]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
tcp bbr: improve code consistency
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42
43 /*
44  *      Main Entry: witness
45  *      Pronunciation: 'wit-n&s
46  *      Function: noun
47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *          testimony, witness, from 2wit
49  *      Date: before 12th century
50  *      1 : attestation of a fact or event : TESTIMONY
51  *      2 : one that gives evidence; specifically : one who testifies in
52  *          a cause or before a judicial tribunal
53  *      3 : one asked to be present at a transaction so as to be able to
54  *          testify to its having taken place
55  *      4 : one who has personal knowledge of something
56  *      5 a : something serving as evidence or proof : SIGN
57  *        b : public affirmation by word or example of usually
58  *            religious faith or conviction <the heroic witness to divine
59  *            life -- Pilot>
60  *      6 capitalized : a member of the Jehovah's Witnesses 
61  */
62
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88
89 #include <sys/cdefs.h>
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/syslog.h>
110 #include <sys/systm.h>
111
112 #ifdef DDB
113 #include <ddb/ddb.h>
114 #endif
115
116 #include <machine/stdarg.h>
117
118 #if !defined(DDB) && !defined(STACK)
119 #error "DDB or STACK options are required for WITNESS"
120 #endif
121
122 /* Note that these traces do not work with KTR_ALQ. */
123 #if 0
124 #define KTR_WITNESS     KTR_SUBSYS
125 #else
126 #define KTR_WITNESS     0
127 #endif
128
129 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
130 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
131 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
132 #define LI_SLEEPABLE    0x00040000      /* Lock may be held while sleeping. */
133
134 #ifndef WITNESS_COUNT
135 #define WITNESS_COUNT           1536
136 #endif
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define FULLGRAPH_SBUF_SIZE     512
157
158 /*
159  * These flags go in the witness relationship matrix and describe the
160  * relationship between any two struct witness objects.
161  */
162 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
163 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
164 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
165 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
166 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
167 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
168 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
169 #define WITNESS_RELATED_MASK                                            \
170         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
171 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
172                                           * observed. */
173 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
174 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
175 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
176
177 /* Descendant to ancestor flags */
178 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
179
180 /* Ancestor to descendant flags */
181 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
182
183 #define WITNESS_INDEX_ASSERT(i)                                         \
184         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
185
186 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
187
188 /*
189  * Lock instances.  A lock instance is the data associated with a lock while
190  * it is held by witness.  For example, a lock instance will hold the
191  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
192  * are held in a per-cpu list while sleep locks are held in per-thread list.
193  */
194 struct lock_instance {
195         struct lock_object      *li_lock;
196         const char              *li_file;
197         int                     li_line;
198         u_int                   li_flags;
199 };
200
201 /*
202  * A simple list type used to build the list of locks held by a thread
203  * or CPU.  We can't simply embed the list in struct lock_object since a
204  * lock may be held by more than one thread if it is a shared lock.  Locks
205  * are added to the head of the list, so we fill up each list entry from
206  * "the back" logically.  To ease some of the arithmetic, we actually fill
207  * in each list entry the normal way (children[0] then children[1], etc.) but
208  * when we traverse the list we read children[count-1] as the first entry
209  * down to children[0] as the final entry.
210  */
211 struct lock_list_entry {
212         struct lock_list_entry  *ll_next;
213         struct lock_instance    ll_children[LOCK_NCHILDREN];
214         u_int                   ll_count;
215 };
216
217 /*
218  * The main witness structure. One of these per named lock type in the system
219  * (for example, "vnode interlock").
220  */
221 struct witness {
222         char                    w_name[MAX_W_NAME];
223         uint32_t                w_index;  /* Index in the relationship matrix */
224         struct lock_class       *w_class;
225         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
226         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
227         struct witness          *w_hash_next; /* Linked list in hash buckets. */
228         const char              *w_file; /* File where last acquired */
229         uint32_t                w_line; /* Line where last acquired */
230         uint32_t                w_refcount;
231         uint16_t                w_num_ancestors; /* direct/indirect
232                                                   * ancestor count */
233         uint16_t                w_num_descendants; /* direct/indirect
234                                                     * descendant count */
235         int16_t                 w_ddb_level;
236         unsigned                w_displayed:1;
237         unsigned                w_reversed:1;
238 };
239
240 STAILQ_HEAD(witness_list, witness);
241
242 /*
243  * The witness hash table. Keys are witness names (const char *), elements are
244  * witness objects (struct witness *).
245  */
246 struct witness_hash {
247         struct witness  *wh_array[WITNESS_HASH_SIZE];
248         uint32_t        wh_size;
249         uint32_t        wh_count;
250 };
251
252 /*
253  * Key type for the lock order data hash table.
254  */
255 struct witness_lock_order_key {
256         uint16_t        from;
257         uint16_t        to;
258 };
259
260 struct witness_lock_order_data {
261         struct stack                    wlod_stack;
262         struct witness_lock_order_key   wlod_key;
263         struct witness_lock_order_data  *wlod_next;
264 };
265
266 /*
267  * The witness lock order data hash table. Keys are witness index tuples
268  * (struct witness_lock_order_key), elements are lock order data objects
269  * (struct witness_lock_order_data). 
270  */
271 struct witness_lock_order_hash {
272         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
273         u_int   wloh_size;
274         u_int   wloh_count;
275 };
276
277 struct witness_blessed {
278         const char      *b_lock1;
279         const char      *b_lock2;
280 };
281
282 struct witness_pendhelp {
283         const char              *wh_type;
284         struct lock_object      *wh_lock;
285 };
286
287 struct witness_order_list_entry {
288         const char              *w_name;
289         struct lock_class       *w_class;
290 };
291
292 /*
293  * Returns 0 if one of the locks is a spin lock and the other is not.
294  * Returns 1 otherwise.
295  */
296 static __inline int
297 witness_lock_type_equal(struct witness *w1, struct witness *w2)
298 {
299
300         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
301                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
302 }
303
304 static __inline int
305 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
306     const struct witness_lock_order_key *b)
307 {
308
309         return (a->from == b->from && a->to == b->to);
310 }
311
312 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
313                     const char *fname);
314 static void     adopt(struct witness *parent, struct witness *child);
315 static int      blessed(struct witness *, struct witness *);
316 static void     depart(struct witness *w);
317 static struct witness   *enroll(const char *description,
318                             struct lock_class *lock_class);
319 static struct lock_instance     *find_instance(struct lock_list_entry *list,
320                                     const struct lock_object *lock);
321 static int      isitmychild(struct witness *parent, struct witness *child);
322 static int      isitmydescendant(struct witness *parent, struct witness *child);
323 static void     itismychild(struct witness *parent, struct witness *child);
324 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
325 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
326 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
327 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
328 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
329 #ifdef DDB
330 static void     witness_ddb_compute_levels(void);
331 static void     witness_ddb_display(int(*)(const char *fmt, ...));
332 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
333                     struct witness *, int indent);
334 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
335                     struct witness_list *list);
336 static void     witness_ddb_level_descendants(struct witness *parent, int l);
337 static void     witness_ddb_list(struct thread *td);
338 #endif
339 static void     witness_enter_debugger(const char *msg);
340 static void     witness_debugger(int cond, const char *msg);
341 static void     witness_free(struct witness *m);
342 static struct witness   *witness_get(void);
343 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
344 static struct witness   *witness_hash_get(const char *key);
345 static void     witness_hash_put(struct witness *w);
346 static void     witness_init_hash_tables(void);
347 static void     witness_increment_graph_generation(void);
348 static void     witness_lock_list_free(struct lock_list_entry *lle);
349 static struct lock_list_entry   *witness_lock_list_get(void);
350 static int      witness_lock_order_add(struct witness *parent,
351                     struct witness *child);
352 static int      witness_lock_order_check(struct witness *parent,
353                     struct witness *child);
354 static struct witness_lock_order_data   *witness_lock_order_get(
355                                             struct witness *parent,
356                                             struct witness *child);
357 static void     witness_list_lock(struct lock_instance *instance,
358                     int (*prnt)(const char *fmt, ...));
359 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
360 static int      witness_output_drain(void *arg __unused, const char *data,
361                     int len);
362 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
363 static void     witness_setflag(struct lock_object *lock, int flag, int set);
364
365 FEATURE(witness, "kernel has witness(9) support");
366
367 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
368     "Witness Locking");
369
370 /*
371  * If set to 0, lock order checking is disabled.  If set to -1,
372  * witness is completely disabled.  Otherwise witness performs full
373  * lock order checking for all locks.  At runtime, lock order checking
374  * may be toggled.  However, witness cannot be reenabled once it is
375  * completely disabled.
376  */
377 static int witness_watch = 1;
378 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
379     CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
380     sysctl_debug_witness_watch, "I",
381     "witness is watching lock operations");
382
383 #ifdef KDB
384 /*
385  * When KDB is enabled and witness_kdb is 1, it will cause the system
386  * to drop into kdebug() when:
387  *      - a lock hierarchy violation occurs
388  *      - locks are held when going to sleep.
389  */
390 #ifdef WITNESS_KDB
391 int     witness_kdb = 1;
392 #else
393 int     witness_kdb = 0;
394 #endif
395 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
396 #endif /* KDB */
397
398 #if defined(DDB) || defined(KDB)
399 /*
400  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
401  * to print a stack trace:
402  *      - a lock hierarchy violation occurs
403  *      - locks are held when going to sleep.
404  */
405 int     witness_trace = 1;
406 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
407 #endif /* DDB || KDB */
408
409 #ifdef WITNESS_SKIPSPIN
410 int     witness_skipspin = 1;
411 #else
412 int     witness_skipspin = 0;
413 #endif
414 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
415
416 int badstack_sbuf_size;
417
418 int witness_count = WITNESS_COUNT;
419 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
420     &witness_count, 0, "");
421
422 /*
423  * Output channel for witness messages.  By default we print to the console.
424  */
425 enum witness_channel {
426         WITNESS_CONSOLE,
427         WITNESS_LOG,
428         WITNESS_NONE,
429 };
430
431 static enum witness_channel witness_channel = WITNESS_CONSOLE;
432 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
433     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
434     sysctl_debug_witness_channel, "A",
435     "Output channel for warnings");
436
437 /*
438  * Call this to print out the relations between locks.
439  */
440 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
441     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
442     sysctl_debug_witness_fullgraph, "A",
443     "Show locks relation graphs");
444
445 /*
446  * Call this to print out the witness faulty stacks.
447  */
448 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
449     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
450     sysctl_debug_witness_badstacks, "A",
451     "Show bad witness stacks");
452
453 static struct mtx w_mtx;
454
455 /* w_list */
456 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
457 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
458
459 /* w_typelist */
460 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
461 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
462
463 /* lock list */
464 static struct lock_list_entry *w_lock_list_free = NULL;
465 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
466 static u_int pending_cnt;
467
468 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
469 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
470 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
471 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
472     "");
473
474 static struct witness *w_data;
475 static uint8_t **w_rmatrix;
476 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
477 static struct witness_hash w_hash;      /* The witness hash table. */
478
479 /* The lock order data hash */
480 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
481 static struct witness_lock_order_data *w_lofree = NULL;
482 static struct witness_lock_order_hash w_lohash;
483 static int w_max_used_index = 0;
484 static unsigned int w_generation = 0;
485 static const char w_notrunning[] = "Witness not running\n";
486 static const char w_stillcold[] = "Witness is still cold\n";
487 #ifdef __i386__
488 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
489 #endif
490
491 static struct witness_order_list_entry order_lists[] = {
492         /*
493          * sx locks
494          */
495         { "proctree", &lock_class_sx },
496         { "allproc", &lock_class_sx },
497         { "allprison", &lock_class_sx },
498         { NULL, NULL },
499         /*
500          * Various mutexes
501          */
502         { "Giant", &lock_class_mtx_sleep },
503         { "pipe mutex", &lock_class_mtx_sleep },
504         { "sigio lock", &lock_class_mtx_sleep },
505         { "process group", &lock_class_mtx_sleep },
506 #ifdef  HWPMC_HOOKS
507         { "pmc-sleep", &lock_class_mtx_sleep },
508 #endif
509         { "process lock", &lock_class_mtx_sleep },
510         { "session", &lock_class_mtx_sleep },
511         { "uidinfo hash", &lock_class_rw },
512         { "time lock", &lock_class_mtx_sleep },
513         { NULL, NULL },
514         /*
515          * umtx
516          */
517         { "umtx lock", &lock_class_mtx_sleep },
518         { NULL, NULL },
519         /*
520          * Sockets
521          */
522         { "accept", &lock_class_mtx_sleep },
523         { "so_snd", &lock_class_mtx_sleep },
524         { "so_rcv", &lock_class_mtx_sleep },
525         { "sellck", &lock_class_mtx_sleep },
526         { NULL, NULL },
527         /*
528          * Routing
529          */
530         { "so_rcv", &lock_class_mtx_sleep },
531         { "radix node head", &lock_class_rm },
532         { "ifaddr", &lock_class_mtx_sleep },
533         { NULL, NULL },
534         /*
535          * IPv4 multicast:
536          * protocol locks before interface locks, after UDP locks.
