * Since spin locks include a critical section, this check
1134                  * implicitly enforces a lock order of all sleep locks before
1135                  * all spin locks.
1136                  */
1137                 if (td->td_critnest != 0 && !kdb_active)
1138                         kassert_panic("acquiring blockable sleep lock with "
1139                             "spinlock or critical section held (%s) %s @ %s:%d",
1140                             class->lc_name, lock->lo_name,
1141                             fixup_filename(file), line);
1142
1143                 /*
1144                  * If this is the first lock acquired then just return as
1145                  * no order checking is needed.
1146                  */
1147                 lock_list = td->td_sleeplocks;
1148                 if (lock_list == NULL || lock_list->ll_count == 0)
1149                         return;
1150         } else {
1151                 /*
1152                  * If this is the first lock, just return as no order
1153                  * checking is needed.  Avoid problems with thread
1154                  * migration pinning the thread while checking if
1155                  * spinlocks are held.  If at least one spinlock is held
1156                  * the thread is in a safe path and it is allowed to
1157                  * unpin it.
1158                  */
1159                 sched_pin();
1160                 lock_list = PCPU_GET(spinlocks);
1161                 if (lock_list == NULL || lock_list->ll_count == 0) {
1162                         sched_unpin();
1163                         return;
1164                 }
1165                 sched_unpin();
1166         }
1167
1168         /*
1169          * Check to see if we are recursing on a lock we already own.  If
1170          * so, make sure that we don't mismatch exclusive and shared lock
1171          * acquires.
1172          */
1173         lock1 = find_instance(lock_list, lock);
1174         if (lock1 != NULL) {
1175                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1176                     (flags & LOP_EXCLUSIVE) == 0) {
1177                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1178                             class->lc_name, lock->lo_name,
1179                             fixup_filename(file), line);
1180                         witness_output("while exclusively locked from %s:%d\n",
1181                             fixup_filename(lock1->li_file), lock1->li_line);
1182                         kassert_panic("excl->share");
1183                 }
1184                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1185                     (flags & LOP_EXCLUSIVE) != 0) {
1186                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1187                             class->lc_name, lock->lo_name,
1188                             fixup_filename(file), line);
1189                         witness_output("while share locked from %s:%d\n",
1190                             fixup_filename(lock1->li_file), lock1->li_line);
1191                         kassert_panic("share->excl");
1192                 }
1193                 return;
1194         }
1195
1196         /* Warn if the interlock is not locked exactly once. */
1197         if (interlock != NULL) {
1198                 iclass = LOCK_CLASS(interlock);
1199                 lock1 = find_instance(lock_list, interlock);
1200                 if (lock1 == NULL)
1201                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1202                             iclass->lc_name, interlock->lo_name,
1203                             fixup_filename(file), line);
1204                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1205                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1206                             iclass->lc_name, interlock->lo_name,
1207                             fixup_filename(file), line);
1208         }
1209
1210         /*
1211          * Find the previously acquired lock, but ignore interlocks.
1212          */
1213         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1214         if (interlock != NULL && plock->li_lock == interlock) {
1215                 if (lock_list->ll_count > 1)
1216                         plock =
1217                             &lock_list->ll_children[lock_list->ll_count - 2];
1218                 else {
1219                         lle = lock_list->ll_next;
1220
1221                         /*
1222                          * The interlock is the only lock we hold, so
1223                          * simply return.
1224                          */
1225                         if (lle == NULL)
1226                                 return;
1227                         plock = &lle->ll_children[lle->ll_count - 1];
1228                 }
1229         }
1230
1231         /*
1232          * Try to perform most checks without a lock.  If this succeeds we
1233          * can skip acquiring the lock and return success.  Otherwise we redo
1234          * the check with the lock held to handle races with concurrent updates.
1235          */
1236         w1 = plock->li_lock->lo_witness;
1237         if (witness_lock_order_check(w1, w))
1238                 return;
1239
1240         mtx_lock_spin(&w_mtx);
1241         if (witness_lock_order_check(w1, w)) {
1242                 mtx_unlock_spin(&w_mtx);
1243                 return;
1244         }
1245         witness_lock_order_add(w1, w);
1246
1247         /*
1248          * Check for duplicate locks of the same type.  Note that we only
1249          * have to check for this on the last lock we just acquired.  Any
1250          * other cases will be caught as lock order violations.
1251          */
1252         if (w1 == w) {
1253                 i = w->w_index;
1254                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1255                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1256                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1257                         w->w_reversed = 1;
1258                         mtx_unlock_spin(&w_mtx);
1259                         witness_output(
1260                             "acquiring duplicate lock of same type: \"%s\"\n", 
1261                             w->w_name);
1262                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1263                             fixup_filename(plock->li_file), plock->li_line);
1264                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1265                             fixup_filename(file), line);
1266                         witness_debugger(1, __func__);
1267                 } else
1268                         mtx_unlock_spin(&w_mtx);
1269                 return;
1270         }
1271         mtx_assert(&w_mtx, MA_OWNED);
1272
1273         /*
1274          * If we know that the lock we are acquiring comes after
1275          * the lock we most recently acquired in the lock order tree,
1276          * then there is no need for any further checks.
1277          */
1278         if (isitmychild(w1, w))
1279                 goto out;
1280
1281         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1282                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1283                         struct stack pstack;
1284                         bool pstackv, trace;
1285
1286                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1287                         lock1 = &lle->ll_children[i];
1288
1289                         /*
1290                          * Ignore the interlock.
1291                          */
1292                         if (interlock == lock1->li_lock)
1293                                 continue;
1294
1295                         /*
1296                          * If this lock doesn't undergo witness checking,
1297                          * then skip it.
1298                          */
1299                         w1 = lock1->li_lock->lo_witness;
1300                         if (w1 == NULL) {
1301                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1302                                     ("lock missing witness structure"));
1303                                 continue;
1304                         }
1305
1306                         /*
1307                          * If we are locking Giant and this is a sleepable
1308                          * lock, then skip it.
1309                          */
1310                         if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1311                             lock == &Giant.lock_object)
1312                                 continue;
1313
1314                         /*
1315                          * If we are locking a sleepable lock and this lock
1316                          * is Giant, then skip it.
1317                          */
1318                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1319                             (flags & LOP_NOSLEEP) == 0 &&
1320                             lock1->li_lock == &Giant.lock_object)
1321                                 continue;
1322
1323                         /*
1324                          * If we are locking a sleepable lock and this lock
1325                          * isn't sleepable, we want to treat it as a lock
1326                          * order violation to enfore a general lock order of
1327                          * sleepable locks before non-sleepable locks.
1328                          */
1329                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1330                             (flags & LOP_NOSLEEP) == 0 &&
1331                             (lock1->li_flags & LI_SLEEPABLE) == 0)
1332                                 goto reversal;
1333
1334                         /*
1335                          * If we are locking Giant and this is a non-sleepable
1336                          * lock, then treat it as a reversal.
1337                          */
1338                         if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1339                             lock == &Giant.lock_object)
1340                                 goto reversal;
1341
1342                         /*
1343                          * Check the lock order hierarchy for a reveresal.
1344                          */
1345                         if (!isitmydescendant(w, w1))
1346                                 continue;
1347                 reversal:
1348
1349                         /*
1350                          * We have a lock order violation, check to see if it
1351                          * is allowed or has already been yelled about.
1352                          */
1353
1354                         /* Bail if this violation is known */
1355                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1356                                 goto out;
1357
1358                         /* Record this as a violation */
1359                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1360                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1361                         w->w_reversed = w1->w_reversed = 1;
1362                         witness_increment_graph_generation();
1363
1364                         /*
1365                          * If the lock order is blessed, bail before logging
1366                          * anything.  We don't look for other lock order
1367                          * violations though, which may be a bug.
