]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
Xr make_dev(9) from devfs(5).
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42
43 /*
44  *      Main Entry: witness
45  *      Pronunciation: 'wit-n&s
46  *      Function: noun
47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *          testimony, witness, from 2wit
49  *      Date: before 12th century
50  *      1 : attestation of a fact or event : TESTIMONY
51  *      2 : one that gives evidence; specifically : one who testifies in
52  *          a cause or before a judicial tribunal
53  *      3 : one asked to be present at a transaction so as to be able to
54  *          testify to its having taken place
55  *      4 : one who has personal knowledge of something
56  *      5 a : something serving as evidence or proof : SIGN
57  *        b : public affirmation by word or example of usually
58  *            religious faith or conviction <the heroic witness to divine
59  *            life -- Pilot>
60  *      6 capitalized : a member of the Jehovah's Witnesses 
61  */
62
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117
118 #include <machine/stdarg.h>
119
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define KTR_WITNESS     KTR_SUBSYS
127 #else
128 #define KTR_WITNESS     0
129 #endif
130
131 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
132 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
133 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
134
135 /* Define this to check for blessed mutexes */
136 #undef BLESSING
137
138 #ifndef WITNESS_COUNT
139 #define WITNESS_COUNT           1536
140 #endif
141 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
142 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
143
144 /* Allocate 256 KB of stack data space */
145 #define WITNESS_LO_DATA_COUNT   2048
146
147 /* Prime, gives load factor of ~2 at full load */
148 #define WITNESS_LO_HASH_SIZE    1021
149
150 /*
151  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
152  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
153  * probably be safe for the most part, but it's still a SWAG.
154  */
155 #define LOCK_NCHILDREN  5
156 #define LOCK_CHILDCOUNT 2048
157
158 #define MAX_W_NAME      64
159
160 #define FULLGRAPH_SBUF_SIZE     512
161
162 /*
163  * These flags go in the witness relationship matrix and describe the
164  * relationship between any two struct witness objects.
165  */
166 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
167 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
168 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
169 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
170 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
171 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
172 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
173 #define WITNESS_RELATED_MASK                                            \
174         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
175 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
176                                           * observed. */
177 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
178 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
179 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
180
181 /* Descendant to ancestor flags */
182 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
183
184 /* Ancestor to descendant flags */
185 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
186
187 #define WITNESS_INDEX_ASSERT(i)                                         \
188         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
189
190 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
191
192 /*
193  * Lock instances.  A lock instance is the data associated with a lock while
194  * it is held by witness.  For example, a lock instance will hold the
195  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
196  * are held in a per-cpu list while sleep locks are held in per-thread list.
197  */
198 struct lock_instance {
199         struct lock_object      *li_lock;
200         const char              *li_file;
201         int                     li_line;
202         u_int                   li_flags;
203 };
204
205 /*
206  * A simple list type used to build the list of locks held by a thread
207  * or CPU.  We can't simply embed the list in struct lock_object since a
208  * lock may be held by more than one thread if it is a shared lock.  Locks
209  * are added to the head of the list, so we fill up each list entry from
210  * "the back" logically.  To ease some of the arithmetic, we actually fill
211  * in each list entry the normal way (children[0] then children[1], etc.) but
212  * when we traverse the list we read children[count-1] as the first entry
213  * down to children[0] as the final entry.
214  */
215 struct lock_list_entry {
216         struct lock_list_entry  *ll_next;
217         struct lock_instance    ll_children[LOCK_NCHILDREN];
218         u_int                   ll_count;
219 };
220
221 /*
222  * The main witness structure. One of these per named lock type in the system
223  * (for example, "vnode interlock").
224  */
225 struct witness {
226         char                    w_name[MAX_W_NAME];
227         uint32_t                w_index;  /* Index in the relationship matrix */
228         struct lock_class       *w_class;
229         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
230         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
231         struct witness          *w_hash_next; /* Linked list in hash buckets. */
232         const char              *w_file; /* File where last acquired */
233         uint32_t                w_line; /* Line where last acquired */
234         uint32_t                w_refcount;
235         uint16_t                w_num_ancestors; /* direct/indirect
236                                                   * ancestor count */
237         uint16_t                w_num_descendants; /* direct/indirect
238                                                     * descendant count */
239         int16_t                 w_ddb_level;
240         unsigned                w_displayed:1;
241         unsigned                w_reversed:1;
242 };
243
244 STAILQ_HEAD(witness_list, witness);
245
246 /*
247  * The witness hash table. Keys are witness names (const char *), elements are
248  * witness objects (struct witness *).
249  */
250 struct witness_hash {
251         struct witness  *wh_array[WITNESS_HASH_SIZE];
252         uint32_t        wh_size;
253         uint32_t        wh_count;
254 };
255
256 /*
257  * Key type for the lock order data hash table.
258  */
259 struct witness_lock_order_key {
260         uint16_t        from;
261         uint16_t        to;
262 };
263
264 struct witness_lock_order_data {
265         struct stack                    wlod_stack;
266         struct witness_lock_order_key   wlod_key;
267         struct witness_lock_order_data  *wlod_next;
268 };
269
270 /*
271  * The witness lock order data hash table. Keys are witness index tuples
272  * (struct witness_lock_order_key), elements are lock order data objects
273  * (struct witness_lock_order_data). 
274  */
275 struct witness_lock_order_hash {
276         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
277         u_int   wloh_size;
278         u_int   wloh_count;
279 };
280
281 #ifdef BLESSING
282 struct witness_blessed {
283         const char      *b_lock1;
284         const char      *b_lock2;
285 };
286 #endif
287
288 struct witness_pendhelp {
289         const char              *wh_type;
290         struct lock_object      *wh_lock;
291 };
292
293 struct witness_order_list_entry {
294         const char              *w_name;
295         struct lock_class       *w_class;
296 };
297
298 /*
299  * Returns 0 if one of the locks is a spin lock and the other is not.
300  * Returns 1 otherwise.
301  */
302 static __inline int
303 witness_lock_type_equal(struct witness *w1, struct witness *w2)
304 {
305
306         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
307                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
308 }
309
310 static __inline int
311 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
312     const struct witness_lock_order_key *b)
313 {
314
315         return (a->from == b->from && a->to == b->to);
316 }
317
318 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
319                     const char *fname);
320 static void     adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int      blessed(struct witness *, struct witness *);
323 #endif
324 static void     depart(struct witness *w);
325 static struct witness   *enroll(const char *description,
326                             struct lock_class *lock_class);
327 static struct lock_instance     *find_instance(struct lock_list_entry *list,
328                                     const struct lock_object *lock);
329 static int      isitmychild(struct witness *parent, struct witness *child);
330 static int      isitmydescendant(struct witness *parent, struct witness *child);
331 static void     itismychild(struct witness *parent, struct witness *child);
332 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
336 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
337 #ifdef DDB
338 static void     witness_ddb_compute_levels(void);
339 static void     witness_ddb_display(int(*)(const char *fmt, ...));
340 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
341                     struct witness *, int indent);
342 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
343                     struct witness_list *list);
344 static void     witness_ddb_level_descendants(struct witness *parent, int l);
345 static void     witness_ddb_list(struct thread *td);
346 #endif
347 static void     witness_debugger(int cond, const char *msg);
348 static void     witness_free(struct witness *m);
349 static struct witness   *witness_get(void);
350 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
351 static struct witness   *witness_hash_get(const char *key);
352 static void     witness_hash_put(struct witness *w);
353 static void     witness_init_hash_tables(void);
354 static void     witness_increment_graph_generation(void);
355 static void     witness_lock_list_free(struct lock_list_entry *lle);
356 static struct lock_list_entry   *witness_lock_list_get(void);
357 static int      witness_lock_order_add(struct witness *parent,
358                     struct witness *child);
359 static int      witness_lock_order_check(struct witness *parent,
360                     struct witness *child);
361 static struct witness_lock_order_data   *witness_lock_order_get(
362                                             struct witness *parent,
363                                             struct witness *child);
364 static void     witness_list_lock(struct lock_instance *instance,
365                     int (*prnt)(const char *fmt, ...));
366 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
367 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
368 static void     witness_setflag(struct lock_object *lock, int flag, int set);
369
370 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
371     "Witness Locking");
372
373 /*
374  * If set to 0, lock order checking is disabled.  If set to -1,
375  * witness is completely disabled.  Otherwise witness performs full
376  * lock order checking for all locks.  At runtime, lock order checking
377  * may be toggled.  However, witness cannot be reenabled once it is
378  * completely disabled.
379  */
380 static int witness_watch = 1;
381 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
382     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
383
384 #ifdef KDB
385 /*
386  * When KDB is enabled and witness_kdb is 1, it will cause the system
387  * to drop into kdebug() when:
388  *      - a lock hierarchy violation occurs
389  *      - locks are held when going to sleep.
390  */
391 #ifdef WITNESS_KDB
392 int     witness_kdb = 1;
393 #else
394 int     witness_kdb = 0;
395 #endif
396 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
397 #endif /* KDB */
398
399 #if defined(DDB) || defined(KDB)
400 /*
401  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
402  * to print a stack trace:
403  *      - a lock hierarchy violation occurs
404  *      - locks are held when going to sleep.
405  */
406 int     witness_trace = 1;
407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
408 #endif /* DDB || KDB */
409
410 #ifdef WITNESS_SKIPSPIN
411 int     witness_skipspin = 1;
412 #else
413 int     witness_skipspin = 0;
414 #endif
415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
416
417 int badstack_sbuf_size;
418
419 int witness_count = WITNESS_COUNT;
420 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
421     &witness_count, 0, "");
422
423 /*
424  * Output channel for witness messages.  By default we print to the console.
425  */
426 enum witness_channel {
427         WITNESS_CONSOLE,
428         WITNESS_LOG,
429         WITNESS_NONE,
430 };
431
432 static enum witness_channel witness_channel = WITNESS_CONSOLE;
433 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
434     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
435     "Output channel for warnings");
436
437 /*
438  * Call this to print out the relations between locks.
439  */
440 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
441     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
442
443 /*
444  * Call this to print out the witness faulty stacks.