537          */
538         { "in_multi_sx", &lock_class_sx },
539         { "udpinp", &lock_class_rw },
540         { "in_multi_list_mtx", &lock_class_mtx_sleep },
541         { "igmp_mtx", &lock_class_mtx_sleep },
542         { "if_addr_lock", &lock_class_mtx_sleep },
543         { NULL, NULL },
544         /*
545          * IPv6 multicast:
546          * protocol locks before interface locks, after UDP locks.
547          */
548         { "in6_multi_sx", &lock_class_sx },
549         { "udpinp", &lock_class_rw },
550         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
551         { "mld_mtx", &lock_class_mtx_sleep },
552         { "if_addr_lock", &lock_class_mtx_sleep },
553         { NULL, NULL },
554         /*
555          * UNIX Domain Sockets
556          */
557         { "unp_link_rwlock", &lock_class_rw },
558         { "unp_list_lock", &lock_class_mtx_sleep },
559         { "unp", &lock_class_mtx_sleep },
560         { "so_snd", &lock_class_mtx_sleep },
561         { NULL, NULL },
562         /*
563          * UDP/IP
564          */
565         { "udpinp", &lock_class_rw },
566         { "udp", &lock_class_mtx_sleep },
567         { "so_snd", &lock_class_mtx_sleep },
568         { NULL, NULL },
569         /*
570          * TCP/IP
571          */
572         { "tcpinp", &lock_class_rw },
573         { "tcp", &lock_class_mtx_sleep },
574         { "so_snd", &lock_class_mtx_sleep },
575         { NULL, NULL },
576         /*
577          * BPF
578          */
579         { "bpf global lock", &lock_class_sx },
580         { "bpf cdev lock", &lock_class_mtx_sleep },
581         { NULL, NULL },
582         /*
583          * NFS server
584          */
585         { "nfsd_mtx", &lock_class_mtx_sleep },
586         { "so_snd", &lock_class_mtx_sleep },
587         { NULL, NULL },
588
589         /*
590          * IEEE 802.11
591          */
592         { "802.11 com lock", &lock_class_mtx_sleep},
593         { NULL, NULL },
594         /*
595          * Network drivers
596          */
597         { "network driver", &lock_class_mtx_sleep},
598         { NULL, NULL },
599
600         /*
601          * Netgraph
602          */
603         { "ng_node", &lock_class_mtx_sleep },
604         { "ng_worklist", &lock_class_mtx_sleep },
605         { NULL, NULL },
606         /*
607          * CDEV
608          */
609         { "vm map (system)", &lock_class_mtx_sleep },
610         { "vnode interlock", &lock_class_mtx_sleep },
611         { "cdev", &lock_class_mtx_sleep },
612         { "devthrd", &lock_class_mtx_sleep },
613         { NULL, NULL },
614         /*
615          * VM
616          */
617         { "vm map (user)", &lock_class_sx },
618         { "vm object", &lock_class_rw },
619         { "vm page", &lock_class_mtx_sleep },
620         { "pmap pv global", &lock_class_rw },
621         { "pmap", &lock_class_mtx_sleep },
622         { "pmap pv list", &lock_class_rw },
623         { "vm page free queue", &lock_class_mtx_sleep },
624         { "vm pagequeue", &lock_class_mtx_sleep },
625         { NULL, NULL },
626         /*
627          * kqueue/VFS interaction
628          */
629         { "kqueue", &lock_class_mtx_sleep },
630         { "struct mount mtx", &lock_class_mtx_sleep },
631         { "vnode interlock", &lock_class_mtx_sleep },
632         { NULL, NULL },
633         /*
634          * VFS namecache
635          */
636         { "ncvn", &lock_class_mtx_sleep },
637         { "ncbuc", &lock_class_mtx_sleep },
638         { "vnode interlock", &lock_class_mtx_sleep },
639         { "ncneg", &lock_class_mtx_sleep },
640         { NULL, NULL },
641         /*
642          * ZFS locking
643          */
644         { "dn->dn_mtx", &lock_class_sx },
645         { "dr->dt.di.dr_mtx", &lock_class_sx },
646         { "db->db_mtx", &lock_class_sx },
647         { NULL, NULL },
648         /*
649          * TCP log locks
650          */
651         { "TCP ID tree", &lock_class_rw },
652         { "tcp log id bucket", &lock_class_mtx_sleep },
653         { "tcpinp", &lock_class_rw },
654         { "TCP log expireq", &lock_class_mtx_sleep },
655         { NULL, NULL },
656         /*
657          * spin locks
658          */
659 #ifdef SMP
660         { "ap boot", &lock_class_mtx_spin },
661 #endif
662         { "rm.mutex_mtx", &lock_class_mtx_spin },
663 #ifdef __i386__
664         { "cy", &lock_class_mtx_spin },
665 #endif
666         { "scc_hwmtx", &lock_class_mtx_spin },
667         { "uart_hwmtx", &lock_class_mtx_spin },
668         { "fast_taskqueue", &lock_class_mtx_spin },
669         { "intr table", &lock_class_mtx_spin },
670         { "process slock", &lock_class_mtx_spin },
671         { "syscons video lock", &lock_class_mtx_spin },
672         { "sleepq chain", &lock_class_mtx_spin },
673         { "rm_spinlock", &lock_class_mtx_spin },
674         { "turnstile chain", &lock_class_mtx_spin },
675         { "turnstile lock", &lock_class_mtx_spin },
676         { "sched lock", &lock_class_mtx_spin },
677         { "td_contested", &lock_class_mtx_spin },
678         { "callout", &lock_class_mtx_spin },
679         { "entropy harvest mutex", &lock_class_mtx_spin },
680 #ifdef SMP
681         { "smp rendezvous", &lock_class_mtx_spin },
682 #endif
683 #ifdef __powerpc__
684         { "tlb0", &lock_class_mtx_spin },
685 #endif
686         { NULL, NULL },
687         { "sched lock", &lock_class_mtx_spin },
688 #ifdef  HWPMC_HOOKS
689         { "pmc-per-proc", &lock_class_mtx_spin },
690 #endif
691         { NULL, NULL },
692         /*
693          * leaf locks
694          */
695         { "intrcnt", &lock_class_mtx_spin },
696         { "icu", &lock_class_mtx_spin },
697 #ifdef __i386__
698         { "allpmaps", &lock_class_mtx_spin },
699         { "descriptor tables", &lock_class_mtx_spin },
700 #endif
701         { "clk", &lock_class_mtx_spin },
702         { "cpuset", &lock_class_mtx_spin },
703         { "mprof lock", &lock_class_mtx_spin },
704         { "zombie lock", &lock_class_mtx_spin },
705         { "ALD Queue", &lock_class_mtx_spin },
706 #if defined(__i386__) || defined(__amd64__)
707         { "pcicfg", &lock_class_mtx_spin },
708         { "NDIS thread lock", &lock_class_mtx_spin },
709 #endif
710         { "tw_osl_io_lock", &lock_class_mtx_spin },
711         { "tw_osl_q_lock", &lock_class_mtx_spin },
712         { "tw_cl_io_lock", &lock_class_mtx_spin },
713         { "tw_cl_intr_lock", &lock_class_mtx_spin },
714         { "tw_cl_gen_lock", &lock_class_mtx_spin },
715 #ifdef  HWPMC_HOOKS
716         { "pmc-leaf", &lock_class_mtx_spin },
717 #endif
718         { "blocked lock", &lock_class_mtx_spin },
719         { NULL, NULL },
720         { NULL, NULL }
721 };
722
723 /*
724  * Pairs of locks which have been blessed.  Witness does not complain about
725  * order problems with blessed lock pairs.  Please do not add an entry to the
726  * table without an explanatory comment.
727  */
728 static struct witness_blessed blessed_list[] = {
729         /*
730          * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
731          * both lock orders, so a deadlock cannot happen as a result of this
732          * LOR.
733          */
734         { "dirhash",    "bufwait" },
735
736         /*
737          * A UFS vnode may be locked in vget() while a buffer belonging to the
738          * parent directory vnode is locked.
739          */
740         { "ufs",        "bufwait" },
741
742         /*
743          * The tarfs decompression stream vnode may be locked while a
744          * buffer belonging to a tarfs data vnode is locked.
745          */
746         { "tarfs",      "bufwait" },
747 };
748
749 /*
750  * This global is set to 0 once it becomes safe to use the witness code.
751  */
752 static int witness_cold = 1;
753
754 /*
755  * This global is set to 1 once the static lock orders have been enrolled
756  * so that a warning can be issued for any spin locks enrolled later.
757  */
758 static int witness_spin_warn = 0;
759
760 /* Trim useless garbage from filenames. */
761 static const char *
762 fixup_filename(const char *file)
763 {
764
765         if (file == NULL)
766                 return (NULL);
767         while (strncmp(file, "../", 3) == 0)
768                 file += 3;
769         return (file);
770 }
771
772 /*
773  * Calculate the size of early witness structures.
774  */
775 int
776 witness_startup_count(void)
777 {
778         int sz;
779
780         sz = sizeof(struct witness) * witness_count;
781         sz += sizeof(*w_rmatrix) * (witness_count + 1);
782         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
783             (witness_count + 1);
784
785         return (sz);
786 }
787
788 /*
789  * The WITNESS-enabled diagnostic code.  Note that the witness code does
790  * assume that the early boot is single-threaded at least until after this
791  * routine is completed.
792  */
793 void
794 witness_startup(void *mem)
795 {
796         struct lock_object *lock;
797         struct witness_order_list_entry *order;
798         struct witness *w, *w1;
799         uintptr_t p;
800         int i;
801
802         p = (uintptr_t)mem;
803         w_data = (void *)p;
804         p += sizeof(struct witness) * witness_count;
805
806         w_rmatrix = (void *)p;
807         p += sizeof(*w_rmatrix) * (witness_count + 1);
808
809         for (i = 0; i < witness_count + 1; i++) {
810                 w_rmatrix[i] = (void *)p;
811                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
812         }
813         badstack_sbuf_size = witness_count * 256;
814
815         /*
816          * We have to release Giant before initializing its witness
817          * structure so that WITNESS doesn't get confused.