1368                          */
1369                         if (blessed(w, w1))
1370                                 goto out;
1371
1372                         trace = atomic_load_int(&witness_trace);
1373                         if (trace) {
1374                                 struct witness_lock_order_data *data;
1375
1376                                 pstackv = false;
1377                                 data = witness_lock_order_get(w, w1);
1378                                 if (data != NULL) {
1379                                         stack_copy(&data->wlod_stack,
1380                                             &pstack);
1381                                         pstackv = true;
1382                                 }
1383                         }
1384                         mtx_unlock_spin(&w_mtx);
1385
1386 #ifdef WITNESS_NO_VNODE
1387                         /*
1388                          * There are known LORs between VNODE locks. They are
1389                          * not an indication of a bug. VNODE locks are flagged
1390                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1391                          * is between 2 VNODE locks.
1392                          */
1393                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1394                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1395                                 return;
1396 #endif
1397
1398                         /*
1399                          * Ok, yell about it.
1400                          */
1401                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1402                             (flags & LOP_NOSLEEP) == 0 &&
1403                             (lock1->li_flags & LI_SLEEPABLE) == 0)
1404                                 witness_output(
1405                 "lock order reversal: (sleepable after non-sleepable)\n");
1406                         else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1407                             && lock == &Giant.lock_object)
1408                                 witness_output(
1409                 "lock order reversal: (Giant after non-sleepable)\n");
1410                         else
1411                                 witness_output("lock order reversal:\n");
1412
1413                         /*
1414                          * Try to locate an earlier lock with
1415                          * witness w in our list.
1416                          */
1417                         do {
1418                                 lock2 = &lle->ll_children[i];
1419                                 MPASS(lock2->li_lock != NULL);
1420                                 if (lock2->li_lock->lo_witness == w)
1421                                         break;
1422                                 if (i == 0 && lle->ll_next != NULL) {
1423                                         lle = lle->ll_next;
1424                                         i = lle->ll_count - 1;
1425                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1426                                 } else
1427                                         i--;
1428                         } while (i >= 0);
1429                         if (i < 0) {
1430                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1431                                     lock1->li_lock, lock1->li_lock->lo_name,
1432                                     w1->w_name, w1->w_class->lc_name,
1433                                     fixup_filename(lock1->li_file),
1434                                     lock1->li_line);
1435                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1436                                     lock, lock->lo_name, w->w_name,
1437                                     w->w_class->lc_name, fixup_filename(file),
1438                                     line);
1439                         } else {
1440                                 struct witness *w2 = lock2->li_lock->lo_witness;
1441
1442                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1443                                     lock2->li_lock, lock2->li_lock->lo_name,
1444                                     w2->w_name, w2->w_class->lc_name,
1445                                     fixup_filename(lock2->li_file),
1446                                     lock2->li_line);
1447                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1448                                     lock1->li_lock, lock1->li_lock->lo_name,
1449                                     w1->w_name, w1->w_class->lc_name,
1450                                     fixup_filename(lock1->li_file),
1451                                     lock1->li_line);
1452                                 witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
1453                                     lock->lo_name, w->w_name,
1454                                     w->w_class->lc_name, fixup_filename(file),
1455                                     line);
1456                         }
1457                         if (trace) {
1458                                 char buf[64];
1459                                 struct sbuf sb;
1460
1461                                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1462                                 sbuf_set_drain(&sb, witness_output_drain,
1463                                     NULL);
1464
1465                                 if (pstackv) {
1466                                         sbuf_printf(&sb,
1467                                     "lock order %s -> %s established at:\n",
1468                                             w->w_name, w1->w_name);
1469                                         stack_sbuf_print_flags(&sb, &pstack,
1470                                             M_NOWAIT, STACK_SBUF_FMT_LONG);
1471                                 }
1472
1473                                 sbuf_printf(&sb,
1474                                     "lock order %s -> %s attempted at:\n",
1475                                     w1->w_name, w->w_name);
1476                                 stack_save(&pstack);
1477                                 stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
1478                                     STACK_SBUF_FMT_LONG);
1479
1480                                 sbuf_finish(&sb);
1481                                 sbuf_delete(&sb);
1482                         }
1483                         witness_enter_debugger(__func__);
1484                         return;
1485                 }
1486         }
1487
1488         /*
1489          * If requested, build a new lock order.  However, don't build a new
1490          * relationship between a sleepable lock and Giant if it is in the
1491          * wrong direction.  The correct lock order is that sleepable locks
1492          * always come before Giant.
1493          */
1494         if (flags & LOP_NEWORDER &&
1495             !(plock->li_lock == &Giant.lock_object &&
1496             (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1497             (flags & LOP_NOSLEEP) == 0)) {
1498                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1499                     w->w_name, plock->li_lock->lo_witness->w_name);
1500                 itismychild(plock->li_lock->lo_witness, w);
1501         }
1502 out:
1503         mtx_unlock_spin(&w_mtx);
1504 }
1505
1506 void
1507 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1508 {
1509         struct lock_list_entry **lock_list, *lle;
1510         struct lock_instance *instance;
1511         struct witness *w;
1512         struct thread *td;
1513
1514         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1515             KERNEL_PANICKED())
1516                 return;
1517         w = lock->lo_witness;
1518         td = curthread;
1519
1520         /* Determine lock list for this lock. */
1521         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1522                 lock_list = &td->td_sleeplocks;
1523         else
1524                 lock_list = PCPU_PTR(spinlocks);
1525
1526         /* Check to see if we are recursing on a lock we already own. */
1527         instance = find_instance(*lock_list, lock);
1528         if (instance != NULL) {
1529                 instance->li_flags++;
1530                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1531                     td->td_proc->p_pid, lock->lo_name,
1532                     instance->li_flags & LI_RECURSEMASK);
1533                 instance->li_file = file;
1534                 instance->li_line = line;
1535                 return;
1536         }
1537
1538         /* Update per-witness last file and line acquire. */
1539         w->w_file = file;
1540         w->w_line = line;
1541
1542         /* Find the next open lock instance in the list and fill it. */
1543         lle = *lock_list;
1544         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1545                 lle = witness_lock_list_get();
1546                 if (lle == NULL)
1547                         return;
1548                 lle->ll_next = *lock_list;
1549                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1550                     td->td_proc->p_pid, lle);
1551                 *lock_list = lle;
1552         }
1553         instance = &lle->ll_children[lle->ll_count++];
1554         instance->li_lock = lock;
1555         instance->li_line = line;
1556         instance->li_file = file;
1557         instance->li_flags = 0;
1558         if ((flags & LOP_EXCLUSIVE) != 0)
1559                 instance->li_flags |= LI_EXCLUSIVE;
1560         if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1561                 instance->li_flags |= LI_SLEEPABLE;
1562         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1563             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1564 }
1565
1566 void
1567 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1568 {
1569         struct lock_instance *instance;
1570         struct lock_class *class;
1571
1572         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1573         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1574                 return;
1575         class = LOCK_CLASS(lock);
1576         if (witness_watch) {
1577                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1578                         kassert_panic(
1579                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1580                             class->lc_name, lock->lo_name,
1581                             fixup_filename(file), line);
1582                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1583                         kassert_panic(
1584                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1585                             class->lc_name, lock->lo_name,
1586                             fixup_filename(file), line);
1587         }
1588         instance = find_instance(curthread->td_sleeplocks, lock);
1589         if (instance == NULL) {
1590                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1591                     class->lc_name, lock->lo_name,
1592                     fixup_filename(file), line);
1593                 return;
1594         }
1595         if (witness_watch) {