445  */
446 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
447     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
448
449 static struct mtx w_mtx;
450
451 /* w_list */
452 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
453 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
454
455 /* w_typelist */
456 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
457 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
458
459 /* lock list */
460 static struct lock_list_entry *w_lock_list_free = NULL;
461 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
462 static u_int pending_cnt;
463
464 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
465 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
466 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
467 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
468     "");
469
470 static struct witness *w_data;
471 static uint8_t **w_rmatrix;
472 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
473 static struct witness_hash w_hash;      /* The witness hash table. */
474
475 /* The lock order data hash */
476 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
477 static struct witness_lock_order_data *w_lofree = NULL;
478 static struct witness_lock_order_hash w_lohash;
479 static int w_max_used_index = 0;
480 static unsigned int w_generation = 0;
481 static const char w_notrunning[] = "Witness not running\n";
482 static const char w_stillcold[] = "Witness is still cold\n";
483 #ifdef __i386__
484 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
485 #endif
486
487 static struct witness_order_list_entry order_lists[] = {
488         /*
489          * sx locks
490          */
491         { "proctree", &lock_class_sx },
492         { "allproc", &lock_class_sx },
493         { "allprison", &lock_class_sx },
494         { NULL, NULL },
495         /*
496          * Various mutexes
497          */
498         { "Giant", &lock_class_mtx_sleep },
499         { "pipe mutex", &lock_class_mtx_sleep },
500         { "sigio lock", &lock_class_mtx_sleep },
501         { "process group", &lock_class_mtx_sleep },
502 #ifdef  HWPMC_HOOKS
503         { "pmc-sleep", &lock_class_mtx_sleep },
504 #endif
505         { "process lock", &lock_class_mtx_sleep },
506         { "session", &lock_class_mtx_sleep },
507         { "uidinfo hash", &lock_class_rw },
508         { "time lock", &lock_class_mtx_sleep },
509         { NULL, NULL },
510         /*
511          * umtx
512          */
513         { "umtx lock", &lock_class_mtx_sleep },
514         { NULL, NULL },
515         /*
516          * Sockets
517          */
518         { "accept", &lock_class_mtx_sleep },
519         { "so_snd", &lock_class_mtx_sleep },
520         { "so_rcv", &lock_class_mtx_sleep },
521         { "sellck", &lock_class_mtx_sleep },
522         { NULL, NULL },
523         /*
524          * Routing
525          */
526         { "so_rcv", &lock_class_mtx_sleep },
527         { "radix node head", &lock_class_rm },
528         { "rtentry", &lock_class_mtx_sleep },
529         { "ifaddr", &lock_class_mtx_sleep },
530         { NULL, NULL },
531         /*
532          * IPv4 multicast:
533          * protocol locks before interface locks, after UDP locks.
534          */
535         { "in_multi_sx", &lock_class_sx },
536         { "udpinp", &lock_class_rw },
537         { "in_multi_list_mtx", &lock_class_mtx_sleep },
538         { "igmp_mtx", &lock_class_mtx_sleep },
539         { "ifnet_rw", &lock_class_rw },
540         { "if_addr_lock", &lock_class_mtx_sleep },
541         { NULL, NULL },
542         /*
543          * IPv6 multicast:
544          * protocol locks before interface locks, after UDP locks.
545          */
546         { "in6_multi_sx", &lock_class_sx },
547         { "udpinp", &lock_class_rw },
548         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
549         { "mld_mtx", &lock_class_mtx_sleep },
550         { "ifnet_rw", &lock_class_rw },
551         { "if_addr_lock", &lock_class_mtx_sleep },
552         { NULL, NULL },
553         /*
554          * UNIX Domain Sockets
555          */
556         { "unp_link_rwlock", &lock_class_rw },
557         { "unp_list_lock", &lock_class_mtx_sleep },
558         { "unp", &lock_class_mtx_sleep },
559         { "so_snd", &lock_class_mtx_sleep },
560         { NULL, NULL },
561         /*
562          * UDP/IP
563          */
564         { "udp", &lock_class_mtx_sleep },
565         { "udpinp", &lock_class_rw },
566         { "so_snd", &lock_class_mtx_sleep },
567         { NULL, NULL },
568         /*
569          * TCP/IP
570          */
571         { "tcp", &lock_class_mtx_sleep },
572         { "tcpinp", &lock_class_rw },
573         { "so_snd", &lock_class_mtx_sleep },
574         { NULL, NULL },
575         /*
576          * BPF
577          */
578         { "bpf global lock", &lock_class_sx },
579         { "bpf cdev lock", &lock_class_mtx_sleep },
580         { NULL, NULL },
581         /*
582          * NFS server
583          */
584         { "nfsd_mtx", &lock_class_mtx_sleep },
585         { "so_snd", &lock_class_mtx_sleep },
586         { NULL, NULL },
587
588         /*
589          * IEEE 802.11
590          */
591         { "802.11 com lock", &lock_class_mtx_sleep},
592         { NULL, NULL },
593         /*
594          * Network drivers
595          */
596         { "network driver", &lock_class_mtx_sleep},
597         { NULL, NULL },
598
599         /*
600          * Netgraph
601          */
602         { "ng_node", &lock_class_mtx_sleep },
603         { "ng_worklist", &lock_class_mtx_sleep },
604         { NULL, NULL },
605         /*
606          * CDEV
607          */
608         { "vm map (system)", &lock_class_mtx_sleep },
609         { "vnode interlock", &lock_class_mtx_sleep },
610         { "cdev", &lock_class_mtx_sleep },
611         { NULL, NULL },
612         /*
613          * VM
614          */
615         { "vm map (user)", &lock_class_sx },
616         { "vm object", &lock_class_rw },
617         { "vm page", &lock_class_mtx_sleep },
618         { "pmap pv global", &lock_class_rw },
619         { "pmap", &lock_class_mtx_sleep },
620         { "pmap pv list", &lock_class_rw },
621         { "vm page free queue", &lock_class_mtx_sleep },
622         { "vm pagequeue", &lock_class_mtx_sleep },
623         { NULL, NULL },
624         /*
625          * kqueue/VFS interaction
626          */
627         { "kqueue", &lock_class_mtx_sleep },
628         { "struct mount mtx", &lock_class_mtx_sleep },
629         { "vnode interlock", &lock_class_mtx_sleep },
630         { NULL, NULL },
631         /*
632          * VFS namecache
633          */
634         { "ncvn", &lock_class_mtx_sleep },
635         { "ncbuc", &lock_class_rw },
636         { "vnode interlock", &lock_class_mtx_sleep },
637         { "ncneg", &lock_class_mtx_sleep },
638         { NULL, NULL },
639         /*
640          * ZFS locking
641          */
642         { "dn->dn_mtx", &lock_class_sx },
643         { "dr->dt.di.dr_mtx", &lock_class_sx },
644         { "db->db_mtx", &lock_class_sx },
645         { NULL, NULL },
646         /*
647          * TCP log locks
648          */
649         { "TCP ID tree", &lock_class_rw },
650         { "tcp log id bucket", &lock_class_mtx_sleep },
651         { "tcpinp", &lock_class_rw },
652         { "TCP log expireq", &lock_class_mtx_sleep },
653         { NULL, NULL },
654         /*
655          * spin locks
656          */
657 #ifdef SMP
658         { "ap boot", &lock_class_mtx_spin },
659 #endif
660         { "rm.mutex_mtx", &lock_class_mtx_spin },
661         { "sio", &lock_class_mtx_spin },
662 #ifdef __i386__
663         { "cy", &lock_class_mtx_spin },
664 #endif
665 #ifdef __sparc64__
666         { "pcib_mtx", &lock_class_mtx_spin },
667         { "rtc_mtx", &lock_class_mtx_spin },
668 #endif
669         { "scc_hwmtx", &lock_class_mtx_spin },
670         { "uart_hwmtx", &lock_class_mtx_spin },
671         { "fast_taskqueue", &lock_class_mtx_spin },
672         { "intr table", &lock_class_mtx_spin },
673         { "process slock", &lock_class_mtx_spin },
674         { "syscons video lock", &lock_class_mtx_spin },
675         { "sleepq chain", &lock_class_mtx_spin },
676         { "rm_spinlock", &lock_class_mtx_spin },
677         { "turnstile chain", &lock_class_mtx_spin },
678         { "turnstile lock", &lock_class_mtx_spin },
679         { "sched lock", &lock_class_mtx_spin },
680         { "td_contested", &lock_class_mtx_spin },
681         { "callout", &lock_class_mtx_spin },
682         { "entropy harvest mutex", &lock_class_mtx_spin },
683 #ifdef SMP
684         { "smp rendezvous", &lock_class_mtx_spin },
685 #endif
686 #ifdef __powerpc__
687         { "tlb0", &lock_class_mtx_spin },
688 #endif
689         { NULL, NULL },
690         { "sched lock", &lock_class_mtx_spin },
691 #ifdef  HWPMC_HOOKS
692         { "pmc-per-proc", &lock_class_mtx_spin },
693 #endif
694         { NULL, NULL },
695         /*
696          * leaf locks
697          */
698         { "intrcnt", &lock_class_mtx_spin },
699         { "icu", &lock_class_mtx_spin },
700 #if defined(SMP) && defined(__sparc64__)
701         { "ipi", &lock_class_mtx_spin },
702 #endif
703 #ifdef __i386__
704         { "allpmaps", &lock_class_mtx_spin },
705         { "descriptor tables", &lock_class_mtx_spin },
706 #endif
707         { "clk", &lock_class_mtx_spin },
708         { "cpuset", &lock_class_mtx_spin },
709         { "mprof lock", &lock_class_mtx_spin },
710         { "zombie lock", &lock_class_mtx_spin },
711         { "ALD Queue", &lock_class_mtx_spin },
712 #if defined(__i386__) || defined(__amd64__)
713         { "pcicfg", &lock_class_mtx_spin },
714         { "NDIS thread lock", &lock_class_mtx_spin },
715 #endif
716         { "tw_osl_io_lock", &lock_class_mtx_spin },
717         { "tw_osl_q_lock", &lock_class_mtx_spin },
718         { "tw_cl_io_lock", &lock_class_mtx_spin },
719         { "tw_cl_intr_lock", &lock_class_mtx_spin },
720         { "tw_cl_gen_lock", &lock_class_mtx_spin },
721 #ifdef  HWPMC_HOOKS
722         { "pmc-leaf", &lock_class_mtx_spin },
723 #endif
724         { "blocked lock", &lock_class_mtx_spin },
725         { NULL, NULL },
726         { NULL, NULL }
727 };
728
729 #ifdef BLESSING
730 /*
731  * Pairs of locks which have been blessed
732  * Don't complain about order problems with blessed locks
733  */
734 static struct witness_blessed blessed_list[] = {
735 };
736 #endif
737
738 /*
739  * This global is set to 0 once it becomes safe to use the witness code.
740  */
741 static int witness_cold = 1;
742
743 /*
744  * This global is set to 1 once the static lock orders have been enrolled
745  * so that a warning can be issued for any spin locks enrolled later.
746  */
747 static int witness_spin_warn = 0;
748
749 /* Trim useless garbage from filenames. */
750 static const char *
751 fixup_filename(const char *file)
752 {
753
754         if (file == NULL)
755                 return (NULL);
756         while (strncmp(file, "../", 3) == 0)
757                 file += 3;
758         return (file);
759 }
760
761 /*
762  * Calculate the size of early witness structures.
763  */
764 int
765 witness_startup_count(void)
766 {
767         int sz;
768
769         sz = sizeof(struct witness) * witness_count;
770         sz += sizeof(*w_rmatrix) * (witness_count + 1);
771         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
772             (witness_count + 1);
773
774         return (sz);
775 }
776
777 /*
778  * The WITNESS-enabled diagnostic code.  Note that the witness code does
779  * assume that the early boot is single-threaded at least until after this
780  * routine is completed.
781  */
782 void
783 witness_startup(void *mem)
784 {
785         struct lock_object *lock;
786         struct witness_order_list_entry *order;
787         struct witness *w, *w1;
788         uintptr_t p;
789         int i;
790
791         p = (uintptr_t)mem;
792         w_data = (void *)p;
793         p += sizeof(struct witness) * witness_count;
794
795         w_rmatrix = (void *)p;
796         p += sizeof(*w_rmatrix) * (witness_count + 1);
797
798         for (i = 0; i < witness_count + 1; i++) {
799                 w_rmatrix[i] = (void *)p;
800                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
801         }
802         badstack_sbuf_size = witness_count * 256;
803
804         /*
805          * We have to release Giant before initializing its witness
806          * structure so that WITNESS doesn't get confused.