818          */
819         mtx_unlock(&Giant);
820         mtx_assert(&Giant, MA_NOTOWNED);
821
822         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
823         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
824             MTX_NOWITNESS | MTX_NOPROFILE);
825         for (i = witness_count - 1; i >= 0; i--) {
826                 w = &w_data[i];
827                 memset(w, 0, sizeof(*w));
828                 w_data[i].w_index = i;  /* Witness index never changes. */
829                 witness_free(w);
830         }
831         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
832             ("%s: Invalid list of free witness objects", __func__));
833
834         /* Witness with index 0 is not used to aid in debugging. */
835         STAILQ_REMOVE_HEAD(&w_free, w_list);
836         w_free_cnt--;
837
838         for (i = 0; i < witness_count; i++) {
839                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
840                     (witness_count + 1));
841         }
842
843         for (i = 0; i < LOCK_CHILDCOUNT; i++)
844                 witness_lock_list_free(&w_locklistdata[i]);
845         witness_init_hash_tables();
846
847         /* First add in all the specified order lists. */
848         for (order = order_lists; order->w_name != NULL; order++) {
849                 w = enroll(order->w_name, order->w_class);
850                 if (w == NULL)
851                         continue;
852                 w->w_file = "order list";
853                 for (order++; order->w_name != NULL; order++) {
854                         w1 = enroll(order->w_name, order->w_class);
855                         if (w1 == NULL)
856                                 continue;
857                         w1->w_file = "order list";
858                         itismychild(w, w1);
859                         w = w1;
860                 }
861         }
862         witness_spin_warn = 1;
863
864         /* Iterate through all locks and add them to witness. */
865         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
866                 lock = pending_locks[i].wh_lock;
867                 KASSERT(lock->lo_flags & LO_WITNESS,
868                     ("%s: lock %s is on pending list but not LO_WITNESS",
869                     __func__, lock->lo_name));
870                 lock->lo_witness = enroll(pending_locks[i].wh_type,
871                     LOCK_CLASS(lock));
872         }
873
874         /* Mark the witness code as being ready for use. */
875         witness_cold = 0;
876
877         mtx_lock(&Giant);
878 }
879
880 void
881 witness_init(struct lock_object *lock, const char *type)
882 {
883         struct lock_class *class;
884
885         /* Various sanity checks. */
886         class = LOCK_CLASS(lock);
887         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
888             (class->lc_flags & LC_RECURSABLE) == 0)
889                 kassert_panic("%s: lock (%s) %s can not be recursable",
890                     __func__, class->lc_name, lock->lo_name);
891         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
892             (class->lc_flags & LC_SLEEPABLE) == 0)
893                 kassert_panic("%s: lock (%s) %s can not be sleepable",
894                     __func__, class->lc_name, lock->lo_name);
895         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
896             (class->lc_flags & LC_UPGRADABLE) == 0)
897                 kassert_panic("%s: lock (%s) %s can not be upgradable",
898                     __func__, class->lc_name, lock->lo_name);
899
900         /*
901          * If we shouldn't watch this lock, then just clear lo_witness.
902          * Otherwise, if witness_cold is set, then it is too early to
903          * enroll this lock, so defer it to witness_initialize() by adding
904          * it to the pending_locks list.  If it is not too early, then enroll
905          * the lock now.
906          */
907         if (witness_watch < 1 || KERNEL_PANICKED() ||
908             (lock->lo_flags & LO_WITNESS) == 0)
909                 lock->lo_witness = NULL;
910         else if (witness_cold) {
911                 pending_locks[pending_cnt].wh_lock = lock;
912                 pending_locks[pending_cnt++].wh_type = type;
913                 if (pending_cnt > WITNESS_PENDLIST)
914                         panic("%s: pending locks list is too small, "
915                             "increase WITNESS_PENDLIST\n",
916                             __func__);
917         } else
918                 lock->lo_witness = enroll(type, class);
919 }
920
921 void
922 witness_destroy(struct lock_object *lock)
923 {
924         struct lock_class *class;
925         struct witness *w;
926
927         class = LOCK_CLASS(lock);
928
929         if (witness_cold)
930                 panic("lock (%s) %s destroyed while witness_cold",
931                     class->lc_name, lock->lo_name);
932
933         /* XXX: need to verify that no one holds the lock */
934         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
935                 return;
936         w = lock->lo_witness;
937
938         mtx_lock_spin(&w_mtx);
939         MPASS(w->w_refcount > 0);
940         w->w_refcount--;
941
942         if (w->w_refcount == 0)
943                 depart(w);
944         mtx_unlock_spin(&w_mtx);
945 }
946
947 #ifdef DDB
948 static void
949 witness_ddb_compute_levels(void)
950 {
951         struct witness *w;
952
953         /*
954          * First clear all levels.
955          */
956         STAILQ_FOREACH(w, &w_all, w_list)
957                 w->w_ddb_level = -1;
958
959         /*
960          * Look for locks with no parents and level all their descendants.
961          */
962         STAILQ_FOREACH(w, &w_all, w_list) {
963                 /* If the witness has ancestors (is not a root), skip it. */
964                 if (w->w_num_ancestors > 0)
965                         continue;
966                 witness_ddb_level_descendants(w, 0);
967         }
968 }
969
970 static void
971 witness_ddb_level_descendants(struct witness *w, int l)
972 {
973         int i;
974
975         if (w->w_ddb_level >= l)
976                 return;
977
978         w->w_ddb_level = l;
979         l++;
980
981         for (i = 1; i <= w_max_used_index; i++) {
982                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
983                         witness_ddb_level_descendants(&w_data[i], l);
984         }
985 }
986
987 static void
988 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
989     struct witness *w, int indent)
990 {
991         int i;
992
993         for (i = 0; i < indent; i++)
994                 prnt(" ");
995         prnt("%s (type: %s, depth: %d, active refs: %d)",
996              w->w_name, w->w_class->lc_name,
997              w->w_ddb_level, w->w_refcount);
998         if (w->w_displayed) {
999                 prnt(" -- (already displayed)\n");
1000                 return;
1001         }
1002         w->w_displayed = 1;
1003         if (w->w_file != NULL && w->w_line != 0)
1004                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1005                     w->w_line);
1006         else
1007                 prnt(" -- never acquired\n");
1008         indent++;
1009         WITNESS_INDEX_ASSERT(w->w_index);
1010         for (i = 1; i <= w_max_used_index; i++) {
1011                 if (db_pager_quit)
1012                         return;
1013                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1014                         witness_ddb_display_descendants(prnt, &w_data[i],
1015                             indent);
1016         }
1017 }
1018
1019 static void
1020 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1021     struct witness_list *list)
1022 {
1023         struct witness *w;
1024
1025         STAILQ_FOREACH(w, list, w_typelist) {
1026                 if (w->w_file == NULL || w->w_ddb_level > 0)
1027                         continue;
1028
1029                 /* This lock has no anscestors - display its descendants. */
1030                 witness_ddb_display_descendants(prnt, w, 0);
1031                 if (db_pager_quit)
1032                         return;
1033         }
1034 }
1035
1036 static void
1037 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1038 {
1039         struct witness *w;
1040
1041         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1042         witness_ddb_compute_levels();
1043
1044         /* Clear all the displayed flags. */
1045         STAILQ_FOREACH(w, &w_all, w_list)
1046                 w->w_displayed = 0;
1047
1048         /*
1049          * First, handle sleep locks which have been acquired at least
1050          * once.
1051          */
1052         prnt("Sleep locks:\n");
1053         witness_ddb_display_list(prnt, &w_sleep);
1054         if (db_pager_quit)
1055                 return;
1056
1057         /*
1058          * Now do spin locks which have been acquired at least once.
1059          */
1060         prnt("\nSpin locks:\n");
1061         witness_ddb_display_list(prnt, &w_spin);
1062         if (db_pager_quit)
1063                 return;
1064
1065         /*
1066          * Finally, any locks which have not been acquired yet.
1067          */
1068         prnt("\nLocks which were never acquired:\n");
1069         STAILQ_FOREACH(w, &w_all, w_list) {
1070                 if (w->w_file != NULL || w->w_refcount == 0)
1071                         continue;
1072                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1073                     w->w_class->lc_name, w->w_ddb_level);
1074                 if (db_pager_quit)
1075                         return;
1076         }
1077 }
1078 #endif /* DDB */
1079
1080 int
1081 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1082 {
1083
1084         if (witness_watch == -1 || KERNEL_PANICKED())
1085                 return (0);
1086
1087         /* Require locks that witness knows about. */
1088         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1089             lock2->lo_witness == NULL)
1090                 return (EINVAL);
1091
1092         mtx_assert(&w_mtx, MA_NOTOWNED);
1093         mtx_lock_spin(&w_mtx);
1094
1095         /*
1096          * If we already have either an explicit or implied lock order that
1097          * is the other way around, then return an error.
1098          */
1099         if (witness_watch &&
1100             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1101                 mtx_unlock_spin(&w_mtx);
1102                 return (EDOOFUS);
1103         }
1104
1105         /* Try to add the new order. */
1106         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1107             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1108         itismychild(lock1->lo_witness, lock2->lo_witness);
1109         mtx_unlock_spin(&w_mtx);
1110         return (0);
1111 }
1112
1113 void
1114 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1115     int line, struct lock_object *interlock)
1116 {
1117         struct lock_list_entry *lock_list, *lle;
1118         struct lock_instance *lock1, *lock2, *plock;
1119         struct lock_class *class, *iclass;
1120         struct witness *w, *w1;
1121         struct thread *td;
1122         int i, j;
1123
1124         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1125             KERNEL_PANICKED())
1126                 return;
1127
1128         w = lock->lo_witness;
1129         class = LOCK_CLASS(lock);
1130         td = curthread;
1131
1132         if (class->lc_flags & LC_SLEEPLOCK) {
1133                 /*
1134                  * Since spin locks include a critical section, this check
1135                  * implicitly enforces a lock order of all sleep locks before
1136                  * all spin locks.
1137                  */
1138                 if (td->td_critnest != 0 && !kdb_active)
1139                         kassert_panic("acquiring blockable sleep lock with "
1140                             "spinlock or critical section held (%s) %s @ %s:%d",
1141                             class->lc_name, lock->lo_name,
1142                             fixup_filename(file), line);
1143
1144                 /*
1145                  * If this is the first lock acquired then just return as
1146                  * no order checking is needed.
1147                  */
1148                 lock_list = td->td_sleeplocks;
1149                 if (lock_list == NULL || lock_list->ll_count == 0)
1150                         return;
1151         } else {
1152                 /*
1153                  * If this is the first lock, just return as no order
1154                  * checking is needed.  Avoid problems with thread
1155                  * migration pinning the thread while checking if
1156                  * spinlocks are held.  If at least one spinlock is held
1157                  * the thread is in a safe path and it is allowed to
1158                  * unpin it.
1159                  */
1160                 sched_pin();
1161                 lock_list = PCPU_GET(spinlocks);
1162                 if (lock_list == NULL || lock_list->ll_count == 0) {
1163                         sched_unpin();
1164                         return;
1165                 }
1166                 sched_unpin();
1167         }
1168
1169         /*
1170          * Check to see if we are recursing on a lock we already own.  If
1171          * so, make sure that we don't mismatch exclusive and shared lock
1172          * acquires.
1173          */
1174         lock1 = find_instance(lock_list, lock);
1175         if (lock1 != NULL) {
1176                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1177                     (flags & LOP_EXCLUSIVE) == 0) {
1178                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1179                             class->lc_name, lock->lo_name,
1180                             fixup_filename(file), line);
1181                         witness_output("while exclusively locked from %s:%d\n",
1182                             fixup_filename(lock1->li_file), lock1->li_line);
1183                         kassert_panic("excl->share");
1184                 }
1185                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1186                     (flags & LOP_EXCLUSIVE) != 0) {
1187                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1188                             class->lc_name, lock->lo_name,
1189                             fixup_filename(file), line);
1190                         witness_output("while share locked from %s:%d\n",
1191                             fixup_filename(lock1->li_file), lock1->li_line);
1192                         kassert_panic("share->excl");
1193                 }
1194                 return;
1195         }
1196
1197         /* Warn if the interlock is not locked exactly once. */
1198         if (interlock != NULL) {
1199                 iclass = LOCK_CLASS(interlock);
1200                 lock1 = find_instance(lock_list, interlock);
1201                 if (lock1 == NULL)
1202                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1203                             iclass->lc_name, interlock->lo_name,
1204                             fixup_filename(file), line);
1205                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1206                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1207                             iclass->lc_name, interlock->lo_name,
1208                             fixup_filename(file), line);
1209         }
1210
1211         /*
1212          * Find the previously acquired lock, but ignore interlocks.