1596                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1597                         kassert_panic(
1598                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1599                             class->lc_name, lock->lo_name,
1600                             fixup_filename(file), line);
1601                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1602                         kassert_panic(
1603                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1604                             class->lc_name, lock->lo_name,
1605                             instance->li_flags & LI_RECURSEMASK,
1606                             fixup_filename(file), line);
1607         }
1608         instance->li_flags |= LI_EXCLUSIVE;
1609 }
1610
1611 void
1612 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1613     int line)
1614 {
1615         struct lock_instance *instance;
1616         struct lock_class *class;
1617
1618         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1619         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1620                 return;
1621         class = LOCK_CLASS(lock);
1622         if (witness_watch) {
1623                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1624                         kassert_panic(
1625                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1626                             class->lc_name, lock->lo_name,
1627                             fixup_filename(file), line);
1628                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1629                         kassert_panic(
1630                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1631                             class->lc_name, lock->lo_name,
1632                             fixup_filename(file), line);
1633         }
1634         instance = find_instance(curthread->td_sleeplocks, lock);
1635         if (instance == NULL) {
1636                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1637                     class->lc_name, lock->lo_name,
1638                     fixup_filename(file), line);
1639                 return;
1640         }
1641         if (witness_watch) {
1642                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1643                         kassert_panic(
1644                             "downgrade of shared lock (%s) %s @ %s:%d",
1645                             class->lc_name, lock->lo_name,
1646                             fixup_filename(file), line);
1647                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1648                         kassert_panic(
1649                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1650                             class->lc_name, lock->lo_name,
1651                             instance->li_flags & LI_RECURSEMASK,
1652                             fixup_filename(file), line);
1653         }
1654         instance->li_flags &= ~LI_EXCLUSIVE;
1655 }
1656
1657 void
1658 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1659 {
1660         struct lock_list_entry **lock_list, *lle;
1661         struct lock_instance *instance;
1662         struct lock_class *class;
1663         struct thread *td;
1664         register_t s;
1665         int i, j;
1666
1667         if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1668                 return;
1669         td = curthread;
1670         class = LOCK_CLASS(lock);
1671
1672         /* Find lock instance associated with this lock. */
1673         if (class->lc_flags & LC_SLEEPLOCK)
1674                 lock_list = &td->td_sleeplocks;
1675         else
1676                 lock_list = PCPU_PTR(spinlocks);
1677         lle = *lock_list;
1678         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1679                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1680                         instance = &(*lock_list)->ll_children[i];
1681                         if (instance->li_lock == lock)
1682                                 goto found;
1683                 }
1684
1685         /*
1686          * When disabling WITNESS through witness_watch we could end up in
1687          * having registered locks in the td_sleeplocks queue.
1688          * We have to make sure we flush these queues, so just search for
1689          * eventual register locks and remove them.
1690          */
1691         if (witness_watch > 0) {
1692                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1693                     lock->lo_name, fixup_filename(file), line);
1694                 return;
1695         } else {
1696                 return;
1697         }
1698 found:
1699
1700         /* First, check for shared/exclusive mismatches. */
1701         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1702             (flags & LOP_EXCLUSIVE) == 0) {
1703                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1704                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1705                 witness_output("while exclusively locked from %s:%d\n",
1706                     fixup_filename(instance->li_file), instance->li_line);
1707                 kassert_panic("excl->ushare");
1708         }
1709         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1710             (flags & LOP_EXCLUSIVE) != 0) {
1711                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1712                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1713                 witness_output("while share locked from %s:%d\n",
1714                     fixup_filename(instance->li_file),
1715                     instance->li_line);
1716                 kassert_panic("share->uexcl");
1717         }
1718         /* If we are recursed, unrecurse. */
1719         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1720                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1721                     td->td_proc->p_pid, instance->li_lock->lo_name,
1722                     instance->li_flags);
1723                 instance->li_flags--;
1724                 return;
1725         }
1726         /* The lock is now being dropped, check for NORELEASE flag */
1727         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1728                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1729                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1730                 kassert_panic("lock marked norelease");
1731         }
1732
1733         /* Otherwise, remove this item from the list. */
1734         s = intr_disable();
1735         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1736             td->td_proc->p_pid, instance->li_lock->lo_name,
1737             (*lock_list)->ll_count - 1);
1738         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1739                 (*lock_list)->ll_children[j] =
1740                     (*lock_list)->ll_children[j + 1];
1741         (*lock_list)->ll_count--;
1742         intr_restore(s);
1743
1744         /*
1745          * In order to reduce contention on w_mtx, we want to keep always an
1746          * head object into lists so that frequent allocation from the 
1747          * free witness pool (and subsequent locking) is avoided.
1748          * In order to maintain the current code simple, when the head
1749          * object is totally unloaded it means also that we do not have
1750          * further objects in the list, so the list ownership needs to be
1751          * hand over to another object if the current head needs to be freed.
1752          */
1753         if ((*lock_list)->ll_count == 0) {
1754                 if (*lock_list == lle) {
1755                         if (lle->ll_next == NULL)
1756                                 return;
1757                 } else
1758                         lle = *lock_list;
1759                 *lock_list = lle->ll_next;
1760                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1761                     td->td_proc->p_pid, lle);
1762                 witness_lock_list_free(lle);
1763         }
1764 }
1765
1766 void
1767 witness_thread_exit(struct thread *td)
1768 {
1769         struct lock_list_entry *lle;
1770         int i, n;
1771
1772         lle = td->td_sleeplocks;
1773         if (lle == NULL || KERNEL_PANICKED())
1774                 return;
1775         if (lle->ll_count != 0) {
1776                 for (n = 0; lle != NULL; lle = lle->ll_next)
1777                         for (i = lle->ll_count - 1; i >= 0; i--) {
1778                                 if (n == 0)
1779                                         witness_output(
1780                     "Thread %p exiting with the following locks held:\n", td);
1781                                 n++;
1782                                 witness_list_lock(&lle->ll_children[i],
1783                                     witness_output);
1784                                 
1785                         }
1786                 kassert_panic(
1787                     "Thread %p cannot exit while holding sleeplocks\n", td);
1788         }
1789         witness_lock_list_free(lle);
1790 }
1791
1792 /*
1793  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1794  * exempt Giant and sleepable locks from the checks as well.  If any
1795  * non-exempt locks are held, then a supplied message is printed to the
1796  * output channel along with a list of the offending locks.  If indicated in the
1797  * flags then a failure results in a panic as well.
1798  */
1799 int
1800 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1801 {
1802         struct lock_list_entry *lock_list, *lle;
1803         struct lock_instance *lock1;
1804         struct thread *td;
1805         va_list ap;
1806         int i, n;
1807
1808         if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1809                 return (0);
1810         n = 0;
1811         td = curthread;
1812         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1813                 for (i = lle->ll_count - 1; i >= 0; i--) {
1814                         lock1 = &lle->ll_children[i];
1815                         if (lock1->li_lock == lock)
1816                                 continue;
1817                         if (flags & WARN_GIANTOK &&
1818                             lock1->li_lock == &Giant.lock_object)
1819                                 continue;
1820                         if (flags & WARN_SLEEPOK &&
1821                             (lock1->li_flags & LI_SLEEPABLE) != 0)
1822                                 continue;
1823                         if (n == 0) {
1824                                 va_start(ap, fmt);
1825                                 vprintf(fmt, ap);
1826                                 va_end(ap);
1827                                 printf(" with the following %slocks held:\n",
1828                                     (flags & WARN_SLEEPOK) != 0 ?
1829                                     "non-sleepable " : "");
1830                         }
1831                         n++;
1832                         witness_list_lock(lock1, printf);
1833                 }
1834
1835         /*
1836          * Pin the thread in order to avoid problems with thread migration.
1837          * Once that all verifies are passed about spinlocks ownership,
1838          * the thread is in a safe path and it can be unpinned.