807          */
808         mtx_unlock(&Giant);
809         mtx_assert(&Giant, MA_NOTOWNED);
810
811         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
812         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
813             MTX_NOWITNESS | MTX_NOPROFILE);
814         for (i = witness_count - 1; i >= 0; i--) {
815                 w = &w_data[i];
816                 memset(w, 0, sizeof(*w));
817                 w_data[i].w_index = i;  /* Witness index never changes. */
818                 witness_free(w);
819         }
820         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
821             ("%s: Invalid list of free witness objects", __func__));
822
823         /* Witness with index 0 is not used to aid in debugging. */
824         STAILQ_REMOVE_HEAD(&w_free, w_list);
825         w_free_cnt--;
826
827         for (i = 0; i < witness_count; i++) {
828                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
829                     (witness_count + 1));
830         }
831
832         for (i = 0; i < LOCK_CHILDCOUNT; i++)
833                 witness_lock_list_free(&w_locklistdata[i]);
834         witness_init_hash_tables();
835
836         /* First add in all the specified order lists. */
837         for (order = order_lists; order->w_name != NULL; order++) {
838                 w = enroll(order->w_name, order->w_class);
839                 if (w == NULL)
840                         continue;
841                 w->w_file = "order list";
842                 for (order++; order->w_name != NULL; order++) {
843                         w1 = enroll(order->w_name, order->w_class);
844                         if (w1 == NULL)
845                                 continue;
846                         w1->w_file = "order list";
847                         itismychild(w, w1);
848                         w = w1;
849                 }
850         }
851         witness_spin_warn = 1;
852
853         /* Iterate through all locks and add them to witness. */
854         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
855                 lock = pending_locks[i].wh_lock;
856                 KASSERT(lock->lo_flags & LO_WITNESS,
857                     ("%s: lock %s is on pending list but not LO_WITNESS",
858                     __func__, lock->lo_name));
859                 lock->lo_witness = enroll(pending_locks[i].wh_type,
860                     LOCK_CLASS(lock));
861         }
862
863         /* Mark the witness code as being ready for use. */
864         witness_cold = 0;
865
866         mtx_lock(&Giant);
867 }
868
869 void
870 witness_init(struct lock_object *lock, const char *type)
871 {
872         struct lock_class *class;
873
874         /* Various sanity checks. */
875         class = LOCK_CLASS(lock);
876         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
877             (class->lc_flags & LC_RECURSABLE) == 0)
878                 kassert_panic("%s: lock (%s) %s can not be recursable",
879                     __func__, class->lc_name, lock->lo_name);
880         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
881             (class->lc_flags & LC_SLEEPABLE) == 0)
882                 kassert_panic("%s: lock (%s) %s can not be sleepable",
883                     __func__, class->lc_name, lock->lo_name);
884         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
885             (class->lc_flags & LC_UPGRADABLE) == 0)
886                 kassert_panic("%s: lock (%s) %s can not be upgradable",
887                     __func__, class->lc_name, lock->lo_name);
888
889         /*
890          * If we shouldn't watch this lock, then just clear lo_witness.
891          * Otherwise, if witness_cold is set, then it is too early to
892          * enroll this lock, so defer it to witness_initialize() by adding
893          * it to the pending_locks list.  If it is not too early, then enroll
894          * the lock now.
895          */
896         if (witness_watch < 1 || panicstr != NULL ||
897             (lock->lo_flags & LO_WITNESS) == 0)
898                 lock->lo_witness = NULL;
899         else if (witness_cold) {
900                 pending_locks[pending_cnt].wh_lock = lock;
901                 pending_locks[pending_cnt++].wh_type = type;
902                 if (pending_cnt > WITNESS_PENDLIST)
903                         panic("%s: pending locks list is too small, "
904                             "increase WITNESS_PENDLIST\n",
905                             __func__);
906         } else
907                 lock->lo_witness = enroll(type, class);
908 }
909
910 void
911 witness_destroy(struct lock_object *lock)
912 {
913         struct lock_class *class;
914         struct witness *w;
915
916         class = LOCK_CLASS(lock);
917
918         if (witness_cold)
919                 panic("lock (%s) %s destroyed while witness_cold",
920                     class->lc_name, lock->lo_name);
921
922         /* XXX: need to verify that no one holds the lock */
923         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
924                 return;
925         w = lock->lo_witness;
926
927         mtx_lock_spin(&w_mtx);
928         MPASS(w->w_refcount > 0);
929         w->w_refcount--;
930
931         if (w->w_refcount == 0)
932                 depart(w);
933         mtx_unlock_spin(&w_mtx);
934 }
935
936 #ifdef DDB
937 static void
938 witness_ddb_compute_levels(void)
939 {
940         struct witness *w;
941
942         /*
943          * First clear all levels.
944          */
945         STAILQ_FOREACH(w, &w_all, w_list)
946                 w->w_ddb_level = -1;
947
948         /*
949          * Look for locks with no parents and level all their descendants.
950          */
951         STAILQ_FOREACH(w, &w_all, w_list) {
952
953                 /* If the witness has ancestors (is not a root), skip it. */
954                 if (w->w_num_ancestors > 0)
955                         continue;
956                 witness_ddb_level_descendants(w, 0);
957         }
958 }
959
960 static void
961 witness_ddb_level_descendants(struct witness *w, int l)
962 {
963         int i;
964
965         if (w->w_ddb_level >= l)
966                 return;
967
968         w->w_ddb_level = l;
969         l++;
970
971         for (i = 1; i <= w_max_used_index; i++) {
972                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
973                         witness_ddb_level_descendants(&w_data[i], l);
974         }
975 }
976
977 static void
978 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
979     struct witness *w, int indent)
980 {
981         int i;
982
983         for (i = 0; i < indent; i++)
984                 prnt(" ");
985         prnt("%s (type: %s, depth: %d, active refs: %d)",
986              w->w_name, w->w_class->lc_name,
987              w->w_ddb_level, w->w_refcount);
988         if (w->w_displayed) {
989                 prnt(" -- (already displayed)\n");
990                 return;
991         }
992         w->w_displayed = 1;
993         if (w->w_file != NULL && w->w_line != 0)
994                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
995                     w->w_line);
996         else
997                 prnt(" -- never acquired\n");
998         indent++;
999         WITNESS_INDEX_ASSERT(w->w_index);
1000         for (i = 1; i <= w_max_used_index; i++) {
1001                 if (db_pager_quit)
1002                         return;
1003                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1004                         witness_ddb_display_descendants(prnt, &w_data[i],
1005                             indent);
1006         }
1007 }
1008
1009 static void
1010 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1011     struct witness_list *list)
1012 {
1013         struct witness *w;
1014
1015         STAILQ_FOREACH(w, list, w_typelist) {
1016                 if (w->w_file == NULL || w->w_ddb_level > 0)
1017                         continue;
1018
1019                 /* This lock has no anscestors - display its descendants. */
1020                 witness_ddb_display_descendants(prnt, w, 0);
1021                 if (db_pager_quit)
1022                         return;
1023         }
1024 }
1025         
1026 static void
1027 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1028 {
1029         struct witness *w;
1030
1031         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1032         witness_ddb_compute_levels();
1033
1034         /* Clear all the displayed flags. */
1035         STAILQ_FOREACH(w, &w_all, w_list)
1036                 w->w_displayed = 0;
1037
1038         /*
1039          * First, handle sleep locks which have been acquired at least
1040          * once.
1041          */
1042         prnt("Sleep locks:\n");
1043         witness_ddb_display_list(prnt, &w_sleep);
1044         if (db_pager_quit)
1045                 return;
1046         
1047         /*
1048          * Now do spin locks which have been acquired at least once.
1049          */
1050         prnt("\nSpin locks:\n");
1051         witness_ddb_display_list(prnt, &w_spin);
1052         if (db_pager_quit)
1053                 return;
1054         
1055         /*
1056          * Finally, any locks which have not been acquired yet.
1057          */
1058         prnt("\nLocks which were never acquired:\n");
1059         STAILQ_FOREACH(w, &w_all, w_list) {
1060                 if (w->w_file != NULL || w->w_refcount == 0)
1061                         continue;
1062                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1063                     w->w_class->lc_name, w->w_ddb_level);
1064                 if (db_pager_quit)
1065                         return;
1066         }
1067 }
1068 #endif /* DDB */
1069
1070 int
1071 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1072 {
1073
1074         if (witness_watch == -1 || panicstr != NULL)
1075                 return (0);
1076
1077         /* Require locks that witness knows about. */
1078         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1079             lock2->lo_witness == NULL)
1080                 return (EINVAL);
1081
1082         mtx_assert(&w_mtx, MA_NOTOWNED);
1083         mtx_lock_spin(&w_mtx);
1084
1085         /*
1086          * If we already have either an explicit or implied lock order that
1087          * is the other way around, then return an error.
1088          */
1089         if (witness_watch &&
1090             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1091                 mtx_unlock_spin(&w_mtx);
1092                 return (EDOOFUS);
1093         }
1094         
1095         /* Try to add the new order. */
1096         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1097             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1098         itismychild(lock1->lo_witness, lock2->lo_witness);
1099         mtx_unlock_spin(&w_mtx);
1100         return (0);
1101 }
1102
1103 void
1104 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1105     int line, struct lock_object *interlock)
1106 {
1107         struct lock_list_entry *lock_list, *lle;
1108         struct lock_instance *lock1, *lock2, *plock;
1109         struct lock_class *class, *iclass;
1110         struct witness *w, *w1;
1111         struct thread *td;
1112         int i, j;
1113
1114         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1115             panicstr != NULL)
1116                 return;
1117
1118         w = lock->lo_witness;
1119         class = LOCK_CLASS(lock);
1120         td = curthread;
1121
1122         if (class->lc_flags & LC_SLEEPLOCK) {
1123
1124                 /*
1125                  * Since spin locks include a critical section, this check
1126                  * implicitly enforces a lock order of all sleep locks before
1127                  * all spin locks.
1128                  */
1129                 if (td->td_critnest != 0 && !kdb_active)
1130                         kassert_panic("acquiring blockable sleep lock with "
1131                             "spinlock or critical section held (%s) %s @ %s:%d",
1132                             class->lc_name, lock->lo_name,
1133                             fixup_filename(file), line);
1134
1135                 /*
1136                  * If this is the first lock acquired then just return as
1137                  * no order checking is needed.
1138                  */
1139                 lock_list = td->td_sleeplocks;
1140                 if (lock_list == NULL || lock_list->ll_count == 0)
1141                         return;
1142         } else {
1143
1144                 /*
1145                  * If this is the first lock, just return as no order
1146                  * checking is needed.  Avoid problems with thread
1147                  * migration pinning the thread while checking if
1148                  * spinlocks are held.  If at least one spinlock is held
1149                  * the thread is in a safe path and it is allowed to
1150                  * unpin it.
1151                  */
1152                 sched_pin();
1153                 lock_list = PCPU_GET(spinlocks);
1154                 if (lock_list == NULL || lock_list->ll_count == 0) {
1155                         sched_unpin();
1156                         return;
1157                 }
1158                 sched_unpin();
1159         }
1160
1161         /*
1162          * Check to see if we are recursing on a lock we already own.  If
1163          * so, make sure that we don't mismatch exclusive and shared lock
1164          * acquires.