1213          */
1214         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1215         if (interlock != NULL && plock->li_lock == interlock) {
1216                 if (lock_list->ll_count > 1)
1217                         plock =
1218                             &lock_list->ll_children[lock_list->ll_count - 2];
1219                 else {
1220                         lle = lock_list->ll_next;
1221
1222                         /*
1223                          * The interlock is the only lock we hold, so
1224                          * simply return.
1225                          */
1226                         if (lle == NULL)
1227                                 return;
1228                         plock = &lle->ll_children[lle->ll_count - 1];
1229                 }
1230         }
1231
1232         /*
1233          * Try to perform most checks without a lock.  If this succeeds we
1234          * can skip acquiring the lock and return success.  Otherwise we redo
1235          * the check with the lock held to handle races with concurrent updates.
1236          */
1237         w1 = plock->li_lock->lo_witness;
1238         if (witness_lock_order_check(w1, w))
1239                 return;
1240
1241         mtx_lock_spin(&w_mtx);
1242         if (witness_lock_order_check(w1, w)) {
1243                 mtx_unlock_spin(&w_mtx);
1244                 return;
1245         }
1246         witness_lock_order_add(w1, w);
1247
1248         /*
1249          * Check for duplicate locks of the same type.  Note that we only
1250          * have to check for this on the last lock we just acquired.  Any
1251          * other cases will be caught as lock order violations.
1252          */
1253         if (w1 == w) {
1254                 i = w->w_index;
1255                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1256                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1257                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1258                         w->w_reversed = 1;
1259                         mtx_unlock_spin(&w_mtx);
1260                         witness_output(
1261                             "acquiring duplicate lock of same type: \"%s\"\n", 
1262                             w->w_name);
1263                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1264                             fixup_filename(plock->li_file), plock->li_line);
1265                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1266                             fixup_filename(file), line);
1267                         witness_debugger(1, __func__);
1268                 } else
1269                         mtx_unlock_spin(&w_mtx);
1270                 return;
1271         }
1272         mtx_assert(&w_mtx, MA_OWNED);
1273
1274         /*
1275          * If we know that the lock we are acquiring comes after
1276          * the lock we most recently acquired in the lock order tree,
1277          * then there is no need for any further checks.
1278          */
1279         if (isitmychild(w1, w))
1280                 goto out;
1281
1282         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1283                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1284                         struct stack pstack;
1285                         bool pstackv, trace;
1286
1287                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1288                         lock1 = &lle->ll_children[i];
1289
1290                         /*
1291                          * Ignore the interlock.
1292                          */
1293                         if (interlock == lock1->li_lock)
1294                                 continue;
1295
1296                         /*
1297                          * If this lock doesn't undergo witness checking,
1298                          * then skip it.
1299                          */
1300                         w1 = lock1->li_lock->lo_witness;
1301                         if (w1 == NULL) {
1302                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1303                                     ("lock missing witness structure"));
1304                                 continue;
1305                         }
1306
1307                         /*
1308                          * If we are locking Giant and this is a sleepable
1309                          * lock, then skip it.
1310                          */
1311                         if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1312                             lock == &Giant.lock_object)
1313                                 continue;
1314
1315                         /*
1316                          * If we are locking a sleepable lock and this lock
1317                          * is Giant, then skip it.
1318                          */
1319                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1320                             (flags & LOP_NOSLEEP) == 0 &&
1321                             lock1->li_lock == &Giant.lock_object)
1322                                 continue;
1323
1324                         /*
1325                          * If we are locking a sleepable lock and this lock
1326                          * isn't sleepable, we want to treat it as a lock
1327                          * order violation to enfore a general lock order of
1328                          * sleepable locks before non-sleepable locks.
1329                          */
1330                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1331                             (flags & LOP_NOSLEEP) == 0 &&
1332                             (lock1->li_flags & LI_SLEEPABLE) == 0)
1333                                 goto reversal;
1334
1335                         /*
1336                          * If we are locking Giant and this is a non-sleepable
1337                          * lock, then treat it as a reversal.
1338                          */
1339                         if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1340                             lock == &Giant.lock_object)
1341                                 goto reversal;
1342
1343                         /*
1344                          * Check the lock order hierarchy for a reveresal.
1345                          */
1346                         if (!isitmydescendant(w, w1))
1347                                 continue;
1348                 reversal:
1349
1350                         /*
1351                          * We have a lock order violation, check to see if it
1352                          * is allowed or has already been yelled about.
1353                          */
1354
1355                         /* Bail if this violation is known */
1356                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1357                                 goto out;
1358
1359                         /* Record this as a violation */
1360                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1361                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1362                         w->w_reversed = w1->w_reversed = 1;
1363                         witness_increment_graph_generation();
1364
1365                         /*
1366                          * If the lock order is blessed, bail before logging
1367                          * anything.  We don't look for other lock order
1368                          * violations though, which may be a bug.
1369                          */
1370                         if (blessed(w, w1))
1371                                 goto out;
1372
1373                         trace = atomic_load_int(&witness_trace);
1374                         if (trace) {
1375                                 struct witness_lock_order_data *data;
1376
1377                                 pstackv = false;
1378                                 data = witness_lock_order_get(w, w1);
1379                                 if (data != NULL) {
1380                                         stack_copy(&data->wlod_stack,
1381                                             &pstack);
1382                                         pstackv = true;
1383                                 }
1384                         }
1385                         mtx_unlock_spin(&w_mtx);
1386
1387 #ifdef WITNESS_NO_VNODE
1388                         /*
1389                          * There are known LORs between VNODE locks. They are
1390                          * not an indication of a bug. VNODE locks are flagged
1391                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1392                          * is between 2 VNODE locks.
1393                          */
1394                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1395                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1396                                 return;
1397 #endif
1398
1399                         /*
1400                          * Ok, yell about it.
1401                          */
1402                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1403                             (flags & LOP_NOSLEEP) == 0 &&
1404                             (lock1->li_flags & LI_SLEEPABLE) == 0)
1405                                 witness_output(
1406                 "lock order reversal: (sleepable after non-sleepable)\n");
1407                         else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1408                             && lock == &Giant.lock_object)
1409                                 witness_output(
1410                 "lock order reversal: (Giant after non-sleepable)\n");
1411                         else
1412                                 witness_output("lock order reversal:\n");
1413
1414                         /*
1415                          * Try to locate an earlier lock with
1416                          * witness w in our list.
1417                          */
1418                         do {
1419                                 lock2 = &lle->ll_children[i];
1420                                 MPASS(lock2->li_lock != NULL);
1421                                 if (lock2->li_lock->lo_witness == w)
1422                                         break;
1423                                 if (i == 0 && lle->ll_next != NULL) {
1424                                         lle = lle->ll_next;
1425                                         i = lle->ll_count - 1;
1426                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1427                                 } else
1428                                         i--;
1429                         } while (i >= 0);
1430                         if (i < 0) {
1431                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1432                                     lock1->li_lock, lock1->li_lock->lo_name,
1433                                     w1->w_name, w1->w_class->lc_name,
1434                                     fixup_filename(lock1->li_file),
1435                                     lock1->li_line);
1436                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1437                                     lock, lock->lo_name, w->w_name,
1438                                     w->w_class->lc_name, fixup_filename(file),
1439                                     line);
1440                         } else {
1441                                 struct witness *w2 = lock2->li_lock->lo_witness;
1442
1443                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1444                                     lock2->li_lock, lock2->li_lock->lo_name,
1445                                     w2->w_name, w2->w_class->lc_name,
1446                                     fixup_filename(lock2->li_file),
1447                                     lock2->li_line);
1448                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1449                                     lock1->li_lock, lock1->li_lock->lo_name,
1450                                     w1->w_name, w1->w_class->lc_name,
1451                                     fixup_filename(lock1->li_file),
1452                                     lock1->li_line);
1453                                 witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
1454                                     lock->lo_name, w->w_name,
1455                                     w->w_class->lc_name, fixup_filename(file),
1456                                     line);
1457                         }
1458                         if (trace) {
1459                                 char buf[64];
1460                                 struct sbuf sb;
1461
1462                                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1463                                 sbuf_set_drain(&sb, witness_output_drain,
1464                                     NULL);
1465
1466                                 if (pstackv) {
1467                                         sbuf_printf(&sb,
1468                                     "lock order %s -> %s established at:\n",
1469                                             w->w_name, w1->w_name);
1470                                         stack_sbuf_print_flags(&sb, &pstack,
1471                                             M_NOWAIT, STACK_SBUF_FMT_LONG);
1472                                 }
1473
1474                                 sbuf_printf(&sb,
1475                                     "lock order %s -> %s attempted at:\n",
1476                                     w1->w_name, w->w_name);
1477                                 stack_save(&pstack);
1478                                 stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
1479                                     STACK_SBUF_FMT_LONG);
1480
1481                                 sbuf_finish(&sb);
1482                                 sbuf_delete(&sb);
1483                         }
1484                         witness_enter_debugger(__func__);
1485                         return;
1486                 }
1487         }
1488
1489         /*
1490          * If requested, build a new lock order.  However, don't build a new
1491          * relationship between a sleepable lock and Giant if it is in the
1492          * wrong direction.  The correct lock order is that sleepable locks
1493          * always come before Giant.