1839          */
1840         sched_pin();
1841         lock_list = PCPU_GET(spinlocks);
1842         if (lock_list != NULL && lock_list->ll_count != 0) {
1843                 sched_unpin();
1844
1845                 /*
1846                  * We should only have one spinlock and as long as
1847                  * the flags cannot match for this locks class,
1848                  * check if the first spinlock is the one curthread
1849                  * should hold.
1850                  */
1851                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1852                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1853                     lock1->li_lock == lock && n == 0)
1854                         return (0);
1855
1856                 va_start(ap, fmt);
1857                 vprintf(fmt, ap);
1858                 va_end(ap);
1859                 printf(" with the following %slocks held:\n",
1860                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1861                 n += witness_list_locks(&lock_list, printf);
1862         } else
1863                 sched_unpin();
1864         if (flags & WARN_PANIC && n)
1865                 kassert_panic("%s", __func__);
1866         else
1867                 witness_debugger(n, __func__);
1868         return (n);
1869 }
1870
1871 const char *
1872 witness_file(struct lock_object *lock)
1873 {
1874         struct witness *w;
1875
1876         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1877                 return ("?");
1878         w = lock->lo_witness;
1879         return (w->w_file);
1880 }
1881
1882 int
1883 witness_line(struct lock_object *lock)
1884 {
1885         struct witness *w;
1886
1887         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1888                 return (0);
1889         w = lock->lo_witness;
1890         return (w->w_line);
1891 }
1892
1893 static struct witness *
1894 enroll(const char *description, struct lock_class *lock_class)
1895 {
1896         struct witness *w;
1897
1898         MPASS(description != NULL);
1899
1900         if (witness_watch == -1 || KERNEL_PANICKED())
1901                 return (NULL);
1902         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1903                 if (witness_skipspin)
1904                         return (NULL);
1905         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1906                 kassert_panic("lock class %s is not sleep or spin",
1907                     lock_class->lc_name);
1908                 return (NULL);
1909         }
1910
1911         mtx_lock_spin(&w_mtx);
1912         w = witness_hash_get(description);
1913         if (w)
1914                 goto found;
1915         if ((w = witness_get()) == NULL)
1916                 return (NULL);
1917         MPASS(strlen(description) < MAX_W_NAME);
1918         strcpy(w->w_name, description);
1919         w->w_class = lock_class;
1920         w->w_refcount = 1;
1921         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1922         if (lock_class->lc_flags & LC_SPINLOCK) {
1923                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1924                 w_spin_cnt++;
1925         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1926                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1927                 w_sleep_cnt++;
1928         }
1929
1930         /* Insert new witness into the hash */
1931         witness_hash_put(w);
1932         witness_increment_graph_generation();
1933         mtx_unlock_spin(&w_mtx);
1934         return (w);
1935 found:
1936         w->w_refcount++;
1937         if (w->w_refcount == 1)
1938                 w->w_class = lock_class;
1939         mtx_unlock_spin(&w_mtx);
1940         if (lock_class != w->w_class)
1941                 kassert_panic(
1942                     "lock (%s) %s does not match earlier (%s) lock",
1943                     description, lock_class->lc_name,
1944                     w->w_class->lc_name);
1945         return (w);
1946 }
1947
1948 static void
1949 depart(struct witness *w)
1950 {
1951
1952         MPASS(w->w_refcount == 0);
1953         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1954                 w_sleep_cnt--;
1955         } else {
1956                 w_spin_cnt--;
1957         }
1958         /*
1959          * Set file to NULL as it may point into a loadable module.
1960          */
1961         w->w_file = NULL;
1962         w->w_line = 0;
1963         witness_increment_graph_generation();
1964 }
1965
1966 static void
1967 adopt(struct witness *parent, struct witness *child)
1968 {
1969         int pi, ci, i, j;
1970
1971         if (witness_cold == 0)
1972                 mtx_assert(&w_mtx, MA_OWNED);
1973
1974         /* If the relationship is already known, there's no work to be done. */
1975         if (isitmychild(parent, child))
1976                 return;
1977
1978         /* When the structure of the graph changes, bump up the generation. */
1979         witness_increment_graph_generation();
1980
1981         /*
1982          * The hard part ... create the direct relationship, then propagate all
1983          * indirect relationships.
1984          */
1985         pi = parent->w_index;
1986         ci = child->w_index;
1987         WITNESS_INDEX_ASSERT(pi);
1988         WITNESS_INDEX_ASSERT(ci);
1989         MPASS(pi != ci);
1990         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1991         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1992
1993         /*
1994          * If parent was not already an ancestor of child,
1995          * then we increment the descendant and ancestor counters.
1996          */
1997         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1998                 parent->w_num_descendants++;
1999                 child->w_num_ancestors++;
2000         }
2001
2002         /* 
2003          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
2004          * an ancestor of 'pi' during this loop.
2005          */
2006         for (i = 1; i <= w_max_used_index; i++) {
2007                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
2008                     (i != pi))
2009                         continue;
2010
2011                 /* Find each descendant of 'i' and mark it as a descendant. */
2012                 for (j = 1; j <= w_max_used_index; j++) {
2013                         /* 
2014                          * Skip children that are already marked as
2015                          * descendants of 'i'.
2016                          */
2017                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
2018                                 continue;
2019
2020                         /*
2021                          * We are only interested in descendants of 'ci'. Note
2022                          * that 'ci' itself is counted as a descendant of 'ci'.
2023                          */
2024                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
2025                             (j != ci))
2026                                 continue;
2027                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
2028                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
2029                         w_data[i].w_num_descendants++;
2030                         w_data[j].w_num_ancestors++;
2031
2032                         /* 
2033                          * Make sure we aren't marking a node as both an
2034                          * ancestor and descendant. We should have caught 
2035                          * this as a lock order reversal earlier.
2036                          */
2037                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
2038                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
2039                                 printf("witness rmatrix paradox! [%d][%d]=%d "
2040                                     "both ancestor and descendant\n",
2041                                     i, j, w_rmatrix[i][j]); 
2042                                 kdb_backtrace();
2043                                 printf("Witness disabled.\n");
2044                                 witness_watch = -1;
2045                         }
2046                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2047                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2048                                 printf("witness rmatrix paradox! [%d][%d]=%d "
2049                                     "both ancestor and descendant\n",
2050                                     j, i, w_rmatrix[j][i]); 
2051                                 kdb_backtrace();
2052                                 printf("Witness disabled.\n");
2053                                 witness_watch = -1;
2054                         }
2055                 }
2056         }
2057 }
2058
2059 static void
2060 itismychild(struct witness *parent, struct witness *child)
2061 {
2062         int unlocked;
2063
2064         MPASS(child != NULL && parent != NULL);
2065         if (witness_cold == 0)
2066                 mtx_assert(&w_mtx, MA_OWNED);
2067
2068         if (!witness_lock_type_equal(parent, child)) {
2069                 if (witness_cold == 0) {
2070                         unlocked = 1;
2071                         mtx_unlock_spin(&w_mtx);
2072                 } else {
2073                         unlocked = 0;
2074                 }
2075                 kassert_panic(
2076                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2077                     "the same lock type", __func__, parent->w_name,
2078                     parent->w_class->lc_name, child->w_name,
2079                     child->w_class->lc_name);
2080                 if (unlocked)
2081                         mtx_lock_spin(&w_mtx);
2082         }
2083         adopt(parent, child);
2084 }
2085
2086 /*
2087  * Generic code for the isitmy*() functions. The rmask parameter is the
2088  * expected relationship of w1 to w2.