1165          */
1166         lock1 = find_instance(lock_list, lock);
1167         if (lock1 != NULL) {
1168                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1169                     (flags & LOP_EXCLUSIVE) == 0) {
1170                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1171                             class->lc_name, lock->lo_name,
1172                             fixup_filename(file), line);
1173                         witness_output("while exclusively locked from %s:%d\n",
1174                             fixup_filename(lock1->li_file), lock1->li_line);
1175                         kassert_panic("excl->share");
1176                 }
1177                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1178                     (flags & LOP_EXCLUSIVE) != 0) {
1179                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1180                             class->lc_name, lock->lo_name,
1181                             fixup_filename(file), line);
1182                         witness_output("while share locked from %s:%d\n",
1183                             fixup_filename(lock1->li_file), lock1->li_line);
1184                         kassert_panic("share->excl");
1185                 }
1186                 return;
1187         }
1188
1189         /* Warn if the interlock is not locked exactly once. */
1190         if (interlock != NULL) {
1191                 iclass = LOCK_CLASS(interlock);
1192                 lock1 = find_instance(lock_list, interlock);
1193                 if (lock1 == NULL)
1194                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1195                             iclass->lc_name, interlock->lo_name,
1196                             fixup_filename(file), line);
1197                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1198                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1199                             iclass->lc_name, interlock->lo_name,
1200                             fixup_filename(file), line);
1201         }
1202
1203         /*
1204          * Find the previously acquired lock, but ignore interlocks.
1205          */
1206         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1207         if (interlock != NULL && plock->li_lock == interlock) {
1208                 if (lock_list->ll_count > 1)
1209                         plock =
1210                             &lock_list->ll_children[lock_list->ll_count - 2];
1211                 else {
1212                         lle = lock_list->ll_next;
1213
1214                         /*
1215                          * The interlock is the only lock we hold, so
1216                          * simply return.
1217                          */
1218                         if (lle == NULL)
1219                                 return;
1220                         plock = &lle->ll_children[lle->ll_count - 1];
1221                 }
1222         }
1223         
1224         /*
1225          * Try to perform most checks without a lock.  If this succeeds we
1226          * can skip acquiring the lock and return success.  Otherwise we redo
1227          * the check with the lock held to handle races with concurrent updates.
1228          */
1229         w1 = plock->li_lock->lo_witness;
1230         if (witness_lock_order_check(w1, w))
1231                 return;
1232
1233         mtx_lock_spin(&w_mtx);
1234         if (witness_lock_order_check(w1, w)) {
1235                 mtx_unlock_spin(&w_mtx);
1236                 return;
1237         }
1238         witness_lock_order_add(w1, w);
1239
1240         /*
1241          * Check for duplicate locks of the same type.  Note that we only
1242          * have to check for this on the last lock we just acquired.  Any
1243          * other cases will be caught as lock order violations.
1244          */
1245         if (w1 == w) {
1246                 i = w->w_index;
1247                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1248                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1249                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1250                         w->w_reversed = 1;
1251                         mtx_unlock_spin(&w_mtx);
1252                         witness_output(
1253                             "acquiring duplicate lock of same type: \"%s\"\n", 
1254                             w->w_name);
1255                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1256                             fixup_filename(plock->li_file), plock->li_line);
1257                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1258                             fixup_filename(file), line);
1259                         witness_debugger(1, __func__);
1260                 } else
1261                         mtx_unlock_spin(&w_mtx);
1262                 return;
1263         }
1264         mtx_assert(&w_mtx, MA_OWNED);
1265
1266         /*
1267          * If we know that the lock we are acquiring comes after
1268          * the lock we most recently acquired in the lock order tree,
1269          * then there is no need for any further checks.
1270          */
1271         if (isitmychild(w1, w))
1272                 goto out;
1273
1274         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1275                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1276
1277                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1278                         lock1 = &lle->ll_children[i];
1279
1280                         /*
1281                          * Ignore the interlock.
1282                          */
1283                         if (interlock == lock1->li_lock)
1284                                 continue;
1285
1286                         /*
1287                          * If this lock doesn't undergo witness checking,
1288                          * then skip it.
1289                          */
1290                         w1 = lock1->li_lock->lo_witness;
1291                         if (w1 == NULL) {
1292                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1293                                     ("lock missing witness structure"));
1294                                 continue;
1295                         }
1296
1297                         /*
1298                          * If we are locking Giant and this is a sleepable
1299                          * lock, then skip it.
1300                          */
1301                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1302                             lock == &Giant.lock_object)
1303                                 continue;
1304
1305                         /*
1306                          * If we are locking a sleepable lock and this lock
1307                          * is Giant, then skip it.
1308                          */
1309                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1310                             lock1->li_lock == &Giant.lock_object)
1311                                 continue;
1312
1313                         /*
1314                          * If we are locking a sleepable lock and this lock
1315                          * isn't sleepable, we want to treat it as a lock
1316                          * order violation to enfore a general lock order of
1317                          * sleepable locks before non-sleepable locks.
1318                          */
1319                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1320                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1321                                 goto reversal;
1322
1323                         /*
1324                          * If we are locking Giant and this is a non-sleepable
1325                          * lock, then treat it as a reversal.
1326                          */
1327                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1328                             lock == &Giant.lock_object)
1329                                 goto reversal;
1330
1331                         /*
1332                          * Check the lock order hierarchy for a reveresal.
1333                          */
1334                         if (!isitmydescendant(w, w1))
1335                                 continue;
1336                 reversal:
1337
1338                         /*
1339                          * We have a lock order violation, check to see if it
1340                          * is allowed or has already been yelled about.
1341                          */
1342 #ifdef BLESSING
1343
1344                         /*
1345                          * If the lock order is blessed, just bail.  We don't
1346                          * look for other lock order violations though, which
1347                          * may be a bug.
1348                          */
1349                         if (blessed(w, w1))
1350                                 goto out;
1351 #endif
1352
1353                         /* Bail if this violation is known */
1354                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1355                                 goto out;
1356
1357                         /* Record this as a violation */
1358                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1359                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1360                         w->w_reversed = w1->w_reversed = 1;
1361                         witness_increment_graph_generation();
1362                         mtx_unlock_spin(&w_mtx);
1363
1364 #ifdef WITNESS_NO_VNODE
1365                         /*
1366                          * There are known LORs between VNODE locks. They are
1367                          * not an indication of a bug. VNODE locks are flagged
1368                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1369                          * is between 2 VNODE locks.
1370                          */
1371                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1372                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1373                                 return;
1374 #endif
1375
1376                         /*
1377                          * Ok, yell about it.
1378                          */
1379                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1380                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1381                                 witness_output(
1382                 "lock order reversal: (sleepable after non-sleepable)\n");
1383                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1384                             && lock == &Giant.lock_object)
1385                                 witness_output(
1386                 "lock order reversal: (Giant after non-sleepable)\n");
1387                         else
1388                                 witness_output("lock order reversal:\n");
1389
1390                         /*
1391                          * Try to locate an earlier lock with
1392                          * witness w in our list.
1393                          */
1394                         do {
1395                                 lock2 = &lle->ll_children[i];
1396                                 MPASS(lock2->li_lock != NULL);
1397                                 if (lock2->li_lock->lo_witness == w)
1398                                         break;
1399                                 if (i == 0 && lle->ll_next != NULL) {
1400                                         lle = lle->ll_next;
1401                                         i = lle->ll_count - 1;
1402                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1403                                 } else
1404                                         i--;
1405                         } while (i >= 0);
1406                         if (i < 0) {
1407                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1408                                     lock1->li_lock, lock1->li_lock->lo_name,
1409                                     w1->w_name, fixup_filename(lock1->li_file),
1410                                     lock1->li_line);
1411                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1412                                     lock->lo_name, w->w_name,
1413                                     fixup_filename(file), line);
1414                         } else {
1415                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1416                                     lock2->li_lock, lock2->li_lock->lo_name,
1417                                     lock2->li_lock->lo_witness->w_name,
1418                                     fixup_filename(lock2->li_file),
1419                                     lock2->li_line);
1420                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1421                                     lock1->li_lock, lock1->li_lock->lo_name,
1422                                     w1->w_name, fixup_filename(lock1->li_file),
1423                                     lock1->li_line);
1424                                 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1425                                     lock->lo_name, w->w_name,
1426                                     fixup_filename(file), line);
1427                         }
1428                         witness_debugger(1, __func__);
1429                         return;
1430                 }
1431         }
1432
1433         /*
1434          * If requested, build a new lock order.  However, don't build a new
1435          * relationship between a sleepable lock and Giant if it is in the
1436          * wrong direction.  The correct lock order is that sleepable locks
1437          * always come before Giant.
1438          */
1439         if (flags & LOP_NEWORDER &&
1440             !(plock->li_lock == &Giant.lock_object &&
1441             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1442                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1443                     w->w_name, plock->li_lock->lo_witness->w_name);
1444                 itismychild(plock->li_lock->lo_witness, w);
1445         }
1446 out:
1447         mtx_unlock_spin(&w_mtx);
1448 }
1449
1450 void
1451 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1452 {
1453         struct lock_list_entry **lock_list, *lle;
1454         struct lock_instance *instance;
1455         struct witness *w;
1456         struct thread *td;
1457
1458         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1459             panicstr != NULL)
1460                 return;
1461         w = lock->lo_witness;
1462         td = curthread;
1463
1464         /* Determine lock list for this lock. */
1465         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1466                 lock_list = &td->td_sleeplocks;
1467         else
1468                 lock_list = PCPU_PTR(spinlocks);
1469
1470         /* Check to see if we are recursing on a lock we already own. */
1471         instance = find_instance(*lock_list, lock);
1472         if (instance != NULL) {
1473                 instance->li_flags++;
1474                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1475                     td->td_proc->p_pid, lock->lo_name,
1476                     instance->li_flags & LI_RECURSEMASK);
1477                 instance->li_file = file;
1478                 instance->li_line = line;
1479                 return;
1480         }
1481
1482         /* Update per-witness last file and line acquire. */
1483         w->w_file = file;
1484         w->w_line = line;
1485
1486         /* Find the next open lock instance in the list and fill it. */
1487         lle = *lock_list;
1488         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1489                 lle = witness_lock_list_get();
1490                 if (lle == NULL)
1491                         return;
1492                 lle->ll_next = *lock_list;
1493                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1494                     td->td_proc->p_pid, lle);
1495                 *lock_list = lle;
1496         }
1497         instance = &lle->ll_children[lle->ll_count++];
1498         instance->li_lock = lock;
1499         instance->li_line = line;
1500         instance->li_file = file;
1501         if ((flags & LOP_EXCLUSIVE) != 0)
1502                 instance->li_flags = LI_EXCLUSIVE;
1503         else
1504                 instance->li_flags = 0;
1505         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1506             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1507 }
1508
1509 void
1510 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1511 {
1512         struct lock_instance *instance;
1513         struct lock_class *class;
1514
1515         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1516         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1517                 return;
1518         class = LOCK_CLASS(lock);
1519         if (witness_watch) {
1520                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1521                         kassert_panic(
1522                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1523                             class->lc_name, lock->lo_name,
1524                             fixup_filename(file), line);
1525                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1526                         kassert_panic(
1527                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1528                             class->lc_name, lock->lo_name,
1529                             fixup_filename(file), line);
1530         }
1531         instance = find_instance(curthread->td_sleeplocks, lock);
1532         if (instance == NULL) {
1533                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1534                     class->lc_name, lock->lo_name,
1535                     fixup_filename(file), line);
1536                 return;
1537         }
1538         if (witness_watch) {
1539                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1540                         kassert_panic(
1541                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1542                             class->lc_name, lock->lo_name,
1543                             fixup_filename(file), line);
1544                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1545                         kassert_panic(
1546                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1547                             class->lc_name, lock->lo_name,
1548                             instance->li_flags & LI_RECURSEMASK,
1549                             fixup_filename(file), line);
1550         }
1551         instance->li_flags |= LI_EXCLUSIVE;
1552 }
1553
1554 void
1555 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1556     int line)
1557 {
1558         struct lock_instance *instance;
1559         struct lock_class *class;
1560
1561         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1562         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1563                 return;
1564         class = LOCK_CLASS(lock);
1565         if (witness_watch) {
1566                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1567                         kassert_panic(
1568                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1569                             class->lc_name, lock->lo_name,
1570                             fixup_filename(file), line);
1571                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1572                         kassert_panic(
1573                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1574                             class->lc_name, lock->lo_name,
1575                             fixup_filename(file), line);
1576         }
1577         instance = find_instance(curthread->td_sleeplocks, lock);
1578         if (instance == NULL) {
1579                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1580                     class->lc_name, lock->lo_name,
1581                     fixup_filename(file), line);
1582                 return;
1583         }
1584         if (witness_watch) {
1585                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1586                         kassert_panic(
1587                             "downgrade of shared lock (%s) %s @ %s:%d",
1588                             class->lc_name, lock->lo_name,
1589                             fixup_filename(file), line);
1590                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1591                         kassert_panic(
1592                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1593                             class->lc_name, lock->lo_name,
1594                             instance->li_flags & LI_RECURSEMASK,
1595                             fixup_filename(file), line);
1596         }
1597         instance->li_flags &= ~LI_EXCLUSIVE;
1598 }
1599
1600 void
1601 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1602 {
1603         struct lock_list_entry **lock_list, *lle;
1604         struct lock_instance *instance;
1605         struct lock_class *class;
1606         struct thread *td;
1607         register_t s;
1608         int i, j;
1609
1610         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1611                 return;
1612         td = curthread;
1613         class = LOCK_CLASS(lock);
1614
1615         /* Find lock instance associated with this lock. */
1616         if (class->lc_flags & LC_SLEEPLOCK)
1617                 lock_list = &td->td_sleeplocks;
1618         else
1619                 lock_list = PCPU_PTR(spinlocks);
1620         lle = *lock_list;
1621         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1622                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1623                         instance = &(*lock_list)->ll_children[i];
1624                         if (instance->li_lock == lock)
1625                                 goto found;
1626                 }
1627
1628         /*
1629          * When disabling WITNESS through witness_watch we could end up in
1630          * having registered locks in the td_sleeplocks queue.