1494          */
1495         if (flags & LOP_NEWORDER &&
1496             !(plock->li_lock == &Giant.lock_object &&
1497             (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1498             (flags & LOP_NOSLEEP) == 0)) {
1499                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1500                     w->w_name, plock->li_lock->lo_witness->w_name);
1501                 itismychild(plock->li_lock->lo_witness, w);
1502         }
1503 out:
1504         mtx_unlock_spin(&w_mtx);
1505 }
1506
1507 void
1508 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1509 {
1510         struct lock_list_entry **lock_list, *lle;
1511         struct lock_instance *instance;
1512         struct witness *w;
1513         struct thread *td;
1514
1515         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1516             KERNEL_PANICKED())
1517                 return;
1518         w = lock->lo_witness;
1519         td = curthread;
1520
1521         /* Determine lock list for this lock. */
1522         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1523                 lock_list = &td->td_sleeplocks;
1524         else
1525                 lock_list = PCPU_PTR(spinlocks);
1526
1527         /* Check to see if we are recursing on a lock we already own. */
1528         instance = find_instance(*lock_list, lock);
1529         if (instance != NULL) {
1530                 instance->li_flags++;
1531                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1532                     td->td_proc->p_pid, lock->lo_name,
1533                     instance->li_flags & LI_RECURSEMASK);
1534                 instance->li_file = file;
1535                 instance->li_line = line;
1536                 return;
1537         }
1538
1539         /* Update per-witness last file and line acquire. */
1540         w->w_file = file;
1541         w->w_line = line;
1542
1543         /* Find the next open lock instance in the list and fill it. */
1544         lle = *lock_list;
1545         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1546                 lle = witness_lock_list_get();
1547                 if (lle == NULL)
1548                         return;
1549                 lle->ll_next = *lock_list;
1550                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1551                     td->td_proc->p_pid, lle);
1552                 *lock_list = lle;
1553         }
1554         instance = &lle->ll_children[lle->ll_count++];
1555         instance->li_lock = lock;
1556         instance->li_line = line;
1557         instance->li_file = file;
1558         instance->li_flags = 0;
1559         if ((flags & LOP_EXCLUSIVE) != 0)
1560                 instance->li_flags |= LI_EXCLUSIVE;
1561         if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1562                 instance->li_flags |= LI_SLEEPABLE;
1563         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1564             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1565 }
1566
1567 void
1568 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1569 {
1570         struct lock_instance *instance;
1571         struct lock_class *class;
1572
1573         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1574         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1575                 return;
1576         class = LOCK_CLASS(lock);
1577         if (witness_watch) {
1578                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1579                         kassert_panic(
1580                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1581                             class->lc_name, lock->lo_name,
1582                             fixup_filename(file), line);
1583                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1584                         kassert_panic(
1585                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1586                             class->lc_name, lock->lo_name,
1587                             fixup_filename(file), line);
1588         }
1589         instance = find_instance(curthread->td_sleeplocks, lock);
1590         if (instance == NULL) {
1591                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1592                     class->lc_name, lock->lo_name,
1593                     fixup_filename(file), line);
1594                 return;
1595         }
1596         if (witness_watch) {
1597                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1598                         kassert_panic(
1599                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1600                             class->lc_name, lock->lo_name,
1601                             fixup_filename(file), line);
1602                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1603                         kassert_panic(
1604                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1605                             class->lc_name, lock->lo_name,
1606                             instance->li_flags & LI_RECURSEMASK,
1607                             fixup_filename(file), line);
1608         }
1609         instance->li_flags |= LI_EXCLUSIVE;
1610 }
1611
1612 void
1613 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1614     int line)
1615 {
1616         struct lock_instance *instance;
1617         struct lock_class *class;
1618
1619         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1620         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1621                 return;
1622         class = LOCK_CLASS(lock);
1623         if (witness_watch) {
1624                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1625                         kassert_panic(
1626                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1627                             class->lc_name, lock->lo_name,
1628                             fixup_filename(file), line);
1629                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1630                         kassert_panic(
1631                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1632                             class->lc_name, lock->lo_name,
1633                             fixup_filename(file), line);
1634         }
1635         instance = find_instance(curthread->td_sleeplocks, lock);
1636         if (instance == NULL) {
1637                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1638                     class->lc_name, lock->lo_name,
1639                     fixup_filename(file), line);
1640                 return;
1641         }
1642         if (witness_watch) {
1643                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1644                         kassert_panic(
1645                             "downgrade of shared lock (%s) %s @ %s:%d",
1646                             class->lc_name, lock->lo_name,
1647                             fixup_filename(file), line);
1648                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1649                         kassert_panic(
1650                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1651                             class->lc_name, lock->lo_name,
1652                             instance->li_flags & LI_RECURSEMASK,
1653                             fixup_filename(file), line);
1654         }
1655         instance->li_flags &= ~LI_EXCLUSIVE;
1656 }
1657
1658 void
1659 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1660 {
1661         struct lock_list_entry **lock_list, *lle;
1662         struct lock_instance *instance;
1663         struct lock_class *class;
1664         struct thread *td;
1665         register_t s;
1666         int i, j;
1667
1668         if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1669                 return;
1670         td = curthread;
1671         class = LOCK_CLASS(lock);
1672
1673         /* Find lock instance associated with this lock. */
1674         if (class->lc_flags & LC_SLEEPLOCK)
1675                 lock_list = &td->td_sleeplocks;
1676         else
1677                 lock_list = PCPU_PTR(spinlocks);
1678         lle = *lock_list;
1679         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1680                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1681                         instance = &(*lock_list)->ll_children[i];
1682                         if (instance->li_lock == lock)
1683                                 goto found;
1684                 }
1685
1686         /*
1687          * When disabling WITNESS through witness_watch we could end up in
1688          * having registered locks in the td_sleeplocks queue.
1689          * We have to make sure we flush these queues, so just search for
1690          * eventual register locks and remove them.
1691          */
1692         if (witness_watch > 0) {
1693                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1694                     lock->lo_name, fixup_filename(file), line);
1695                 return;
1696         } else {
1697                 return;
1698         }
1699 found:
1700
1701         /* First, check for shared/exclusive mismatches. */
1702         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1703             (flags & LOP_EXCLUSIVE) == 0) {
1704                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1705                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1706                 witness_output("while exclusively locked from %s:%d\n",
1707                     fixup_filename(instance->li_file), instance->li_line);
1708                 kassert_panic("excl->ushare");
1709         }
1710         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1711             (flags & LOP_EXCLUSIVE) != 0) {
1712                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1713                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1714                 witness_output("while share locked from %s:%d\n",
1715                     fixup_filename(instance->li_file),
1716                     instance->li_line);
1717                 kassert_panic("share->uexcl");
1718         }
1719         /* If we are recursed, unrecurse. */
1720         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1721                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1722                     td->td_proc->p_pid, instance->li_lock->lo_name,
1723                     instance->li_flags);
1724                 instance->li_flags--;
1725                 return;
1726         }
1727         /* The lock is now being dropped, check for NORELEASE flag */
1728         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1729                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1730                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1731                 kassert_panic("lock marked norelease");
1732         }
1733
1734         /* Otherwise, remove this item from the list. */
1735         s = intr_disable();
1736         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1737             td->td_proc->p_pid, instance->li_lock->lo_name,
1738             (*lock_list)->ll_count - 1);
1739         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1740                 (*lock_list)->ll_children[j] =
1741                     (*lock_list)->ll_children[j + 1];
1742         (*lock_list)->ll_count--;
1743         intr_restore(s);
1744
1745         /*
1746          * In order to reduce contention on w_mtx, we want to keep always an
1747          * head object into lists so that frequent allocation from the 
1748          * free witness pool (and subsequent locking) is avoided.
1749          * In order to maintain the current code simple, when the head
1750          * object is totally unloaded it means also that we do not have
1751          * further objects in the list, so the list ownership needs to be
1752          * hand over to another object if the current head needs to be freed.
1753          */
1754         if ((*lock_list)->ll_count == 0) {
1755                 if (*lock_list == lle) {
1756                         if (lle->ll_next == NULL)
1757                                 return;
1758                 } else
1759                         lle = *lock_list;
1760                 *lock_list = lle->ll_next;
1761                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1762                     td->td_proc->p_pid, lle);
1763                 witness_lock_list_free(lle);
1764         }
1765 }
1766
1767 void
1768 witness_thread_exit(struct thread *td)
1769 {
1770         struct lock_list_entry *lle;
1771         int i, n;
1772
1773         lle = td->td_sleeplocks;
1774         if (lle == NULL || KERNEL_PANICKED())
1775                 return;
1776         if (lle->ll_count != 0) {
1777                 for (n = 0; lle != NULL; lle = lle->ll_next)
1778                         for (i = lle->ll_count - 1; i >= 0; i--) {
1779                                 if (n == 0)
1780                                         witness_output(
1781                     "Thread %p exiting with the following locks held:\n", td);
1782                                 n++;
1783                                 witness_list_lock(&lle->ll_children[i],
1784                                     witness_output);
1785                                 
1786                         }
1787                 kassert_panic(
1788                     "Thread %p cannot exit while holding sleeplocks\n", td);
1789         }
1790         witness_lock_list_free(lle);
1791 }
1792
1793 /*
1794  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1795  * exempt Giant and sleepable locks from the checks as well.  If any
1796  * non-exempt locks are held, then a supplied message is printed to the
1797  * output channel along with a list of the offending locks.  If indicated in the
1798  * flags then a failure results in a panic as well.
1799  */
1800 int
1801 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1802 {
1803         struct lock_list_entry *lock_list, *lle;
1804         struct lock_instance *lock1;
1805         struct thread *td;
1806         va_list ap;
1807         int i, n;
1808
1809         if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1810                 return (0);
1811         n = 0;
1812         td = curthread;
1813         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1814                 for (i = lle->ll_count - 1; i >= 0; i--) {
1815                         lock1 = &lle->ll_children[i];
1816                         if (lock1->li_lock == lock)
1817                                 continue;
1818                         if (flags & WARN_GIANTOK &&
1819                             lock1->li_lock == &Giant.lock_object)
1820                                 continue;
1821                         if (flags & WARN_SLEEPOK &&
1822                             (lock1->li_flags & LI_SLEEPABLE) != 0)
1823                                 continue;
1824                         if (n == 0) {
1825                                 va_start(ap, fmt);
1826                                 vprintf(fmt, ap);
1827                                 va_end(ap);
1828                                 printf(" with the following %slocks held:\n",
1829                                     (flags & WARN_SLEEPOK) != 0 ?
1830                                     "non-sleepable " : "");
1831                         }
1832                         n++;
1833                         witness_list_lock(lock1, printf);
1834                 }
1835
1836         /*
1837          * Pin the thread in order to avoid problems with thread migration.
1838          * Once that all verifies are passed about spinlocks ownership,
1839          * the thread is in a safe path and it can be unpinned.
1840          */
1841         sched_pin();
1842         lock_list = PCPU_GET(spinlocks);
1843         if (lock_list != NULL && lock_list->ll_count != 0) {
1844                 sched_unpin();
1845
1846                 /*
1847                  * We should only have one spinlock and as long as
1848                  * the flags cannot match for this locks class,
1849                  * check if the first spinlock is the one curthread
1850                  * should hold.
1851                  */
1852                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1853                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1854                     lock1->li_lock == lock && n == 0)
1855                         return (0);
1856
1857                 va_start(ap, fmt);
1858                 vprintf(fmt, ap);
1859                 va_end(ap);
1860                 printf(" with the following %slocks held:\n",
1861                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1862                 n += witness_list_locks(&lock_list, printf);
1863         } else
1864                 sched_unpin();
1865         if (flags & WARN_PANIC && n)
1866                 kassert_panic("%s", __func__);
1867         else
1868                 witness_debugger(n, __func__);
1869         return (n);
1870 }
1871
1872 const char *
1873 witness_file(struct lock_object *lock)
1874 {
1875         struct witness *w;
1876
1877         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1878                 return ("?");
1879         w = lock->lo_witness;
1880         return (w->w_file);
1881 }
1882
1883 int
1884 witness_line(struct lock_object *lock)
1885 {
1886         struct witness *w;
1887
1888         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1889                 return (0);
1890         w = lock->lo_witness;
1891         return (w->w_line);
1892 }
1893
1894 static struct witness *
1895 enroll(const char *description, struct lock_class *lock_class)
1896 {
1897         struct witness *w;
1898
1899         MPASS(description != NULL);
1900
1901         if (witness_watch == -1 || KERNEL_PANICKED())
1902                 return (NULL);
1903         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1904                 if (witness_skipspin)
1905                         return (NULL);
1906         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1907                 kassert_panic("lock class %s is not sleep or spin",
1908                     lock_class->lc_name);
1909                 return (NULL);
1910         }
1911
1912         mtx_lock_spin(&w_mtx);
1913         w = witness_hash_get(description);
1914         if (w)
1915                 goto found;
1916         if ((w = witness_get()) == NULL)
1917                 return (NULL);
1918         MPASS(strlen(description) < MAX_W_NAME);
1919         strcpy(w->w_name, description);
1920         w->w_class = lock_class;
1921         w->w_refcount = 1;
1922         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1923         if (lock_class->lc_flags & LC_SPINLOCK) {
1924                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1925                 w_spin_cnt++;
1926         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1927                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1928                 w_sleep_cnt++;
1929         }
1930
1931         /* Insert new witness into the hash */
1932         witness_hash_put(w);
1933         witness_increment_graph_generation();
1934         mtx_unlock_spin(&w_mtx);
1935         return (w);
1936 found:
1937         w->w_refcount++;
1938         if (w->w_refcount == 1)
1939                 w->w_class = lock_class;
1940         mtx_unlock_spin(&w_mtx);
1941         if (lock_class != w->w_class)
1942                 kassert_panic(
1943                     "lock (%s) %s does not match earlier (%s) lock",
1944                     description, lock_class->lc_name,
1945                     w->w_class->lc_name);
1946         return (w);
1947 }
1948
1949 static void
1950 depart(struct witness *w)
1951 {
1952
1953         MPASS(w->w_refcount == 0);
1954         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1955                 w_sleep_cnt--;
1956         } else {
1957                 w_spin_cnt--;
1958         }
1959         /*
1960          * Set file to NULL as it may point into a loadable module.