2089  */
2090 static int
2091 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2092 {
2093         unsigned char r1, r2;
2094         int i1, i2;
2095
2096         i1 = w1->w_index;
2097         i2 = w2->w_index;
2098         WITNESS_INDEX_ASSERT(i1);
2099         WITNESS_INDEX_ASSERT(i2);
2100         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2101         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2102
2103         /* The flags on one better be the inverse of the flags on the other */
2104         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2105             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2106                 /* Don't squawk if we're potentially racing with an update. */
2107                 if (!mtx_owned(&w_mtx))
2108                         return (0);
2109                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2110                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2111                     "w_rmatrix[%d][%d] == %hhx\n",
2112                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2113                     i2, i1, r2);
2114                 kdb_backtrace();
2115                 printf("Witness disabled.\n");
2116                 witness_watch = -1;
2117         }
2118         return (r1 & rmask);
2119 }
2120
2121 /*
2122  * Checks if @child is a direct child of @parent.
2123  */
2124 static int
2125 isitmychild(struct witness *parent, struct witness *child)
2126 {
2127
2128         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2129 }
2130
2131 /*
2132  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2133  */
2134 static int
2135 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2136 {
2137
2138         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2139             __func__));
2140 }
2141
2142 static int
2143 blessed(struct witness *w1, struct witness *w2)
2144 {
2145         int i;
2146         struct witness_blessed *b;
2147
2148         for (i = 0; i < nitems(blessed_list); i++) {
2149                 b = &blessed_list[i];
2150                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2151                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2152                                 return (1);
2153                         continue;
2154                 }
2155                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2156                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2157                                 return (1);
2158         }
2159         return (0);
2160 }
2161
2162 static struct witness *
2163 witness_get(void)
2164 {
2165         struct witness *w;
2166         int index;
2167
2168         if (witness_cold == 0)
2169                 mtx_assert(&w_mtx, MA_OWNED);
2170
2171         if (witness_watch == -1) {
2172                 mtx_unlock_spin(&w_mtx);
2173                 return (NULL);
2174         }
2175         if (STAILQ_EMPTY(&w_free)) {
2176                 witness_watch = -1;
2177                 mtx_unlock_spin(&w_mtx);
2178                 printf("WITNESS: unable to allocate a new witness object\n");
2179                 return (NULL);
2180         }
2181         w = STAILQ_FIRST(&w_free);
2182         STAILQ_REMOVE_HEAD(&w_free, w_list);
2183         w_free_cnt--;
2184         index = w->w_index;
2185         MPASS(index > 0 && index == w_max_used_index+1 &&
2186             index < witness_count);
2187         bzero(w, sizeof(*w));
2188         w->w_index = index;
2189         if (index > w_max_used_index)
2190                 w_max_used_index = index;
2191         return (w);
2192 }
2193
2194 static void
2195 witness_free(struct witness *w)
2196 {
2197
2198         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2199         w_free_cnt++;
2200 }
2201
2202 static struct lock_list_entry *
2203 witness_lock_list_get(void)
2204 {
2205         struct lock_list_entry *lle;
2206
2207         if (witness_watch == -1)
2208                 return (NULL);
2209         mtx_lock_spin(&w_mtx);
2210         lle = w_lock_list_free;
2211         if (lle == NULL) {
2212                 witness_watch = -1;
2213                 mtx_unlock_spin(&w_mtx);
2214                 printf("%s: witness exhausted\n", __func__);
2215                 return (NULL);
2216         }
2217         w_lock_list_free = lle->ll_next;
2218         mtx_unlock_spin(&w_mtx);
2219         bzero(lle, sizeof(*lle));
2220         return (lle);
2221 }
2222                 
2223 static void
2224 witness_lock_list_free(struct lock_list_entry *lle)
2225 {
2226
2227         mtx_lock_spin(&w_mtx);
2228         lle->ll_next = w_lock_list_free;
2229         w_lock_list_free = lle;
2230         mtx_unlock_spin(&w_mtx);
2231 }
2232
2233 static struct lock_instance *
2234 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2235 {
2236         struct lock_list_entry *lle;
2237         struct lock_instance *instance;
2238         int i;
2239
2240         for (lle = list; lle != NULL; lle = lle->ll_next)
2241                 for (i = lle->ll_count - 1; i >= 0; i--) {
2242                         instance = &lle->ll_children[i];
2243                         if (instance->li_lock == lock)
2244                                 return (instance);
2245                 }
2246         return (NULL);
2247 }
2248
2249 static void
2250 witness_list_lock(struct lock_instance *instance,
2251     int (*prnt)(const char *fmt, ...))
2252 {
2253         struct lock_object *lock;
2254
2255         lock = instance->li_lock;
2256         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2257             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2258         if (lock->lo_witness->w_name != lock->lo_name)
2259                 prnt(" (%s)", lock->lo_witness->w_name);
2260         prnt(" r = %d (%p) locked @ %s:%d\n",
2261             instance->li_flags & LI_RECURSEMASK, lock,
2262             fixup_filename(instance->li_file), instance->li_line);
2263 }
2264
2265 static int
2266 witness_output(const char *fmt, ...)
2267 {
2268         va_list ap;
2269         int ret;
2270
2271         va_start(ap, fmt);
2272         ret = witness_voutput(fmt, ap);
2273         va_end(ap);
2274         return (ret);
2275 }
2276
2277 static int
2278 witness_voutput(const char *fmt, va_list ap)
2279 {
2280         int ret;
2281
2282         ret = 0;
2283         switch (witness_channel) {
2284         case WITNESS_CONSOLE:
2285                 ret = vprintf(fmt, ap);
2286                 break;
2287         case WITNESS_LOG:
2288                 vlog(LOG_NOTICE, fmt, ap);
2289                 break;
2290         case WITNESS_NONE:
2291                 break;
2292         }
2293         return (ret);
2294 }
2295
2296 #ifdef DDB
2297 static int
2298 witness_thread_has_locks(struct thread *td)
2299 {
2300
2301         if (td->td_sleeplocks == NULL)
2302                 return (0);
2303         return (td->td_sleeplocks->ll_count != 0);
2304 }
2305
2306 static int
2307 witness_proc_has_locks(struct proc *p)
2308 {
2309         struct thread *td;
2310
2311         FOREACH_THREAD_IN_PROC(p, td) {
2312                 if (witness_thread_has_locks(td))
2313                         return (1);
2314         }
2315         return (0);
2316 }
2317 #endif
2318
2319 int
2320 witness_list_locks(struct lock_list_entry **lock_list,
2321     int (*prnt)(const char *fmt, ...))
2322 {
2323         struct lock_list_entry *lle;
2324         int i, nheld;
2325
2326         nheld = 0;
2327         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2328                 for (i = lle->ll_count - 1; i >= 0; i--) {
2329                         witness_list_lock(&lle->ll_children[i], prnt);
2330                         nheld++;
2331                 }
2332         return (nheld);
2333 }
2334
2335 /*
2336  * This is a bit risky at best.  We call this function when we have timed
2337  * out acquiring a spin lock, and we assume that the other CPU is stuck
2338  * with this lock held.  So, we go groveling around in the other CPU's
2339  * per-cpu data to try to find the lock instance for this spin lock to
2340  * see when it was last acquired.
2341  */
2342 void
2343 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2344     int (*prnt)(const char *fmt, ...))
2345 {
2346         struct lock_instance *instance;
2347         struct pcpu *pc;
2348
2349         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2350                 return;
2351         pc = pcpu_find(owner->td_oncpu);
2352         instance = find_instance(pc->pc_spinlocks, lock);
2353         if (instance != NULL)
2354                 witness_list_lock(instance, prnt);
2355 }
2356
2357 void
2358 witness_save(struct lock_object *lock, const char **filep, int *linep)
2359 {
2360         struct lock_list_entry *lock_list;
2361         struct lock_instance *instance;
2362         struct lock_class *class;
2363
2364         /*
2365          * This function is used independently in locking code to deal with
2366          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2367          * is gone.