1631          * We have to make sure we flush these queues, so just search for
1632          * eventual register locks and remove them.
1633          */
1634         if (witness_watch > 0) {
1635                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1636                     lock->lo_name, fixup_filename(file), line);
1637                 return;
1638         } else {
1639                 return;
1640         }
1641 found:
1642
1643         /* First, check for shared/exclusive mismatches. */
1644         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1645             (flags & LOP_EXCLUSIVE) == 0) {
1646                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1647                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1648                 witness_output("while exclusively locked from %s:%d\n",
1649                     fixup_filename(instance->li_file), instance->li_line);
1650                 kassert_panic("excl->ushare");
1651         }
1652         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1653             (flags & LOP_EXCLUSIVE) != 0) {
1654                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1655                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1656                 witness_output("while share locked from %s:%d\n",
1657                     fixup_filename(instance->li_file),
1658                     instance->li_line);
1659                 kassert_panic("share->uexcl");
1660         }
1661         /* If we are recursed, unrecurse. */
1662         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1663                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1664                     td->td_proc->p_pid, instance->li_lock->lo_name,
1665                     instance->li_flags);
1666                 instance->li_flags--;
1667                 return;
1668         }
1669         /* The lock is now being dropped, check for NORELEASE flag */
1670         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1671                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1672                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1673                 kassert_panic("lock marked norelease");
1674         }
1675
1676         /* Otherwise, remove this item from the list. */
1677         s = intr_disable();
1678         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1679             td->td_proc->p_pid, instance->li_lock->lo_name,
1680             (*lock_list)->ll_count - 1);
1681         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1682                 (*lock_list)->ll_children[j] =
1683                     (*lock_list)->ll_children[j + 1];
1684         (*lock_list)->ll_count--;
1685         intr_restore(s);
1686
1687         /*
1688          * In order to reduce contention on w_mtx, we want to keep always an
1689          * head object into lists so that frequent allocation from the 
1690          * free witness pool (and subsequent locking) is avoided.
1691          * In order to maintain the current code simple, when the head
1692          * object is totally unloaded it means also that we do not have
1693          * further objects in the list, so the list ownership needs to be
1694          * hand over to another object if the current head needs to be freed.
1695          */
1696         if ((*lock_list)->ll_count == 0) {
1697                 if (*lock_list == lle) {
1698                         if (lle->ll_next == NULL)
1699                                 return;
1700                 } else
1701                         lle = *lock_list;
1702                 *lock_list = lle->ll_next;
1703                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1704                     td->td_proc->p_pid, lle);
1705                 witness_lock_list_free(lle);
1706         }
1707 }
1708
1709 void
1710 witness_thread_exit(struct thread *td)
1711 {
1712         struct lock_list_entry *lle;
1713         int i, n;
1714
1715         lle = td->td_sleeplocks;
1716         if (lle == NULL || panicstr != NULL)
1717                 return;
1718         if (lle->ll_count != 0) {
1719                 for (n = 0; lle != NULL; lle = lle->ll_next)
1720                         for (i = lle->ll_count - 1; i >= 0; i--) {
1721                                 if (n == 0)
1722                                         witness_output(
1723                     "Thread %p exiting with the following locks held:\n", td);
1724                                 n++;
1725                                 witness_list_lock(&lle->ll_children[i],
1726                                     witness_output);
1727                                 
1728                         }
1729                 kassert_panic(
1730                     "Thread %p cannot exit while holding sleeplocks\n", td);
1731         }
1732         witness_lock_list_free(lle);
1733 }
1734
1735 /*
1736  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1737  * exempt Giant and sleepable locks from the checks as well.  If any
1738  * non-exempt locks are held, then a supplied message is printed to the
1739  * output channel along with a list of the offending locks.  If indicated in the
1740  * flags then a failure results in a panic as well.
1741  */
1742 int
1743 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1744 {
1745         struct lock_list_entry *lock_list, *lle;
1746         struct lock_instance *lock1;
1747         struct thread *td;
1748         va_list ap;
1749         int i, n;
1750
1751         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1752                 return (0);
1753         n = 0;
1754         td = curthread;
1755         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1756                 for (i = lle->ll_count - 1; i >= 0; i--) {
1757                         lock1 = &lle->ll_children[i];
1758                         if (lock1->li_lock == lock)
1759                                 continue;
1760                         if (flags & WARN_GIANTOK &&
1761                             lock1->li_lock == &Giant.lock_object)
1762                                 continue;
1763                         if (flags & WARN_SLEEPOK &&
1764                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1765                                 continue;
1766                         if (n == 0) {
1767                                 va_start(ap, fmt);
1768                                 vprintf(fmt, ap);
1769                                 va_end(ap);
1770                                 printf(" with the following %slocks held:\n",
1771                                     (flags & WARN_SLEEPOK) != 0 ?
1772                                     "non-sleepable " : "");
1773                         }
1774                         n++;
1775                         witness_list_lock(lock1, printf);
1776                 }
1777
1778         /*
1779          * Pin the thread in order to avoid problems with thread migration.
1780          * Once that all verifies are passed about spinlocks ownership,
1781          * the thread is in a safe path and it can be unpinned.
1782          */
1783         sched_pin();
1784         lock_list = PCPU_GET(spinlocks);
1785         if (lock_list != NULL && lock_list->ll_count != 0) {
1786                 sched_unpin();
1787
1788                 /*
1789                  * We should only have one spinlock and as long as
1790                  * the flags cannot match for this locks class,
1791                  * check if the first spinlock is the one curthread
1792                  * should hold.
1793                  */
1794                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1795                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1796                     lock1->li_lock == lock && n == 0)
1797                         return (0);
1798
1799                 va_start(ap, fmt);
1800                 vprintf(fmt, ap);
1801                 va_end(ap);
1802                 printf(" with the following %slocks held:\n",
1803                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1804                 n += witness_list_locks(&lock_list, printf);
1805         } else
1806                 sched_unpin();
1807         if (flags & WARN_PANIC && n)
1808                 kassert_panic("%s", __func__);
1809         else
1810                 witness_debugger(n, __func__);
1811         return (n);
1812 }
1813
1814 const char *
1815 witness_file(struct lock_object *lock)
1816 {
1817         struct witness *w;
1818
1819         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1820                 return ("?");
1821         w = lock->lo_witness;
1822         return (w->w_file);
1823 }
1824
1825 int
1826 witness_line(struct lock_object *lock)
1827 {
1828         struct witness *w;
1829
1830         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1831                 return (0);
1832         w = lock->lo_witness;
1833         return (w->w_line);
1834 }
1835
1836 static struct witness *
1837 enroll(const char *description, struct lock_class *lock_class)
1838 {
1839         struct witness *w;
1840
1841         MPASS(description != NULL);
1842
1843         if (witness_watch == -1 || panicstr != NULL)
1844                 return (NULL);
1845         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1846                 if (witness_skipspin)
1847                         return (NULL);
1848         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1849                 kassert_panic("lock class %s is not sleep or spin",
1850                     lock_class->lc_name);
1851                 return (NULL);
1852         }
1853
1854         mtx_lock_spin(&w_mtx);
1855         w = witness_hash_get(description);
1856         if (w)
1857                 goto found;
1858         if ((w = witness_get()) == NULL)
1859                 return (NULL);
1860         MPASS(strlen(description) < MAX_W_NAME);
1861         strcpy(w->w_name, description);
1862         w->w_class = lock_class;
1863         w->w_refcount = 1;
1864         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1865         if (lock_class->lc_flags & LC_SPINLOCK) {
1866                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1867                 w_spin_cnt++;
1868         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1869                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1870                 w_sleep_cnt++;
1871         }
1872
1873         /* Insert new witness into the hash */
1874         witness_hash_put(w);
1875         witness_increment_graph_generation();
1876         mtx_unlock_spin(&w_mtx);
1877         return (w);
1878 found:
1879         w->w_refcount++;
1880         if (w->w_refcount == 1)
1881                 w->w_class = lock_class;
1882         mtx_unlock_spin(&w_mtx);
1883         if (lock_class != w->w_class)
1884                 kassert_panic(
1885                     "lock (%s) %s does not match earlier (%s) lock",
1886                     description, lock_class->lc_name,
1887                     w->w_class->lc_name);
1888         return (w);
1889 }
1890
1891 static void
1892 depart(struct witness *w)
1893 {
1894
1895         MPASS(w->w_refcount == 0);
1896         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1897                 w_sleep_cnt--;
1898         } else {
1899                 w_spin_cnt--;
1900         }
1901         /*
1902          * Set file to NULL as it may point into a loadable module.