1961          */
1962         w->w_file = NULL;
1963         w->w_line = 0;
1964         witness_increment_graph_generation();
1965 }
1966
1967 static void
1968 adopt(struct witness *parent, struct witness *child)
1969 {
1970         int pi, ci, i, j;
1971
1972         if (witness_cold == 0)
1973                 mtx_assert(&w_mtx, MA_OWNED);
1974
1975         /* If the relationship is already known, there's no work to be done. */
1976         if (isitmychild(parent, child))
1977                 return;
1978
1979         /* When the structure of the graph changes, bump up the generation. */
1980         witness_increment_graph_generation();
1981
1982         /*
1983          * The hard part ... create the direct relationship, then propagate all
1984          * indirect relationships.
1985          */
1986         pi = parent->w_index;
1987         ci = child->w_index;
1988         WITNESS_INDEX_ASSERT(pi);
1989         WITNESS_INDEX_ASSERT(ci);
1990         MPASS(pi != ci);
1991         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1992         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1993
1994         /*
1995          * If parent was not already an ancestor of child,
1996          * then we increment the descendant and ancestor counters.
1997          */
1998         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1999                 parent->w_num_descendants++;
2000                 child->w_num_ancestors++;
2001         }
2002
2003         /* 
2004          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
2005          * an ancestor of 'pi' during this loop.
2006          */
2007         for (i = 1; i <= w_max_used_index; i++) {
2008                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
2009                     (i != pi))
2010                         continue;
2011
2012                 /* Find each descendant of 'i' and mark it as a descendant. */
2013                 for (j = 1; j <= w_max_used_index; j++) {
2014                         /* 
2015                          * Skip children that are already marked as
2016                          * descendants of 'i'.
2017                          */
2018                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
2019                                 continue;
2020
2021                         /*
2022                          * We are only interested in descendants of 'ci'. Note
2023                          * that 'ci' itself is counted as a descendant of 'ci'.
2024                          */
2025                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
2026                             (j != ci))
2027                                 continue;
2028                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
2029                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
2030                         w_data[i].w_num_descendants++;
2031                         w_data[j].w_num_ancestors++;
2032
2033                         /* 
2034                          * Make sure we aren't marking a node as both an
2035                          * ancestor and descendant. We should have caught 
2036                          * this as a lock order reversal earlier.
2037                          */
2038                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
2039                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
2040                                 printf("witness rmatrix paradox! [%d][%d]=%d "
2041                                     "both ancestor and descendant\n",
2042                                     i, j, w_rmatrix[i][j]); 
2043                                 kdb_backtrace();
2044                                 printf("Witness disabled.\n");
2045                                 witness_watch = -1;
2046                         }
2047                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2048                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2049                                 printf("witness rmatrix paradox! [%d][%d]=%d "
2050                                     "both ancestor and descendant\n",
2051                                     j, i, w_rmatrix[j][i]); 
2052                                 kdb_backtrace();
2053                                 printf("Witness disabled.\n");
2054                                 witness_watch = -1;
2055                         }
2056                 }
2057         }
2058 }
2059
2060 static void
2061 itismychild(struct witness *parent, struct witness *child)
2062 {
2063         int unlocked;
2064
2065         MPASS(child != NULL && parent != NULL);
2066         if (witness_cold == 0)
2067                 mtx_assert(&w_mtx, MA_OWNED);
2068
2069         if (!witness_lock_type_equal(parent, child)) {
2070                 if (witness_cold == 0) {
2071                         unlocked = 1;
2072                         mtx_unlock_spin(&w_mtx);
2073                 } else {
2074                         unlocked = 0;
2075                 }
2076                 kassert_panic(
2077                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2078                     "the same lock type", __func__, parent->w_name,
2079                     parent->w_class->lc_name, child->w_name,
2080                     child->w_class->lc_name);
2081                 if (unlocked)
2082                         mtx_lock_spin(&w_mtx);
2083         }
2084         adopt(parent, child);
2085 }
2086
2087 /*
2088  * Generic code for the isitmy*() functions. The rmask parameter is the
2089  * expected relationship of w1 to w2.
2090  */
2091 static int
2092 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2093 {
2094         unsigned char r1, r2;
2095         int i1, i2;
2096
2097         i1 = w1->w_index;
2098         i2 = w2->w_index;
2099         WITNESS_INDEX_ASSERT(i1);
2100         WITNESS_INDEX_ASSERT(i2);
2101         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2102         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2103
2104         /* The flags on one better be the inverse of the flags on the other */
2105         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2106             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2107                 /* Don't squawk if we're potentially racing with an update. */
2108                 if (!mtx_owned(&w_mtx))
2109                         return (0);
2110                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2111                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2112                     "w_rmatrix[%d][%d] == %hhx\n",
2113                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2114                     i2, i1, r2);
2115                 kdb_backtrace();
2116                 printf("Witness disabled.\n");
2117                 witness_watch = -1;
2118         }
2119         return (r1 & rmask);
2120 }
2121
2122 /*
2123  * Checks if @child is a direct child of @parent.
2124  */
2125 static int
2126 isitmychild(struct witness *parent, struct witness *child)
2127 {
2128
2129         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2130 }
2131
2132 /*
2133  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2134  */
2135 static int
2136 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2137 {
2138
2139         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2140             __func__));
2141 }
2142
2143 static int
2144 blessed(struct witness *w1, struct witness *w2)
2145 {
2146         int i;
2147         struct witness_blessed *b;
2148
2149         for (i = 0; i < nitems(blessed_list); i++) {
2150                 b = &blessed_list[i];
2151                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2152                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2153                                 return (1);
2154                         continue;
2155                 }
2156                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2157                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2158                                 return (1);
2159         }
2160         return (0);
2161 }
2162
2163 static struct witness *
2164 witness_get(void)
2165 {
2166         struct witness *w;
2167         int index;
2168
2169         if (witness_cold == 0)
2170                 mtx_assert(&w_mtx, MA_OWNED);
2171
2172         if (witness_watch == -1) {
2173                 mtx_unlock_spin(&w_mtx);
2174                 return (NULL);
2175         }
2176         if (STAILQ_EMPTY(&w_free)) {
2177                 witness_watch = -1;
2178                 mtx_unlock_spin(&w_mtx);
2179                 printf("WITNESS: unable to allocate a new witness object\n");
2180                 return (NULL);
2181         }
2182         w = STAILQ_FIRST(&w_free);
2183         STAILQ_REMOVE_HEAD(&w_free, w_list);
2184         w_free_cnt--;
2185         index = w->w_index;
2186         MPASS(index > 0 && index == w_max_used_index+1 &&
2187             index < witness_count);
2188         bzero(w, sizeof(*w));
2189         w->w_index = index;
2190         if (index > w_max_used_index)
2191                 w_max_used_index = index;
2192         return (w);
2193 }
2194
2195 static void
2196 witness_free(struct witness *w)
2197 {
2198
2199         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2200         w_free_cnt++;
2201 }
2202
2203 static struct lock_list_entry *
2204 witness_lock_list_get(void)
2205 {
2206         struct lock_list_entry *lle;
2207
2208         if (witness_watch == -1)
2209                 return (NULL);
2210         mtx_lock_spin(&w_mtx);
2211         lle = w_lock_list_free;
2212         if (lle == NULL) {
2213                 witness_watch = -1;
2214                 mtx_unlock_spin(&w_mtx);
2215                 printf("%s: witness exhausted\n", __func__);
2216                 return (NULL);
2217         }
2218         w_lock_list_free = lle->ll_next;
2219         mtx_unlock_spin(&w_mtx);
2220         bzero(lle, sizeof(*lle));
2221         return (lle);
2222 }
2223                 
2224 static void
2225 witness_lock_list_free(struct lock_list_entry *lle)
2226 {
2227
2228         mtx_lock_spin(&w_mtx);
2229         lle->ll_next = w_lock_list_free;
2230         w_lock_list_free = lle;
2231         mtx_unlock_spin(&w_mtx);
2232 }
2233
2234 static struct lock_instance *
2235 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2236 {
2237         struct lock_list_entry *lle;
2238         struct lock_instance *instance;
2239         int i;
2240
2241         for (lle = list; lle != NULL; lle = lle->ll_next)
2242                 for (i = lle->ll_count - 1; i >= 0; i--) {
2243                         instance = &lle->ll_children[i];
2244                         if (instance->li_lock == lock)
2245                                 return (instance);
2246                 }
2247         return (NULL);
2248 }
2249
2250 static void
2251 witness_list_lock(struct lock_instance *instance,
2252     int (*prnt)(const char *fmt, ...))
2253 {
2254         struct lock_object *lock;
2255
2256         lock = instance->li_lock;
2257         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2258             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2259         if (lock->lo_witness->w_name != lock->lo_name)
2260                 prnt(" (%s)", lock->lo_witness->w_name);
2261         prnt(" r = %d (%p) locked @ %s:%d\n",
2262             instance->li_flags & LI_RECURSEMASK, lock,
2263             fixup_filename(instance->li_file), instance->li_line);
2264 }
2265
2266 static int
2267 witness_output(const char *fmt, ...)
2268 {
2269         va_list ap;
2270         int ret;
2271
2272         va_start(ap, fmt);
2273         ret = witness_voutput(fmt, ap);
2274         va_end(ap);
2275         return (ret);
2276 }
2277
2278 static int
2279 witness_voutput(const char *fmt, va_list ap)
2280 {
2281         int ret;
2282
2283         ret = 0;
2284         switch (witness_channel) {
2285         case WITNESS_CONSOLE:
2286                 ret = vprintf(fmt, ap);
2287                 break;
2288         case WITNESS_LOG:
2289                 vlog(LOG_NOTICE, fmt, ap);
2290                 break;
2291         case WITNESS_NONE:
2292                 break;
2293         }
2294         return (ret);
2295 }
2296
2297 #ifdef DDB
2298 static int
2299 witness_thread_has_locks(struct thread *td)
2300 {
2301
2302         if (td->td_sleeplocks == NULL)
2303                 return (0);
2304         return (td->td_sleeplocks->ll_count != 0);
2305 }
2306
2307 static int
2308 witness_proc_has_locks(struct proc *p)
2309 {
2310         struct thread *td;
2311
2312         FOREACH_THREAD_IN_PROC(p, td) {
2313                 if (witness_thread_has_locks(td))
2314                         return (1);
2315         }
2316         return (0);
2317 }
2318 #endif
2319
2320 int
2321 witness_list_locks(struct lock_list_entry **lock_list,
2322     int (*prnt)(const char *fmt, ...))
2323 {
2324         struct lock_list_entry *lle;
2325         int i, nheld;
2326
2327         nheld = 0;
2328         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2329                 for (i = lle->ll_count - 1; i >= 0; i--) {
2330                         witness_list_lock(&lle->ll_children[i], prnt);
2331                         nheld++;
2332                 }
2333         return (nheld);
2334 }
2335
2336 /*
2337  * This is a bit risky at best.  We call this function when we have timed
2338  * out acquiring a spin lock, and we assume that the other CPU is stuck
2339  * with this lock held.  So, we go groveling around in the other CPU's
2340  * per-cpu data to try to find the lock instance for this spin lock to
2341  * see when it was last acquired.
2342  */
2343 void
2344 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2345     int (*prnt)(const char *fmt, ...))
2346 {
2347         struct lock_instance *instance;
2348         struct pcpu *pc;
2349
2350         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2351                 return;
2352         pc = pcpu_find(owner->td_oncpu);
2353         instance = find_instance(pc->pc_spinlocks, lock);
2354         if (instance != NULL)
2355                 witness_list_lock(instance, prnt);
2356 }
2357
2358 void
2359 witness_save(struct lock_object *lock, const char **filep, int *linep)
2360 {
2361         struct lock_list_entry *lock_list;
2362         struct lock_instance *instance;
2363         struct lock_class *class;
2364
2365         /* Initialize for KMSAN's benefit. */
2366         *filep = NULL;
2367         *linep = 0;
2368
2369         /*
2370          * This function is used independently in locking code to deal with
2371          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2372          * is gone.