2368          */
2369         if (SCHEDULER_STOPPED())
2370                 return;
2371         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2372         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2373                 return;
2374         class = LOCK_CLASS(lock);
2375         if (class->lc_flags & LC_SLEEPLOCK)
2376                 lock_list = curthread->td_sleeplocks;
2377         else {
2378                 if (witness_skipspin)
2379                         return;
2380                 lock_list = PCPU_GET(spinlocks);
2381         }
2382         instance = find_instance(lock_list, lock);
2383         if (instance == NULL) {
2384                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2385                     class->lc_name, lock->lo_name);
2386                 return;
2387         }
2388         *filep = instance->li_file;
2389         *linep = instance->li_line;
2390 }
2391
2392 void
2393 witness_restore(struct lock_object *lock, const char *file, int line)
2394 {
2395         struct lock_list_entry *lock_list;
2396         struct lock_instance *instance;
2397         struct lock_class *class;
2398
2399         /*
2400          * This function is used independently in locking code to deal with
2401          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2402          * is gone.
2403          */
2404         if (SCHEDULER_STOPPED())
2405                 return;
2406         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2407         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2408                 return;
2409         class = LOCK_CLASS(lock);
2410         if (class->lc_flags & LC_SLEEPLOCK)
2411                 lock_list = curthread->td_sleeplocks;
2412         else {
2413                 if (witness_skipspin)
2414                         return;
2415                 lock_list = PCPU_GET(spinlocks);
2416         }
2417         instance = find_instance(lock_list, lock);
2418         if (instance == NULL)
2419                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2420                     class->lc_name, lock->lo_name);
2421         lock->lo_witness->w_file = file;
2422         lock->lo_witness->w_line = line;
2423         if (instance == NULL)
2424                 return;
2425         instance->li_file = file;
2426         instance->li_line = line;
2427 }
2428
2429 void
2430 witness_assert(const struct lock_object *lock, int flags, const char *file,
2431     int line)
2432 {
2433 #ifdef INVARIANT_SUPPORT
2434         struct lock_instance *instance;
2435         struct lock_class *class;
2436
2437         if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2438                 return;
2439         class = LOCK_CLASS(lock);
2440         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2441                 instance = find_instance(curthread->td_sleeplocks, lock);
2442         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2443                 instance = find_instance(PCPU_GET(spinlocks), lock);
2444         else {
2445                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2446                     class->lc_name, lock->lo_name);
2447                 return;
2448         }
2449         switch (flags) {
2450         case LA_UNLOCKED:
2451                 if (instance != NULL)
2452                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2453                             class->lc_name, lock->lo_name,
2454                             fixup_filename(file), line);
2455                 break;
2456         case LA_LOCKED:
2457         case LA_LOCKED | LA_RECURSED:
2458         case LA_LOCKED | LA_NOTRECURSED:
2459         case LA_SLOCKED:
2460         case LA_SLOCKED | LA_RECURSED:
2461         case LA_SLOCKED | LA_NOTRECURSED:
2462         case LA_XLOCKED:
2463         case LA_XLOCKED | LA_RECURSED:
2464         case LA_XLOCKED | LA_NOTRECURSED:
2465                 if (instance == NULL) {
2466                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2467                             class->lc_name, lock->lo_name,
2468                             fixup_filename(file), line);
2469                         break;
2470                 }
2471                 if ((flags & LA_XLOCKED) != 0 &&
2472                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2473                         kassert_panic(
2474                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2475                             class->lc_name, lock->lo_name,
2476                             fixup_filename(file), line);
2477                 if ((flags & LA_SLOCKED) != 0 &&
2478                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2479                         kassert_panic(
2480                             "Lock (%s) %s exclusively locked @ %s:%d.",
2481                             class->lc_name, lock->lo_name,
2482                             fixup_filename(file), line);
2483                 if ((flags & LA_RECURSED) != 0 &&
2484                     (instance->li_flags & LI_RECURSEMASK) == 0)
2485                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2486                             class->lc_name, lock->lo_name,
2487                             fixup_filename(file), line);
2488                 if ((flags & LA_NOTRECURSED) != 0 &&
2489                     (instance->li_flags & LI_RECURSEMASK) != 0)
2490                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2491                             class->lc_name, lock->lo_name,
2492                             fixup_filename(file), line);
2493                 break;
2494         default:
2495                 kassert_panic("Invalid lock assertion at %s:%d.",
2496                     fixup_filename(file), line);
2497         }
2498 #endif  /* INVARIANT_SUPPORT */
2499 }
2500
2501 static void
2502 witness_setflag(struct lock_object *lock, int flag, int set)
2503 {
2504         struct lock_list_entry *lock_list;
2505         struct lock_instance *instance;
2506         struct lock_class *class;
2507
2508         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2509                 return;
2510         class = LOCK_CLASS(lock);
2511         if (class->lc_flags & LC_SLEEPLOCK)
2512                 lock_list = curthread->td_sleeplocks;
2513         else {
2514                 if (witness_skipspin)
2515                         return;
2516                 lock_list = PCPU_GET(spinlocks);
2517         }
2518         instance = find_instance(lock_list, lock);
2519         if (instance == NULL) {
2520                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2521                     class->lc_name, lock->lo_name);
2522                 return;
2523         }
2524
2525         if (set)
2526                 instance->li_flags |= flag;
2527         else
2528                 instance->li_flags &= ~flag;
2529 }
2530
2531 void
2532 witness_norelease(struct lock_object *lock)
2533 {
2534
2535         witness_setflag(lock, LI_NORELEASE, 1);
2536 }
2537
2538 void
2539 witness_releaseok(struct lock_object *lock)
2540 {
2541
2542         witness_setflag(lock, LI_NORELEASE, 0);
2543 }
2544
2545 #ifdef DDB
2546 static void
2547 witness_ddb_list(struct thread *td)
2548 {
2549
2550         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2551         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2552
2553         if (witness_watch < 1)
2554                 return;
2555
2556         witness_list_locks(&td->td_sleeplocks, db_printf);
2557
2558         /*
2559          * We only handle spinlocks if td == curthread.  This is somewhat broken
2560          * if td is currently executing on some other CPU and holds spin locks
2561          * as we won't display those locks.  If we had a MI way of getting
2562          * the per-cpu data for a given cpu then we could use
2563          * td->td_oncpu to get the list of spinlocks for this thread
2564          * and "fix" this.
2565          *
2566          * That still wouldn't really fix this unless we locked the scheduler
2567          * lock or stopped the other CPU to make sure it wasn't changing the
2568          * list out from under us.  It is probably best to just not try to
2569          * handle threads on other CPU's for now.
2570          */
2571         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2572                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2573 }
2574
2575 DB_SHOW_COMMAND(locks, db_witness_list)
2576 {
2577         struct thread *td;
2578
2579         if (have_addr)
2580                 td = db_lookup_thread(addr, true);
2581         else
2582                 td = kdb_thread;
2583         witness_ddb_list(td);
2584 }
2585
2586 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2587 {
2588         struct thread *td;
2589         struct proc *p;
2590
2591         /*
2592          * It would be nice to list only threads and processes that actually
2593          * held sleep locks, but that information is currently not exported
2594          * by WITNESS.