1903          */
1904         w->w_file = NULL;
1905         w->w_line = 0;
1906         witness_increment_graph_generation();
1907 }
1908
1909
1910 static void
1911 adopt(struct witness *parent, struct witness *child)
1912 {
1913         int pi, ci, i, j;
1914
1915         if (witness_cold == 0)
1916                 mtx_assert(&w_mtx, MA_OWNED);
1917
1918         /* If the relationship is already known, there's no work to be done. */
1919         if (isitmychild(parent, child))
1920                 return;
1921
1922         /* When the structure of the graph changes, bump up the generation. */
1923         witness_increment_graph_generation();
1924
1925         /*
1926          * The hard part ... create the direct relationship, then propagate all
1927          * indirect relationships.
1928          */
1929         pi = parent->w_index;
1930         ci = child->w_index;
1931         WITNESS_INDEX_ASSERT(pi);
1932         WITNESS_INDEX_ASSERT(ci);
1933         MPASS(pi != ci);
1934         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1935         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1936
1937         /*
1938          * If parent was not already an ancestor of child,
1939          * then we increment the descendant and ancestor counters.
1940          */
1941         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1942                 parent->w_num_descendants++;
1943                 child->w_num_ancestors++;
1944         }
1945
1946         /* 
1947          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1948          * an ancestor of 'pi' during this loop.
1949          */
1950         for (i = 1; i <= w_max_used_index; i++) {
1951                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1952                     (i != pi))
1953                         continue;
1954
1955                 /* Find each descendant of 'i' and mark it as a descendant. */
1956                 for (j = 1; j <= w_max_used_index; j++) {
1957
1958                         /* 
1959                          * Skip children that are already marked as
1960                          * descendants of 'i'.
1961                          */
1962                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1963                                 continue;
1964
1965                         /*
1966                          * We are only interested in descendants of 'ci'. Note
1967                          * that 'ci' itself is counted as a descendant of 'ci'.
1968                          */
1969                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1970                             (j != ci))
1971                                 continue;
1972                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1973                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1974                         w_data[i].w_num_descendants++;
1975                         w_data[j].w_num_ancestors++;
1976
1977                         /* 
1978                          * Make sure we aren't marking a node as both an
1979                          * ancestor and descendant. We should have caught 
1980                          * this as a lock order reversal earlier.
1981                          */
1982                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1983                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1984                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1985                                     "both ancestor and descendant\n",
1986                                     i, j, w_rmatrix[i][j]); 
1987                                 kdb_backtrace();
1988                                 printf("Witness disabled.\n");
1989                                 witness_watch = -1;
1990                         }
1991                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1992                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1993                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1994                                     "both ancestor and descendant\n",
1995                                     j, i, w_rmatrix[j][i]); 
1996                                 kdb_backtrace();
1997                                 printf("Witness disabled.\n");
1998                                 witness_watch = -1;
1999                         }
2000                 }
2001         }
2002 }
2003
2004 static void
2005 itismychild(struct witness *parent, struct witness *child)
2006 {
2007         int unlocked;
2008
2009         MPASS(child != NULL && parent != NULL);
2010         if (witness_cold == 0)
2011                 mtx_assert(&w_mtx, MA_OWNED);
2012
2013         if (!witness_lock_type_equal(parent, child)) {
2014                 if (witness_cold == 0) {
2015                         unlocked = 1;
2016                         mtx_unlock_spin(&w_mtx);
2017                 } else {
2018                         unlocked = 0;
2019                 }
2020                 kassert_panic(
2021                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2022                     "the same lock type", __func__, parent->w_name,
2023                     parent->w_class->lc_name, child->w_name,
2024                     child->w_class->lc_name);
2025                 if (unlocked)
2026                         mtx_lock_spin(&w_mtx);
2027         }
2028         adopt(parent, child);
2029 }
2030
2031 /*
2032  * Generic code for the isitmy*() functions. The rmask parameter is the
2033  * expected relationship of w1 to w2.
2034  */
2035 static int
2036 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2037 {
2038         unsigned char r1, r2;
2039         int i1, i2;
2040
2041         i1 = w1->w_index;
2042         i2 = w2->w_index;
2043         WITNESS_INDEX_ASSERT(i1);
2044         WITNESS_INDEX_ASSERT(i2);
2045         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2046         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2047
2048         /* The flags on one better be the inverse of the flags on the other */
2049         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2050             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2051                 /* Don't squawk if we're potentially racing with an update. */
2052                 if (!mtx_owned(&w_mtx))
2053                         return (0);
2054                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2055                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2056                     "w_rmatrix[%d][%d] == %hhx\n",
2057                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2058                     i2, i1, r2);
2059                 kdb_backtrace();
2060                 printf("Witness disabled.\n");
2061                 witness_watch = -1;
2062         }
2063         return (r1 & rmask);
2064 }
2065
2066 /*
2067  * Checks if @child is a direct child of @parent.
2068  */
2069 static int
2070 isitmychild(struct witness *parent, struct witness *child)
2071 {
2072
2073         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2074 }
2075
2076 /*
2077  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2078  */
2079 static int
2080 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2081 {
2082
2083         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2084             __func__));
2085 }
2086
2087 #ifdef BLESSING
2088 static int
2089 blessed(struct witness *w1, struct witness *w2)
2090 {
2091         int i;
2092         struct witness_blessed *b;
2093
2094         for (i = 0; i < nitems(blessed_list); i++) {
2095                 b = &blessed_list[i];
2096                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2097                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2098                                 return (1);
2099                         continue;
2100                 }
2101                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2102                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2103                                 return (1);
2104         }
2105         return (0);
2106 }
2107 #endif
2108
2109 static struct witness *
2110 witness_get(void)
2111 {
2112         struct witness *w;
2113         int index;
2114
2115         if (witness_cold == 0)
2116                 mtx_assert(&w_mtx, MA_OWNED);
2117
2118         if (witness_watch == -1) {
2119                 mtx_unlock_spin(&w_mtx);
2120                 return (NULL);
2121         }
2122         if (STAILQ_EMPTY(&w_free)) {
2123                 witness_watch = -1;
2124                 mtx_unlock_spin(&w_mtx);
2125                 printf("WITNESS: unable to allocate a new witness object\n");
2126                 return (NULL);
2127         }
2128         w = STAILQ_FIRST(&w_free);
2129         STAILQ_REMOVE_HEAD(&w_free, w_list);
2130         w_free_cnt--;
2131         index = w->w_index;
2132         MPASS(index > 0 && index == w_max_used_index+1 &&
2133             index < witness_count);
2134         bzero(w, sizeof(*w));
2135         w->w_index = index;
2136         if (index > w_max_used_index)
2137                 w_max_used_index = index;
2138         return (w);
2139 }
2140
2141 static void
2142 witness_free(struct witness *w)
2143 {
2144
2145         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2146         w_free_cnt++;
2147 }
2148
2149 static struct lock_list_entry *
2150 witness_lock_list_get(void)
2151 {
2152         struct lock_list_entry *lle;
2153
2154         if (witness_watch == -1)
2155                 return (NULL);
2156         mtx_lock_spin(&w_mtx);
2157         lle = w_lock_list_free;
2158         if (lle == NULL) {
2159                 witness_watch = -1;
2160                 mtx_unlock_spin(&w_mtx);
2161                 printf("%s: witness exhausted\n", __func__);
2162                 return (NULL);
2163         }
2164         w_lock_list_free = lle->ll_next;
2165         mtx_unlock_spin(&w_mtx);
2166         bzero(lle, sizeof(*lle));
2167         return (lle);
2168 }
2169                 
2170 static void
2171 witness_lock_list_free(struct lock_list_entry *lle)
2172 {
2173
2174         mtx_lock_spin(&w_mtx);
2175         lle->ll_next = w_lock_list_free;
2176         w_lock_list_free = lle;
2177         mtx_unlock_spin(&w_mtx);
2178 }
2179
2180 static struct lock_instance *
2181 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2182 {
2183         struct lock_list_entry *lle;
2184         struct lock_instance *instance;
2185         int i;
2186
2187         for (lle = list; lle != NULL; lle = lle->ll_next)
2188                 for (i = lle->ll_count - 1; i >= 0; i--) {
2189                         instance = &lle->ll_children[i];
2190                         if (instance->li_lock == lock)
2191                                 return (instance);
2192                 }
2193         return (NULL);
2194 }
2195
2196 static void
2197 witness_list_lock(struct lock_instance *instance,
2198     int (*prnt)(const char *fmt, ...))
2199 {
2200         struct lock_object *lock;
2201
2202         lock = instance->li_lock;
2203         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2204             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2205         if (lock->lo_witness->w_name != lock->lo_name)
2206                 prnt(" (%s)", lock->lo_witness->w_name);
2207         prnt(" r = %d (%p) locked @ %s:%d\n",
2208             instance->li_flags & LI_RECURSEMASK, lock,
2209             fixup_filename(instance->li_file), instance->li_line);
2210 }
2211
2212 static int
2213 witness_output(const char *fmt, ...)
2214 {
2215         va_list ap;
2216         int ret;
2217
2218         va_start(ap, fmt);
2219         ret = witness_voutput(fmt, ap);
2220         va_end(ap);
2221         return (ret);
2222 }
2223
2224 static int
2225 witness_voutput(const char *fmt, va_list ap)
2226 {
2227         int ret;
2228
2229         ret = 0;
2230         switch (witness_channel) {
2231         case WITNESS_CONSOLE:
2232                 ret = vprintf(fmt, ap);
2233                 break;
2234         case WITNESS_LOG:
2235                 vlog(LOG_NOTICE, fmt, ap);
2236                 break;
2237         case WITNESS_NONE:
2238                 break;
2239         }
2240         return (ret);
2241 }
2242
2243 #ifdef DDB
2244 static int
2245 witness_thread_has_locks(struct thread *td)
2246 {
2247
2248         if (td->td_sleeplocks == NULL)
2249                 return (0);
2250         return (td->td_sleeplocks->ll_count != 0);
2251 }
2252
2253 static int
2254 witness_proc_has_locks(struct proc *p)
2255 {
2256         struct thread *td;
2257
2258         FOREACH_THREAD_IN_PROC(p, td) {
2259                 if (witness_thread_has_locks(td))
2260                         return (1);
2261         }
2262         return (0);
2263 }
2264 #endif
2265
2266 int
2267 witness_list_locks(struct lock_list_entry **lock_list,
2268     int (*prnt)(const char *fmt, ...))
2269 {
2270         struct lock_list_entry *lle;
2271         int i, nheld;
2272
2273         nheld = 0;
2274         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2275                 for (i = lle->ll_count - 1; i >= 0; i--) {
2276                         witness_list_lock(&lle->ll_children[i], prnt);
2277                         nheld++;
2278                 }
2279         return (nheld);
2280 }
2281
2282 /*
2283  * This is a bit risky at best.  We call this function when we have timed
2284  * out acquiring a spin lock, and we assume that the other CPU is stuck
2285  * with this lock held.  So, we go groveling around in the other CPU's
2286  * per-cpu data to try to find the lock instance for this spin lock to
2287  * see when it was last acquired.
2288  */
2289 void
2290 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2291     int (*prnt)(const char *fmt, ...))
2292 {
2293         struct lock_instance *instance;
2294         struct pcpu *pc;
2295
2296         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2297                 return;
2298         pc = pcpu_find(owner->td_oncpu);
2299         instance = find_instance(pc->pc_spinlocks, lock);
2300         if (instance != NULL)
2301                 witness_list_lock(instance, prnt);
2302 }
2303
2304 void
2305 witness_save(struct lock_object *lock, const char **filep, int *linep)
2306 {
2307         struct lock_list_entry *lock_list;
2308         struct lock_instance *instance;
2309         struct lock_class *class;
2310
2311         /*
2312          * This function is used independently in locking code to deal with
2313          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2314          * is gone.