2373          */
2374         if (SCHEDULER_STOPPED())
2375                 return;
2376         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2377         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2378                 return;
2379         class = LOCK_CLASS(lock);
2380         if (class->lc_flags & LC_SLEEPLOCK)
2381                 lock_list = curthread->td_sleeplocks;
2382         else {
2383                 if (witness_skipspin)
2384                         return;
2385                 lock_list = PCPU_GET(spinlocks);
2386         }
2387         instance = find_instance(lock_list, lock);
2388         if (instance == NULL) {
2389                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2390                     class->lc_name, lock->lo_name);
2391                 return;
2392         }
2393         *filep = instance->li_file;
2394         *linep = instance->li_line;
2395 }
2396
2397 void
2398 witness_restore(struct lock_object *lock, const char *file, int line)
2399 {
2400         struct lock_list_entry *lock_list;
2401         struct lock_instance *instance;
2402         struct lock_class *class;
2403
2404         /*
2405          * This function is used independently in locking code to deal with
2406          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2407          * is gone.
2408          */
2409         if (SCHEDULER_STOPPED())
2410                 return;
2411         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2412         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2413                 return;
2414         class = LOCK_CLASS(lock);
2415         if (class->lc_flags & LC_SLEEPLOCK)
2416                 lock_list = curthread->td_sleeplocks;
2417         else {
2418                 if (witness_skipspin)
2419                         return;
2420                 lock_list = PCPU_GET(spinlocks);
2421         }
2422         instance = find_instance(lock_list, lock);
2423         if (instance == NULL)
2424                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2425                     class->lc_name, lock->lo_name);
2426         lock->lo_witness->w_file = file;
2427         lock->lo_witness->w_line = line;
2428         if (instance == NULL)
2429                 return;
2430         instance->li_file = file;
2431         instance->li_line = line;
2432 }
2433
2434 static bool
2435 witness_find_instance(const struct lock_object *lock,
2436     struct lock_instance **instance)
2437 {
2438 #ifdef INVARIANT_SUPPORT
2439         struct lock_class *class;
2440
2441         if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2442                 return (false);
2443         class = LOCK_CLASS(lock);
2444         if ((class->lc_flags & LC_SLEEPLOCK) != 0) {
2445                 *instance = find_instance(curthread->td_sleeplocks, lock);
2446                 return (true);
2447         } else if ((class->lc_flags & LC_SPINLOCK) != 0) {
2448                 *instance = find_instance(PCPU_GET(spinlocks), lock);
2449                 return (true);
2450         } else {
2451                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2452                     class->lc_name, lock->lo_name);
2453                 return (false);
2454         }
2455 #else
2456         return (false);
2457 #endif
2458 }
2459
2460 void
2461 witness_assert(const struct lock_object *lock, int flags, const char *file,
2462     int line)
2463 {
2464 #ifdef INVARIANT_SUPPORT
2465         struct lock_instance *instance;
2466         struct lock_class *class;
2467
2468         if (!witness_find_instance(lock, &instance))
2469                 return;
2470         class = LOCK_CLASS(lock);
2471         switch (flags) {
2472         case LA_UNLOCKED:
2473                 if (instance != NULL)
2474                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2475                             class->lc_name, lock->lo_name,
2476                             fixup_filename(file), line);
2477                 break;
2478         case LA_LOCKED:
2479         case LA_LOCKED | LA_RECURSED:
2480         case LA_LOCKED | LA_NOTRECURSED:
2481         case LA_SLOCKED:
2482         case LA_SLOCKED | LA_RECURSED:
2483         case LA_SLOCKED | LA_NOTRECURSED:
2484         case LA_XLOCKED:
2485         case LA_XLOCKED | LA_RECURSED:
2486         case LA_XLOCKED | LA_NOTRECURSED:
2487                 if (instance == NULL) {
2488                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2489                             class->lc_name, lock->lo_name,
2490                             fixup_filename(file), line);
2491                         break;
2492                 }
2493                 if ((flags & LA_XLOCKED) != 0 &&
2494                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2495                         kassert_panic(
2496                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2497                             class->lc_name, lock->lo_name,
2498                             fixup_filename(file), line);
2499                 if ((flags & LA_SLOCKED) != 0 &&
2500                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2501                         kassert_panic(
2502                             "Lock (%s) %s exclusively locked @ %s:%d.",
2503                             class->lc_name, lock->lo_name,
2504                             fixup_filename(file), line);
2505                 if ((flags & LA_RECURSED) != 0 &&
2506                     (instance->li_flags & LI_RECURSEMASK) == 0)
2507                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2508                             class->lc_name, lock->lo_name,
2509                             fixup_filename(file), line);
2510                 if ((flags & LA_NOTRECURSED) != 0 &&
2511                     (instance->li_flags & LI_RECURSEMASK) != 0)
2512                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2513                             class->lc_name, lock->lo_name,
2514                             fixup_filename(file), line);
2515                 break;
2516         default:
2517                 kassert_panic("Invalid lock assertion at %s:%d.",
2518                     fixup_filename(file), line);
2519         }
2520 #endif  /* INVARIANT_SUPPORT */
2521 }
2522
2523 /*
2524  * Checks the ownership of the lock by curthread, consulting the witness list.
2525  * Returns:
2526  *   0  if witness is disabled or did not work
2527  *   -1 if not owned
2528  *   1  if owned
2529  */
2530 int
2531 witness_is_owned(const struct lock_object *lock)
2532 {
2533 #ifdef INVARIANT_SUPPORT
2534         struct lock_instance *instance;
2535
2536         if (!witness_find_instance(lock, &instance))
2537                 return (0);
2538         return (instance == NULL ? -1 : 1);
2539 #else
2540         return (0);
2541 #endif
2542 }
2543
2544 static void
2545 witness_setflag(struct lock_object *lock, int flag, int set)
2546 {
2547         struct lock_list_entry *lock_list;
2548         struct lock_instance *instance;
2549         struct lock_class *class;
2550
2551         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2552                 return;
2553         class = LOCK_CLASS(lock);
2554         if (class->lc_flags & LC_SLEEPLOCK)
2555                 lock_list = curthread->td_sleeplocks;
2556         else {
2557                 if (witness_skipspin)
2558                         return;
2559                 lock_list = PCPU_GET(spinlocks);
2560         }
2561         instance = find_instance(lock_list, lock);
2562         if (instance == NULL) {
2563                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2564                     class->lc_name, lock->lo_name);
2565                 return;
2566         }
2567
2568         if (set)
2569                 instance->li_flags |= flag;
2570         else
2571                 instance->li_flags &= ~flag;
2572 }
2573
2574 void
2575 witness_norelease(struct lock_object *lock)
2576 {
2577
2578         witness_setflag(lock, LI_NORELEASE, 1);
2579 }
2580
2581 void
2582 witness_releaseok(struct lock_object *lock)
2583 {
2584
2585         witness_setflag(lock, LI_NORELEASE, 0);
2586 }
2587
2588 #ifdef DDB
2589 static void
2590 witness_ddb_list(struct thread *td)
2591 {
2592
2593         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2594         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2595
2596         if (witness_watch < 1)
2597                 return;
2598
2599         witness_list_locks(&td->td_sleeplocks, db_printf);
2600
2601         /*
2602          * We only handle spinlocks if td == curthread.  This is somewhat broken
2603          * if td is currently executing on some other CPU and holds spin locks
2604          * as we won't display those locks.  If we had a MI way of getting
2605          * the per-cpu data for a given cpu then we could use
2606          * td->td_oncpu to get the list of spinlocks for this thread
2607          * and "fix" this.
2608          *
2609          * That still wouldn't really fix this unless we locked the scheduler
2610          * lock or stopped the other CPU to make sure it wasn't changing the
2611          * list out from under us.  It is probably best to just not try to
2612          * handle threads on other CPU's for now.
2613          */
2614         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2615                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2616 }
2617
2618 DB_SHOW_COMMAND(locks, db_witness_list)
2619 {
2620         struct thread *td;
2621
2622         if (have_addr)
2623                 td = db_lookup_thread(addr, true);
2624         else
2625                 td = kdb_thread;
2626         witness_ddb_list(td);
2627 }
2628
2629 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2630 {
2631         struct thread *td;
2632         struct proc *p;
2633
2634         /*
2635          * It would be nice to list only threads and processes that actually
2636          * held sleep locks, but that information is currently not exported
2637          * by WITNESS.
2638          */
2639         FOREACH_PROC_IN_SYSTEM(p) {
2640                 if (!witness_proc_has_locks(p))
2641                         continue;
2642                 FOREACH_THREAD_IN_PROC(p, td) {
2643                         if (!witness_thread_has_locks(td))
2644                                 continue;
2645                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2646                             p->p_comm, td, td->td_tid);
2647                         witness_ddb_list(td);
2648                         if (db_pager_quit)
2649                                 return;
2650                 }
2651         }
2652 }
2653 DB_SHOW_ALIAS_FLAGS(alllocks, db_witness_list_all, DB_CMD_MEMSAFE);
2654
2655 DB_SHOW_COMMAND_FLAGS(witness, db_witness_display, DB_CMD_MEMSAFE)
2656 {
2657
2658         witness_ddb_display(db_printf);
2659 }
2660 #endif
2661
2662 static void
2663 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2664 {
2665         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2666         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2667         int generation, i, j;
2668
2669         tmp_data1 = NULL;
2670         tmp_data2 = NULL;
2671         tmp_w1 = NULL;
2672         tmp_w2 = NULL;
2673
2674         /* Allocate and init temporary storage space. */
2675         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2676         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2677         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2678             M_WAITOK | M_ZERO);
2679         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2680             M_WAITOK | M_ZERO);
2681         stack_zero(&tmp_data1->wlod_stack);
2682         stack_zero(&tmp_data2->wlod_stack);
2683
2684 restart:
2685         mtx_lock_spin(&w_mtx);
2686         generation = w_generation;
2687         mtx_unlock_spin(&w_mtx);
2688         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2689             w_lohash.wloh_count);
2690         for (i = 1; i < w_max_used_index; i++) {
2691                 mtx_lock_spin(&w_mtx);
2692                 if (generation != w_generation) {
2693                         mtx_unlock_spin(&w_mtx);
2694
2695                         /* The graph has changed, try again. */
2696                         *oldidx = 0;
2697                         sbuf_clear(sb);
2698                         goto restart;
2699                 }
2700
2701                 w1 = &w_data[i];
2702                 if (w1->w_reversed == 0) {
2703                         mtx_unlock_spin(&w_mtx);
2704                         continue;
2705                 }
2706
2707                 /* Copy w1 locally so we can release the spin lock. */
2708                 *tmp_w1 = *w1;
2709                 mtx_unlock_spin(&w_mtx);
2710
2711                 if (tmp_w1->w_reversed == 0)
2712                         continue;
2713                 for (j = 1; j < w_max_used_index; j++) {
2714                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2715                                 continue;
2716
2717                         mtx_lock_spin(&w_mtx);
2718                         if (generation != w_generation) {
2719                                 mtx_unlock_spin(&w_mtx);
2720
2721                                 /* The graph has changed, try again. */
2722                                 *oldidx = 0;
2723                                 sbuf_clear(sb);
2724                                 goto restart;
2725                         }
2726
2727                         w2 = &w_data[j];
2728                         data1 = witness_lock_order_get(w1, w2);
2729                         data2 = witness_lock_order_get(w2, w1);
2730
2731                         /*
2732                          * Copy information locally so we can release the
2733                          * spin lock.