2595          */
2596         FOREACH_PROC_IN_SYSTEM(p) {
2597                 if (!witness_proc_has_locks(p))
2598                         continue;
2599                 FOREACH_THREAD_IN_PROC(p, td) {
2600                         if (!witness_thread_has_locks(td))
2601                                 continue;
2602                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2603                             p->p_comm, td, td->td_tid);
2604                         witness_ddb_list(td);
2605                         if (db_pager_quit)
2606                                 return;
2607                 }
2608         }
2609 }
2610 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2611
2612 DB_SHOW_COMMAND(witness, db_witness_display)
2613 {
2614
2615         witness_ddb_display(db_printf);
2616 }
2617 #endif
2618
2619 static void
2620 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2621 {
2622         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2623         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2624         int generation, i, j;
2625
2626         tmp_data1 = NULL;
2627         tmp_data2 = NULL;
2628         tmp_w1 = NULL;
2629         tmp_w2 = NULL;
2630
2631         /* Allocate and init temporary storage space. */
2632         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2633         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2634         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2635             M_WAITOK | M_ZERO);
2636         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2637             M_WAITOK | M_ZERO);
2638         stack_zero(&tmp_data1->wlod_stack);
2639         stack_zero(&tmp_data2->wlod_stack);
2640
2641 restart:
2642         mtx_lock_spin(&w_mtx);
2643         generation = w_generation;
2644         mtx_unlock_spin(&w_mtx);
2645         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2646             w_lohash.wloh_count);
2647         for (i = 1; i < w_max_used_index; i++) {
2648                 mtx_lock_spin(&w_mtx);
2649                 if (generation != w_generation) {
2650                         mtx_unlock_spin(&w_mtx);
2651
2652                         /* The graph has changed, try again. */
2653                         *oldidx = 0;
2654                         sbuf_clear(sb);
2655                         goto restart;
2656                 }
2657
2658                 w1 = &w_data[i];
2659                 if (w1->w_reversed == 0) {
2660                         mtx_unlock_spin(&w_mtx);
2661                         continue;
2662                 }
2663
2664                 /* Copy w1 locally so we can release the spin lock. */
2665                 *tmp_w1 = *w1;
2666                 mtx_unlock_spin(&w_mtx);
2667
2668                 if (tmp_w1->w_reversed == 0)
2669                         continue;
2670                 for (j = 1; j < w_max_used_index; j++) {
2671                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2672                                 continue;
2673
2674                         mtx_lock_spin(&w_mtx);
2675                         if (generation != w_generation) {
2676                                 mtx_unlock_spin(&w_mtx);
2677
2678                                 /* The graph has changed, try again. */
2679                                 *oldidx = 0;
2680                                 sbuf_clear(sb);
2681                                 goto restart;
2682                         }
2683
2684                         w2 = &w_data[j];
2685                         data1 = witness_lock_order_get(w1, w2);
2686                         data2 = witness_lock_order_get(w2, w1);
2687
2688                         /*
2689                          * Copy information locally so we can release the
2690                          * spin lock.
2691                          */
2692                         *tmp_w2 = *w2;
2693
2694                         if (data1) {
2695                                 stack_zero(&tmp_data1->wlod_stack);
2696                                 stack_copy(&data1->wlod_stack,
2697                                     &tmp_data1->wlod_stack);
2698                         }
2699                         if (data2 && data2 != data1) {
2700                                 stack_zero(&tmp_data2->wlod_stack);
2701                                 stack_copy(&data2->wlod_stack,
2702                                     &tmp_data2->wlod_stack);
2703                         }
2704                         mtx_unlock_spin(&w_mtx);
2705
2706                         if (blessed(tmp_w1, tmp_w2))
2707                                 continue;
2708
2709                         sbuf_printf(sb,
2710             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2711                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2712                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2713                         if (data1) {
2714                                 sbuf_printf(sb,
2715                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2716                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2717                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2718                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2719                                 sbuf_printf(sb, "\n");
2720                         }
2721                         if (data2 && data2 != data1) {
2722                                 sbuf_printf(sb,
2723                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2724                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2725                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2726                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2727                                 sbuf_printf(sb, "\n");
2728                         }
2729                 }
2730         }
2731         mtx_lock_spin(&w_mtx);
2732         if (generation != w_generation) {
2733                 mtx_unlock_spin(&w_mtx);
2734
2735                 /*
2736                  * The graph changed while we were printing stack data,
2737                  * try again.
2738                  */
2739                 *oldidx = 0;
2740                 sbuf_clear(sb);
2741                 goto restart;
2742         }
2743         mtx_unlock_spin(&w_mtx);
2744
2745         /* Free temporary storage space. */
2746         free(tmp_data1, M_TEMP);
2747         free(tmp_data2, M_TEMP);
2748         free(tmp_w1, M_TEMP);
2749         free(tmp_w2, M_TEMP);
2750 }
2751
2752 static int
2753 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2754 {
2755         struct sbuf *sb;
2756         int error;
2757
2758         if (witness_watch < 1) {
2759                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2760                 return (error);
2761         }
2762         if (witness_cold) {
2763                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2764                 return (error);
2765         }
2766         error = 0;
2767         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2768         if (sb == NULL)
2769                 return (ENOMEM);
2770
2771         sbuf_print_witness_badstacks(sb, &req->oldidx);
2772
2773         sbuf_finish(sb);
2774         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2775         sbuf_delete(sb);
2776
2777         return (error);
2778 }
2779
2780 #ifdef DDB
2781 static int
2782 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2783 {
2784
2785         return (db_printf("%.*s", len, data));
2786 }
2787
2788 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2789 {
2790         struct sbuf sb;
2791         char buffer[128];
2792         size_t dummy;
2793
2794         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2795         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2796         sbuf_print_witness_badstacks(&sb, &dummy);
2797         sbuf_finish(&sb);
2798 }
2799 #endif
2800
2801 static int
2802 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2803 {
2804         static const struct {
2805                 enum witness_channel channel;
2806                 const char *name;
2807         } channels[] = {
2808                 { WITNESS_CONSOLE, "console" },
2809                 { WITNESS_LOG, "log" },
2810                 { WITNESS_NONE, "none" },
2811         };
2812         char buf[16];
2813         u_int i;
2814         int error;
2815
2816         buf[0] = '\0';
2817         for (i = 0; i < nitems(channels); i++)
2818                 if (witness_channel == channels[i].channel) {
2819                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2820                         break;
2821                 }
2822
2823         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2824         if (error != 0 || req->newptr == NULL)
2825                 return (error);
2826
2827         error = EINVAL;
2828         for (i = 0; i < nitems(channels); i++)
2829                 if (strcmp(channels[i].name, buf) == 0) {
2830                         witness_channel = channels[i].channel;
2831                         error = 0;
2832                         break;
2833                 }
2834         return (error);
2835 }
2836
2837 static int
2838 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2839 {
2840         struct witness *w;
2841         struct sbuf *sb;
2842         int error;
2843
2844 #ifdef __i386__
2845         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2846         return (error);
2847 #endif
2848
2849         if (witness_watch < 1) {
2850                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2851                 return (error);
2852         }
2853         if (witness_cold) {
2854                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2855                 return (error);
2856         }
2857         error = 0;
2858
2859         error = sysctl_wire_old_buffer(req, 0);
2860         if (error != 0)
2861                 return (error);
2862         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2863         if (sb == NULL)
2864                 return (ENOMEM);
2865         sbuf_printf(sb, "\n");
2866
2867         mtx_lock_spin(&w_mtx);
2868         STAILQ_FOREACH(w, &w_all, w_list)
2869                 w->w_displayed = 0;
2870         STAILQ_FOREACH(w, &w_all, w_list)
2871                 witness_add_fullgraph(sb, w);
2872         mtx_unlock_spin(&w_mtx);
2873
2874         /*
2875          * Close the sbuf and return to userland.