2315          */
2316         if (SCHEDULER_STOPPED())
2317                 return;
2318         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2319         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2320                 return;
2321         class = LOCK_CLASS(lock);
2322         if (class->lc_flags & LC_SLEEPLOCK)
2323                 lock_list = curthread->td_sleeplocks;
2324         else {
2325                 if (witness_skipspin)
2326                         return;
2327                 lock_list = PCPU_GET(spinlocks);
2328         }
2329         instance = find_instance(lock_list, lock);
2330         if (instance == NULL) {
2331                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2332                     class->lc_name, lock->lo_name);
2333                 return;
2334         }
2335         *filep = instance->li_file;
2336         *linep = instance->li_line;
2337 }
2338
2339 void
2340 witness_restore(struct lock_object *lock, const char *file, int line)
2341 {
2342         struct lock_list_entry *lock_list;
2343         struct lock_instance *instance;
2344         struct lock_class *class;
2345
2346         /*
2347          * This function is used independently in locking code to deal with
2348          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2349          * is gone.
2350          */
2351         if (SCHEDULER_STOPPED())
2352                 return;
2353         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2354         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2355                 return;
2356         class = LOCK_CLASS(lock);
2357         if (class->lc_flags & LC_SLEEPLOCK)
2358                 lock_list = curthread->td_sleeplocks;
2359         else {
2360                 if (witness_skipspin)
2361                         return;
2362                 lock_list = PCPU_GET(spinlocks);
2363         }
2364         instance = find_instance(lock_list, lock);
2365         if (instance == NULL)
2366                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2367                     class->lc_name, lock->lo_name);
2368         lock->lo_witness->w_file = file;
2369         lock->lo_witness->w_line = line;
2370         if (instance == NULL)
2371                 return;
2372         instance->li_file = file;
2373         instance->li_line = line;
2374 }
2375
2376 void
2377 witness_assert(const struct lock_object *lock, int flags, const char *file,
2378     int line)
2379 {
2380 #ifdef INVARIANT_SUPPORT
2381         struct lock_instance *instance;
2382         struct lock_class *class;
2383
2384         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2385                 return;
2386         class = LOCK_CLASS(lock);
2387         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2388                 instance = find_instance(curthread->td_sleeplocks, lock);
2389         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2390                 instance = find_instance(PCPU_GET(spinlocks), lock);
2391         else {
2392                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2393                     class->lc_name, lock->lo_name);
2394                 return;
2395         }
2396         switch (flags) {
2397         case LA_UNLOCKED:
2398                 if (instance != NULL)
2399                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2400                             class->lc_name, lock->lo_name,
2401                             fixup_filename(file), line);
2402                 break;
2403         case LA_LOCKED:
2404         case LA_LOCKED | LA_RECURSED:
2405         case LA_LOCKED | LA_NOTRECURSED:
2406         case LA_SLOCKED:
2407         case LA_SLOCKED | LA_RECURSED:
2408         case LA_SLOCKED | LA_NOTRECURSED:
2409         case LA_XLOCKED:
2410         case LA_XLOCKED | LA_RECURSED:
2411         case LA_XLOCKED | LA_NOTRECURSED:
2412                 if (instance == NULL) {
2413                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2414                             class->lc_name, lock->lo_name,
2415                             fixup_filename(file), line);
2416                         break;
2417                 }
2418                 if ((flags & LA_XLOCKED) != 0 &&
2419                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2420                         kassert_panic(
2421                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2422                             class->lc_name, lock->lo_name,
2423                             fixup_filename(file), line);
2424                 if ((flags & LA_SLOCKED) != 0 &&
2425                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2426                         kassert_panic(
2427                             "Lock (%s) %s exclusively locked @ %s:%d.",
2428                             class->lc_name, lock->lo_name,
2429                             fixup_filename(file), line);
2430                 if ((flags & LA_RECURSED) != 0 &&
2431                     (instance->li_flags & LI_RECURSEMASK) == 0)
2432                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2433                             class->lc_name, lock->lo_name,
2434                             fixup_filename(file), line);
2435                 if ((flags & LA_NOTRECURSED) != 0 &&
2436                     (instance->li_flags & LI_RECURSEMASK) != 0)
2437                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2438                             class->lc_name, lock->lo_name,
2439                             fixup_filename(file), line);
2440                 break;
2441         default:
2442                 kassert_panic("Invalid lock assertion at %s:%d.",
2443                     fixup_filename(file), line);
2444
2445         }
2446 #endif  /* INVARIANT_SUPPORT */
2447 }
2448
2449 static void
2450 witness_setflag(struct lock_object *lock, int flag, int set)
2451 {
2452         struct lock_list_entry *lock_list;
2453         struct lock_instance *instance;
2454         struct lock_class *class;
2455
2456         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2457                 return;
2458         class = LOCK_CLASS(lock);
2459         if (class->lc_flags & LC_SLEEPLOCK)
2460                 lock_list = curthread->td_sleeplocks;
2461         else {
2462                 if (witness_skipspin)
2463                         return;
2464                 lock_list = PCPU_GET(spinlocks);
2465         }
2466         instance = find_instance(lock_list, lock);
2467         if (instance == NULL) {
2468                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2469                     class->lc_name, lock->lo_name);
2470                 return;
2471         }
2472
2473         if (set)
2474                 instance->li_flags |= flag;
2475         else
2476                 instance->li_flags &= ~flag;
2477 }
2478
2479 void
2480 witness_norelease(struct lock_object *lock)
2481 {
2482
2483         witness_setflag(lock, LI_NORELEASE, 1);
2484 }
2485
2486 void
2487 witness_releaseok(struct lock_object *lock)
2488 {
2489
2490         witness_setflag(lock, LI_NORELEASE, 0);
2491 }
2492
2493 #ifdef DDB
2494 static void
2495 witness_ddb_list(struct thread *td)
2496 {
2497
2498         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2499         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2500
2501         if (witness_watch < 1)
2502                 return;
2503
2504         witness_list_locks(&td->td_sleeplocks, db_printf);
2505
2506         /*
2507          * We only handle spinlocks if td == curthread.  This is somewhat broken
2508          * if td is currently executing on some other CPU and holds spin locks
2509          * as we won't display those locks.  If we had a MI way of getting
2510          * the per-cpu data for a given cpu then we could use
2511          * td->td_oncpu to get the list of spinlocks for this thread
2512          * and "fix" this.
2513          *
2514          * That still wouldn't really fix this unless we locked the scheduler
2515          * lock or stopped the other CPU to make sure it wasn't changing the
2516          * list out from under us.  It is probably best to just not try to
2517          * handle threads on other CPU's for now.
2518          */
2519         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2520                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2521 }
2522
2523 DB_SHOW_COMMAND(locks, db_witness_list)
2524 {
2525         struct thread *td;
2526
2527         if (have_addr)
2528                 td = db_lookup_thread(addr, true);
2529         else
2530                 td = kdb_thread;
2531         witness_ddb_list(td);
2532 }
2533
2534 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2535 {
2536         struct thread *td;
2537         struct proc *p;
2538
2539         /*
2540          * It would be nice to list only threads and processes that actually
2541          * held sleep locks, but that information is currently not exported
2542          * by WITNESS.
2543          */
2544         FOREACH_PROC_IN_SYSTEM(p) {
2545                 if (!witness_proc_has_locks(p))
2546                         continue;
2547                 FOREACH_THREAD_IN_PROC(p, td) {
2548                         if (!witness_thread_has_locks(td))
2549                                 continue;
2550                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2551                             p->p_comm, td, td->td_tid);
2552                         witness_ddb_list(td);
2553                         if (db_pager_quit)
2554                                 return;
2555                 }
2556         }
2557 }
2558 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2559
2560 DB_SHOW_COMMAND(witness, db_witness_display)
2561 {
2562
2563         witness_ddb_display(db_printf);
2564 }
2565 #endif
2566
2567 static void
2568 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2569 {
2570         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2571         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2572         int generation, i, j;
2573
2574         tmp_data1 = NULL;
2575         tmp_data2 = NULL;
2576         tmp_w1 = NULL;
2577         tmp_w2 = NULL;
2578
2579         /* Allocate and init temporary storage space. */
2580         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2581         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2582         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2583             M_WAITOK | M_ZERO);
2584         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2585             M_WAITOK | M_ZERO);
2586         stack_zero(&tmp_data1->wlod_stack);
2587         stack_zero(&tmp_data2->wlod_stack);
2588
2589 restart:
2590         mtx_lock_spin(&w_mtx);
2591         generation = w_generation;
2592         mtx_unlock_spin(&w_mtx);
2593         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2594             w_lohash.wloh_count);
2595         for (i = 1; i < w_max_used_index; i++) {
2596                 mtx_lock_spin(&w_mtx);
2597                 if (generation != w_generation) {
2598                         mtx_unlock_spin(&w_mtx);
2599
2600                         /* The graph has changed, try again. */
2601                         *oldidx = 0;
2602                         sbuf_clear(sb);
2603                         goto restart;
2604                 }
2605
2606                 w1 = &w_data[i];
2607                 if (w1->w_reversed == 0) {
2608                         mtx_unlock_spin(&w_mtx);
2609                         continue;
2610                 }
2611
2612                 /* Copy w1 locally so we can release the spin lock. */
2613                 *tmp_w1 = *w1;
2614                 mtx_unlock_spin(&w_mtx);
2615
2616                 if (tmp_w1->w_reversed == 0)
2617                         continue;
2618                 for (j = 1; j < w_max_used_index; j++) {
2619                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2620                                 continue;
2621
2622                         mtx_lock_spin(&w_mtx);
2623                         if (generation != w_generation) {
2624                                 mtx_unlock_spin(&w_mtx);
2625
2626                                 /* The graph has changed, try again. */
2627                                 *oldidx = 0;
2628                                 sbuf_clear(sb);
2629                                 goto restart;
2630                         }
2631
2632                         w2 = &w_data[j];
2633                         data1 = witness_lock_order_get(w1, w2);
2634                         data2 = witness_lock_order_get(w2, w1);
2635
2636                         /*
2637                          * Copy information locally so we can release the
2638                          * spin lock.
2639                          */
2640                         *tmp_w2 = *w2;
2641
2642                         if (data1) {
2643                                 stack_zero(&tmp_data1->wlod_stack);
2644                                 stack_copy(&data1->wlod_stack,
2645                                     &tmp_data1->wlod_stack);
2646                         }
2647                         if (data2 && data2 != data1) {
2648                                 stack_zero(&tmp_data2->wlod_stack);
2649                                 stack_copy(&data2->wlod_stack,
2650                                     &tmp_data2->wlod_stack);
2651                         }
2652                         mtx_unlock_spin(&w_mtx);
2653
2654                         sbuf_printf(sb,
2655             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2656                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2657                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2658                         if (data1) {
2659                                 sbuf_printf(sb,
2660                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2661                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2662                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2663                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2664                                 sbuf_printf(sb, "\n");
2665                         }
2666                         if (data2 && data2 != data1) {
2667                                 sbuf_printf(sb,
2668                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2669                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2670                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2671                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2672                                 sbuf_printf(sb, "\n");
2673                         }
2674                 }
2675         }
2676         mtx_lock_spin(&w_mtx);
2677         if (generation != w_generation) {
2678                 mtx_unlock_spin(&w_mtx);
2679
2680                 /*
2681                  * The graph changed while we were printing stack data,
2682                  * try again.