2876          */
2877         error = sbuf_finish(sb);
2878         sbuf_delete(sb);
2879
2880         return (error);
2881 }
2882
2883 static int
2884 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2885 {
2886         int error, value;
2887
2888         value = witness_watch;
2889         error = sysctl_handle_int(oidp, &value, 0, req);
2890         if (error != 0 || req->newptr == NULL)
2891                 return (error);
2892         if (value > 1 || value < -1 ||
2893             (witness_watch == -1 && value != witness_watch))
2894                 return (EINVAL);
2895         witness_watch = value;
2896         return (0);
2897 }
2898
2899 static void
2900 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2901 {
2902         int i;
2903
2904         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2905                 return;
2906         w->w_displayed = 1;
2907
2908         WITNESS_INDEX_ASSERT(w->w_index);
2909         for (i = 1; i <= w_max_used_index; i++) {
2910                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2911                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2912                             w_data[i].w_name);
2913                         witness_add_fullgraph(sb, &w_data[i]);
2914                 }
2915         }
2916 }
2917
2918 /*
2919  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2920  * interprets the key as a string and reads until the null
2921  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2922  * hash value computed from the key.
2923  */
2924 static uint32_t
2925 witness_hash_djb2(const uint8_t *key, uint32_t size)
2926 {
2927         unsigned int hash = 5381;
2928         int i;
2929
2930         /* hash = hash * 33 + key[i] */
2931         if (size)
2932                 for (i = 0; i < size; i++)
2933                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2934         else
2935                 for (i = 0; key[i] != 0; i++)
2936                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2937
2938         return (hash);
2939 }
2940
2941 /*
2942  * Initializes the two witness hash tables. Called exactly once from
2943  * witness_initialize().
2944  */
2945 static void
2946 witness_init_hash_tables(void)
2947 {
2948         int i;
2949
2950         MPASS(witness_cold);
2951
2952         /* Initialize the hash tables. */
2953         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2954                 w_hash.wh_array[i] = NULL;
2955
2956         w_hash.wh_size = WITNESS_HASH_SIZE;
2957         w_hash.wh_count = 0;
2958
2959         /* Initialize the lock order data hash. */
2960         w_lofree = NULL;
2961         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2962                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2963                 w_lodata[i].wlod_next = w_lofree;
2964                 w_lofree = &w_lodata[i];
2965         }
2966         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2967         w_lohash.wloh_count = 0;
2968         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2969                 w_lohash.wloh_array[i] = NULL;
2970 }
2971
2972 static struct witness *
2973 witness_hash_get(const char *key)
2974 {
2975         struct witness *w;
2976         uint32_t hash;
2977
2978         MPASS(key != NULL);
2979         if (witness_cold == 0)
2980                 mtx_assert(&w_mtx, MA_OWNED);
2981         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2982         w = w_hash.wh_array[hash];
2983         while (w != NULL) {
2984                 if (strcmp(w->w_name, key) == 0)
2985                         goto out;
2986                 w = w->w_hash_next;
2987         }
2988
2989 out:
2990         return (w);
2991 }
2992
2993 static void
2994 witness_hash_put(struct witness *w)
2995 {
2996         uint32_t hash;
2997
2998         MPASS(w != NULL);
2999         MPASS(w->w_name != NULL);
3000         if (witness_cold == 0)
3001                 mtx_assert(&w_mtx, MA_OWNED);
3002         KASSERT(witness_hash_get(w->w_name) == NULL,
3003             ("%s: trying to add a hash entry that already exists!", __func__));
3004         KASSERT(w->w_hash_next == NULL,
3005             ("%s: w->w_hash_next != NULL", __func__));
3006
3007         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
3008         w->w_hash_next = w_hash.wh_array[hash];
3009         w_hash.wh_array[hash] = w;
3010         w_hash.wh_count++;
3011 }
3012
3013 static struct witness_lock_order_data *
3014 witness_lock_order_get(struct witness *parent, struct witness *child)
3015 {
3016         struct witness_lock_order_data *data = NULL;
3017         struct witness_lock_order_key key;
3018         unsigned int hash;
3019
3020         MPASS(parent != NULL && child != NULL);
3021         key.from = parent->w_index;
3022         key.to = child->w_index;
3023         WITNESS_INDEX_ASSERT(key.from);
3024         WITNESS_INDEX_ASSERT(key.to);
3025         if ((w_rmatrix[parent->w_index][child->w_index]
3026             & WITNESS_LOCK_ORDER_KNOWN) == 0)
3027                 goto out;
3028
3029         hash = witness_hash_djb2((const char*)&key,
3030             sizeof(key)) % w_lohash.wloh_size;
3031         data = w_lohash.wloh_array[hash];
3032         while (data != NULL) {
3033                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
3034                         break;
3035                 data = data->wlod_next;
3036         }
3037
3038 out:
3039         return (data);
3040 }
3041
3042 /*
3043  * Verify that parent and child have a known relationship, are not the same,
3044  * and child is actually a child of parent.  This is done without w_mtx
3045  * to avoid contention in the common case.
3046  */
3047 static int
3048 witness_lock_order_check(struct witness *parent, struct witness *child)
3049 {
3050
3051         if (parent != child &&
3052             w_rmatrix[parent->w_index][child->w_index]
3053             & WITNESS_LOCK_ORDER_KNOWN &&
3054             isitmychild(parent, child))
3055                 return (1);
3056
3057         return (0);
3058 }
3059
3060 static int
3061 witness_lock_order_add(struct witness *parent, struct witness *child)
3062 {
3063         struct witness_lock_order_data *data = NULL;
3064         struct witness_lock_order_key key;
3065         unsigned int hash;
3066
3067         MPASS(parent != NULL && child != NULL);
3068         key.from = parent->w_index;
3069         key.to = child->w_index;
3070         WITNESS_INDEX_ASSERT(key.from);
3071         WITNESS_INDEX_ASSERT(key.to);
3072         if (w_rmatrix[parent->w_index][child->w_index]
3073             & WITNESS_LOCK_ORDER_KNOWN)
3074                 return (1);
3075
3076         hash = witness_hash_djb2((const char*)&key,
3077             sizeof(key)) % w_lohash.wloh_size;
3078         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3079         data = w_lofree;
3080         if (data == NULL)
3081                 return (0);
3082         w_lofree = data->wlod_next;
3083         data->wlod_next = w_lohash.wloh_array[hash];
3084         data->wlod_key = key;
3085         w_lohash.wloh_array[hash] = data;
3086         w_lohash.wloh_count++;
3087         stack_zero(&data->wlod_stack);
3088         stack_save(&data->wlod_stack);
3089         return (1);
3090 }
3091
3092 /* Call this whenever the structure of the witness graph changes. */
3093 static void
3094 witness_increment_graph_generation(void)
3095 {
3096
3097         if (witness_cold == 0)
3098                 mtx_assert(&w_mtx, MA_OWNED);
3099         w_generation++;
3100 }
3101
3102 static int
3103 witness_output_drain(void *arg __unused, const char *data, int len)
3104 {
3105
3106         witness_output("%.*s", len, data);
3107         return (len);
3108 }
3109
3110 static void
3111 witness_debugger(int cond, const char *msg)
3112 {
3113         char buf[32];
3114         struct sbuf sb;
3115         struct stack st;
3116
3117         if (!cond)
3118                 return;
3119
3120         if (witness_trace) {
3121                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3122                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3123
3124                 stack_zero(&st);
3125                 stack_save(&st);
3126                 witness_output("stack backtrace:\n");
3127                 stack_sbuf_print_ddb(&sb, &st);
3128
3129                 sbuf_finish(&sb);
3130         }
3131
3132         witness_enter_debugger(msg);
3133 }
3134
3135 static void
3136 witness_enter_debugger(const char *msg)
3137 {
3138 #ifdef KDB
3139         if (witness_kdb)
3140                 kdb_enter(KDB_WHY_WITNESS, msg);
3141 #endif
3142 }