2683                  */
2684                 *oldidx = 0;
2685                 sbuf_clear(sb);
2686                 goto restart;
2687         }
2688         mtx_unlock_spin(&w_mtx);
2689
2690         /* Free temporary storage space. */
2691         free(tmp_data1, M_TEMP);
2692         free(tmp_data2, M_TEMP);
2693         free(tmp_w1, M_TEMP);
2694         free(tmp_w2, M_TEMP);
2695 }
2696
2697 static int
2698 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2699 {
2700         struct sbuf *sb;
2701         int error;
2702
2703         if (witness_watch < 1) {
2704                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2705                 return (error);
2706         }
2707         if (witness_cold) {
2708                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2709                 return (error);
2710         }
2711         error = 0;
2712         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2713         if (sb == NULL)
2714                 return (ENOMEM);
2715
2716         sbuf_print_witness_badstacks(sb, &req->oldidx);
2717
2718         sbuf_finish(sb);
2719         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2720         sbuf_delete(sb);
2721
2722         return (error);
2723 }
2724
2725 #ifdef DDB
2726 static int
2727 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2728 {
2729
2730         return (db_printf("%.*s", len, data));
2731 }
2732
2733 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2734 {
2735         struct sbuf sb;
2736         char buffer[128];
2737         size_t dummy;
2738
2739         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2740         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2741         sbuf_print_witness_badstacks(&sb, &dummy);
2742         sbuf_finish(&sb);
2743 }
2744 #endif
2745
2746 static int
2747 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2748 {
2749         static const struct {
2750                 enum witness_channel channel;
2751                 const char *name;
2752         } channels[] = {
2753                 { WITNESS_CONSOLE, "console" },
2754                 { WITNESS_LOG, "log" },
2755                 { WITNESS_NONE, "none" },
2756         };
2757         char buf[16];
2758         u_int i;
2759         int error;
2760
2761         buf[0] = '\0';
2762         for (i = 0; i < nitems(channels); i++)
2763                 if (witness_channel == channels[i].channel) {
2764                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2765                         break;
2766                 }
2767
2768         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2769         if (error != 0 || req->newptr == NULL)
2770                 return (error);
2771
2772         error = EINVAL;
2773         for (i = 0; i < nitems(channels); i++)
2774                 if (strcmp(channels[i].name, buf) == 0) {
2775                         witness_channel = channels[i].channel;
2776                         error = 0;
2777                         break;
2778                 }
2779         return (error);
2780 }
2781
2782 static int
2783 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2784 {
2785         struct witness *w;
2786         struct sbuf *sb;
2787         int error;
2788
2789 #ifdef __i386__
2790         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2791         return (error);
2792 #endif
2793
2794         if (witness_watch < 1) {
2795                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2796                 return (error);
2797         }
2798         if (witness_cold) {
2799                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2800                 return (error);
2801         }
2802         error = 0;
2803
2804         error = sysctl_wire_old_buffer(req, 0);
2805         if (error != 0)
2806                 return (error);
2807         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2808         if (sb == NULL)
2809                 return (ENOMEM);
2810         sbuf_printf(sb, "\n");
2811
2812         mtx_lock_spin(&w_mtx);
2813         STAILQ_FOREACH(w, &w_all, w_list)
2814                 w->w_displayed = 0;
2815         STAILQ_FOREACH(w, &w_all, w_list)
2816                 witness_add_fullgraph(sb, w);
2817         mtx_unlock_spin(&w_mtx);
2818
2819         /*
2820          * Close the sbuf and return to userland.
2821          */
2822         error = sbuf_finish(sb);
2823         sbuf_delete(sb);
2824
2825         return (error);
2826 }
2827
2828 static int
2829 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2830 {
2831         int error, value;
2832
2833         value = witness_watch;
2834         error = sysctl_handle_int(oidp, &value, 0, req);
2835         if (error != 0 || req->newptr == NULL)
2836                 return (error);
2837         if (value > 1 || value < -1 ||
2838             (witness_watch == -1 && value != witness_watch))
2839                 return (EINVAL);
2840         witness_watch = value;
2841         return (0);
2842 }
2843
2844 static void
2845 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2846 {
2847         int i;
2848
2849         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2850                 return;
2851         w->w_displayed = 1;
2852
2853         WITNESS_INDEX_ASSERT(w->w_index);
2854         for (i = 1; i <= w_max_used_index; i++) {
2855                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2856                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2857                             w_data[i].w_name);
2858                         witness_add_fullgraph(sb, &w_data[i]);
2859                 }
2860         }
2861 }
2862
2863 /*
2864  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2865  * interprets the key as a string and reads until the null
2866  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2867  * hash value computed from the key.
2868  */
2869 static uint32_t
2870 witness_hash_djb2(const uint8_t *key, uint32_t size)
2871 {
2872         unsigned int hash = 5381;
2873         int i;
2874
2875         /* hash = hash * 33 + key[i] */
2876         if (size)
2877                 for (i = 0; i < size; i++)
2878                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2879         else
2880                 for (i = 0; key[i] != 0; i++)
2881                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2882
2883         return (hash);
2884 }
2885
2886
2887 /*
2888  * Initializes the two witness hash tables. Called exactly once from
2889  * witness_initialize().
2890  */
2891 static void
2892 witness_init_hash_tables(void)
2893 {
2894         int i;
2895
2896         MPASS(witness_cold);
2897
2898         /* Initialize the hash tables. */
2899         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2900                 w_hash.wh_array[i] = NULL;
2901
2902         w_hash.wh_size = WITNESS_HASH_SIZE;
2903         w_hash.wh_count = 0;
2904
2905         /* Initialize the lock order data hash. */
2906         w_lofree = NULL;
2907         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2908                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2909                 w_lodata[i].wlod_next = w_lofree;
2910                 w_lofree = &w_lodata[i];
2911         }
2912         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2913         w_lohash.wloh_count = 0;
2914         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2915                 w_lohash.wloh_array[i] = NULL;
2916 }
2917
2918 static struct witness *
2919 witness_hash_get(const char *key)
2920 {
2921         struct witness *w;
2922         uint32_t hash;
2923         
2924         MPASS(key != NULL);
2925         if (witness_cold == 0)
2926                 mtx_assert(&w_mtx, MA_OWNED);
2927         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2928         w = w_hash.wh_array[hash];
2929         while (w != NULL) {
2930                 if (strcmp(w->w_name, key) == 0)
2931                         goto out;
2932                 w = w->w_hash_next;
2933         }
2934
2935 out:
2936         return (w);
2937 }
2938
2939 static void
2940 witness_hash_put(struct witness *w)
2941 {
2942         uint32_t hash;
2943
2944         MPASS(w != NULL);
2945         MPASS(w->w_name != NULL);
2946         if (witness_cold == 0)
2947                 mtx_assert(&w_mtx, MA_OWNED);
2948         KASSERT(witness_hash_get(w->w_name) == NULL,
2949             ("%s: trying to add a hash entry that already exists!", __func__));
2950         KASSERT(w->w_hash_next == NULL,
2951             ("%s: w->w_hash_next != NULL", __func__));
2952
2953         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2954         w->w_hash_next = w_hash.wh_array[hash];
2955         w_hash.wh_array[hash] = w;
2956         w_hash.wh_count++;
2957 }
2958
2959
2960 static struct witness_lock_order_data *
2961 witness_lock_order_get(struct witness *parent, struct witness *child)
2962 {
2963         struct witness_lock_order_data *data = NULL;
2964         struct witness_lock_order_key key;
2965         unsigned int hash;
2966
2967         MPASS(parent != NULL && child != NULL);
2968         key.from = parent->w_index;
2969         key.to = child->w_index;
2970         WITNESS_INDEX_ASSERT(key.from);
2971         WITNESS_INDEX_ASSERT(key.to);
2972         if ((w_rmatrix[parent->w_index][child->w_index]
2973             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2974                 goto out;
2975
2976         hash = witness_hash_djb2((const char*)&key,
2977             sizeof(key)) % w_lohash.wloh_size;
2978         data = w_lohash.wloh_array[hash];
2979         while (data != NULL) {
2980                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2981                         break;
2982                 data = data->wlod_next;
2983         }
2984
2985 out:
2986         return (data);
2987 }
2988
2989 /*
2990  * Verify that parent and child have a known relationship, are not the same,
2991  * and child is actually a child of parent.  This is done without w_mtx
2992  * to avoid contention in the common case.
2993  */
2994 static int
2995 witness_lock_order_check(struct witness *parent, struct witness *child)
2996 {
2997
2998         if (parent != child &&
2999             w_rmatrix[parent->w_index][child->w_index]
3000             & WITNESS_LOCK_ORDER_KNOWN &&
3001             isitmychild(parent, child))
3002                 return (1);
3003
3004         return (0);
3005 }
3006
3007 static int
3008 witness_lock_order_add(struct witness *parent, struct witness *child)
3009 {
3010         struct witness_lock_order_data *data = NULL;
3011         struct witness_lock_order_key key;
3012         unsigned int hash;
3013         
3014         MPASS(parent != NULL && child != NULL);
3015         key.from = parent->w_index;
3016         key.to = child->w_index;
3017         WITNESS_INDEX_ASSERT(key.from);
3018         WITNESS_INDEX_ASSERT(key.to);
3019         if (w_rmatrix[parent->w_index][child->w_index]
3020             & WITNESS_LOCK_ORDER_KNOWN)
3021                 return (1);
3022
3023         hash = witness_hash_djb2((const char*)&key,
3024             sizeof(key)) % w_lohash.wloh_size;
3025         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3026         data = w_lofree;
3027         if (data == NULL)
3028                 return (0);
3029         w_lofree = data->wlod_next;
3030         data->wlod_next = w_lohash.wloh_array[hash];
3031         data->wlod_key = key;
3032         w_lohash.wloh_array[hash] = data;
3033         w_lohash.wloh_count++;
3034         stack_zero(&data->wlod_stack);
3035         stack_save(&data->wlod_stack);
3036         return (1);
3037 }
3038
3039 /* Call this whenever the structure of the witness graph changes. */
3040 static void
3041 witness_increment_graph_generation(void)
3042 {
3043
3044         if (witness_cold == 0)
3045                 mtx_assert(&w_mtx, MA_OWNED);
3046         w_generation++;
3047 }
3048
3049 static int
3050 witness_output_drain(void *arg __unused, const char *data, int len)
3051 {
3052
3053         witness_output("%.*s", len, data);
3054         return (len);
3055 }
3056
3057 static void
3058 witness_debugger(int cond, const char *msg)
3059 {
3060         char buf[32];
3061         struct sbuf sb;
3062         struct stack st;
3063
3064         if (!cond)
3065                 return;
3066
3067         if (witness_trace) {
3068                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3069                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3070
3071                 stack_zero(&st);
3072                 stack_save(&st);
3073                 witness_output("stack backtrace:\n");
3074                 stack_sbuf_print_ddb(&sb, &st);
3075
3076                 sbuf_finish(&sb);
3077         }
3078
3079 #ifdef KDB
3080         if (witness_kdb)
3081                 kdb_enter(KDB_WHY_WITNESS, msg);
3082 #endif
3083 }