2734                          */
2735                         *tmp_w2 = *w2;
2736
2737                         if (data1) {
2738                                 stack_zero(&tmp_data1->wlod_stack);
2739                                 stack_copy(&data1->wlod_stack,
2740                                     &tmp_data1->wlod_stack);
2741                         }
2742                         if (data2 && data2 != data1) {
2743                                 stack_zero(&tmp_data2->wlod_stack);
2744                                 stack_copy(&data2->wlod_stack,
2745                                     &tmp_data2->wlod_stack);
2746                         }
2747                         mtx_unlock_spin(&w_mtx);
2748
2749                         if (blessed(tmp_w1, tmp_w2))
2750                                 continue;
2751
2752                         sbuf_printf(sb,
2753             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2754                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2755                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2756                         if (data1) {
2757                                 sbuf_printf(sb,
2758                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2759                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2760                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2761                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2762                                 sbuf_putc(sb, '\n');
2763                         }
2764                         if (data2 && data2 != data1) {
2765                                 sbuf_printf(sb,
2766                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2767                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2768                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2769                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2770                                 sbuf_putc(sb, '\n');
2771                         }
2772                 }
2773         }
2774         mtx_lock_spin(&w_mtx);
2775         if (generation != w_generation) {
2776                 mtx_unlock_spin(&w_mtx);
2777
2778                 /*
2779                  * The graph changed while we were printing stack data,
2780                  * try again.
2781                  */
2782                 *oldidx = 0;
2783                 sbuf_clear(sb);
2784                 goto restart;
2785         }
2786         mtx_unlock_spin(&w_mtx);
2787
2788         /* Free temporary storage space. */
2789         free(tmp_data1, M_TEMP);
2790         free(tmp_data2, M_TEMP);
2791         free(tmp_w1, M_TEMP);
2792         free(tmp_w2, M_TEMP);
2793 }
2794
2795 static int
2796 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2797 {
2798         struct sbuf *sb;
2799         int error;
2800
2801         if (witness_watch < 1) {
2802                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2803                 return (error);
2804         }
2805         if (witness_cold) {
2806                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2807                 return (error);
2808         }
2809         error = 0;
2810         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2811         if (sb == NULL)
2812                 return (ENOMEM);
2813
2814         sbuf_print_witness_badstacks(sb, &req->oldidx);
2815
2816         sbuf_finish(sb);
2817         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2818         sbuf_delete(sb);
2819
2820         return (error);
2821 }
2822
2823 #ifdef DDB
2824 static int
2825 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2826 {
2827
2828         return (db_printf("%.*s", len, data));
2829 }
2830
2831 DB_SHOW_COMMAND_FLAGS(badstacks, db_witness_badstacks, DB_CMD_MEMSAFE)
2832 {
2833         struct sbuf sb;
2834         char buffer[128];
2835         size_t dummy;
2836
2837         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2838         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2839         sbuf_print_witness_badstacks(&sb, &dummy);
2840         sbuf_finish(&sb);
2841 }
2842 #endif
2843
2844 static int
2845 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2846 {
2847         static const struct {
2848                 enum witness_channel channel;
2849                 const char *name;
2850         } channels[] = {
2851                 { WITNESS_CONSOLE, "console" },
2852                 { WITNESS_LOG, "log" },
2853                 { WITNESS_NONE, "none" },
2854         };
2855         char buf[16];
2856         u_int i;
2857         int error;
2858
2859         buf[0] = '\0';
2860         for (i = 0; i < nitems(channels); i++)
2861                 if (witness_channel == channels[i].channel) {
2862                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2863                         break;
2864                 }
2865
2866         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2867         if (error != 0 || req->newptr == NULL)
2868                 return (error);
2869
2870         error = EINVAL;
2871         for (i = 0; i < nitems(channels); i++)
2872                 if (strcmp(channels[i].name, buf) == 0) {
2873                         witness_channel = channels[i].channel;
2874                         error = 0;
2875                         break;
2876                 }
2877         return (error);
2878 }
2879
2880 static int
2881 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2882 {
2883         struct witness *w;
2884         struct sbuf *sb;
2885         int error;
2886
2887 #ifdef __i386__
2888         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2889         return (error);
2890 #endif
2891
2892         if (witness_watch < 1) {
2893                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2894                 return (error);
2895         }
2896         if (witness_cold) {
2897                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2898                 return (error);
2899         }
2900         error = 0;
2901
2902         error = sysctl_wire_old_buffer(req, 0);
2903         if (error != 0)
2904                 return (error);
2905         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2906         if (sb == NULL)
2907                 return (ENOMEM);
2908         sbuf_putc(sb, '\n');
2909
2910         mtx_lock_spin(&w_mtx);
2911         STAILQ_FOREACH(w, &w_all, w_list)
2912                 w->w_displayed = 0;
2913         STAILQ_FOREACH(w, &w_all, w_list)
2914                 witness_add_fullgraph(sb, w);
2915         mtx_unlock_spin(&w_mtx);
2916
2917         /*
2918          * Close the sbuf and return to userland.
2919          */
2920         error = sbuf_finish(sb);
2921         sbuf_delete(sb);
2922
2923         return (error);
2924 }
2925
2926 static int
2927 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2928 {
2929         int error, value;
2930
2931         value = witness_watch;
2932         error = sysctl_handle_int(oidp, &value, 0, req);
2933         if (error != 0 || req->newptr == NULL)
2934                 return (error);
2935         if (value > 1 || value < -1 ||
2936             (witness_watch == -1 && value != witness_watch))
2937                 return (EINVAL);
2938         witness_watch = value;
2939         return (0);
2940 }
2941
2942 static void
2943 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2944 {
2945         int i;
2946
2947         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2948                 return;
2949         w->w_displayed = 1;
2950
2951         WITNESS_INDEX_ASSERT(w->w_index);
2952         for (i = 1; i <= w_max_used_index; i++) {
2953                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2954                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2955                             w_data[i].w_name);
2956                         witness_add_fullgraph(sb, &w_data[i]);
2957                 }
2958         }
2959 }
2960
2961 /*
2962  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2963  * interprets the key as a string and reads until the null
2964  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2965  * hash value computed from the key.
2966  */
2967 static uint32_t
2968 witness_hash_djb2(const uint8_t *key, uint32_t size)
2969 {
2970         unsigned int hash = 5381;
2971         int i;
2972
2973         /* hash = hash * 33 + key[i] */
2974         if (size)
2975                 for (i = 0; i < size; i++)
2976                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2977         else
2978                 for (i = 0; key[i] != 0; i++)
2979                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2980
2981         return (hash);
2982 }
2983
2984 /*
2985  * Initializes the two witness hash tables. Called exactly once from
2986  * witness_initialize().
2987  */
2988 static void
2989 witness_init_hash_tables(void)
2990 {
2991         int i;
2992
2993         MPASS(witness_cold);
2994
2995         /* Initialize the hash tables. */
2996         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2997                 w_hash.wh_array[i] = NULL;
2998
2999         w_hash.wh_size = WITNESS_HASH_SIZE;
3000         w_hash.wh_count = 0;
3001
3002         /* Initialize the lock order data hash. */
3003         w_lofree = NULL;
3004         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
3005                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
3006                 w_lodata[i].wlod_next = w_lofree;
3007                 w_lofree = &w_lodata[i];
3008         }
3009         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
3010         w_lohash.wloh_count = 0;
3011         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
3012                 w_lohash.wloh_array[i] = NULL;
3013 }
3014
3015 static struct witness *
3016 witness_hash_get(const char *key)
3017 {
3018         struct witness *w;
3019         uint32_t hash;
3020
3021         MPASS(key != NULL);
3022         if (witness_cold == 0)
3023                 mtx_assert(&w_mtx, MA_OWNED);
3024         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
3025         w = w_hash.wh_array[hash];
3026         while (w != NULL) {
3027                 if (strcmp(w->w_name, key) == 0)
3028                         goto out;
3029                 w = w->w_hash_next;
3030         }
3031
3032 out:
3033         return (w);
3034 }
3035
3036 static void
3037 witness_hash_put(struct witness *w)
3038 {
3039         uint32_t hash;
3040
3041         MPASS(w != NULL);
3042         MPASS(w->w_name != NULL);
3043         if (witness_cold == 0)
3044                 mtx_assert(&w_mtx, MA_OWNED);
3045         KASSERT(witness_hash_get(w->w_name) == NULL,
3046             ("%s: trying to add a hash entry that already exists!", __func__));
3047         KASSERT(w->w_hash_next == NULL,
3048             ("%s: w->w_hash_next != NULL", __func__));
3049
3050         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
3051         w->w_hash_next = w_hash.wh_array[hash];
3052         w_hash.wh_array[hash] = w;
3053         w_hash.wh_count++;
3054 }
3055
3056 static struct witness_lock_order_data *
3057 witness_lock_order_get(struct witness *parent, struct witness *child)
3058 {
3059         struct witness_lock_order_data *data = NULL;
3060         struct witness_lock_order_key key;
3061         unsigned int hash;
3062
3063         MPASS(parent != NULL && child != NULL);
3064         key.from = parent->w_index;
3065         key.to = child->w_index;
3066         WITNESS_INDEX_ASSERT(key.from);
3067         WITNESS_INDEX_ASSERT(key.to);
3068         if ((w_rmatrix[parent->w_index][child->w_index]
3069             & WITNESS_LOCK_ORDER_KNOWN) == 0)
3070                 goto out;
3071
3072         hash = witness_hash_djb2((const char*)&key,
3073             sizeof(key)) % w_lohash.wloh_size;
3074         data = w_lohash.wloh_array[hash];
3075         while (data != NULL) {
3076                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
3077                         break;
3078                 data = data->wlod_next;
3079         }
3080
3081 out:
3082         return (data);
3083 }
3084
3085 /*
3086  * Verify that parent and child have a known relationship, are not the same,
3087  * and child is actually a child of parent.  This is done without w_mtx
3088  * to avoid contention in the common case.
3089  */
3090 static int
3091 witness_lock_order_check(struct witness *parent, struct witness *child)
3092 {
3093
3094         if (parent != child &&
3095             w_rmatrix[parent->w_index][child->w_index]
3096             & WITNESS_LOCK_ORDER_KNOWN &&
3097             isitmychild(parent, child))
3098                 return (1);
3099
3100         return (0);
3101 }
3102
3103 static int
3104 witness_lock_order_add(struct witness *parent, struct witness *child)
3105 {
3106         struct witness_lock_order_data *data = NULL;
3107         struct witness_lock_order_key key;
3108         unsigned int hash;
3109
3110         MPASS(parent != NULL && child != NULL);
3111         key.from = parent->w_index;
3112         key.to = child->w_index;
3113         WITNESS_INDEX_ASSERT(key.from);
3114         WITNESS_INDEX_ASSERT(key.to);
3115         if (w_rmatrix[parent->w_index][child->w_index]
3116             & WITNESS_LOCK_ORDER_KNOWN)
3117                 return (1);
3118
3119         hash = witness_hash_djb2((const char*)&key,
3120             sizeof(key)) % w_lohash.wloh_size;
3121         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3122         data = w_lofree;
3123         if (data == NULL)
3124                 return (0);
3125         w_lofree = data->wlod_next;
3126         data->wlod_next = w_lohash.wloh_array[hash];
3127         data->wlod_key = key;
3128         w_lohash.wloh_array[hash] = data;
3129         w_lohash.wloh_count++;
3130         stack_save(&data->wlod_stack);
3131         return (1);
3132 }
3133
3134 /* Call this whenever the structure of the witness graph changes. */
3135 static void
3136 witness_increment_graph_generation(void)
3137 {
3138
3139         if (witness_cold == 0)
3140                 mtx_assert(&w_mtx, MA_OWNED);
3141         w_generation++;
3142 }
3143
3144 static int
3145 witness_output_drain(void *arg __unused, const char *data, int len)
3146 {
3147
3148         witness_output("%.*s", len, data);
3149         return (len);
3150 }
3151
3152 static void
3153 witness_debugger(int cond, const char *msg)
3154 {
3155         char buf[32];
3156         struct sbuf sb;
3157         struct stack st;
3158
3159         if (!cond)
3160                 return;
3161
3162         if (witness_trace) {
3163                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3164                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3165
3166                 stack_save(&st);
3167                 witness_output("stack backtrace:\n");
3168                 stack_sbuf_print_ddb(&sb, &st);
3169
3170                 sbuf_finish(&sb);
3171         }
3172
3173         witness_enter_debugger(msg);
3174 }
3175
3176 static void
3177 witness_enter_debugger(const char *msg)
3178 {
3179 #ifdef KDB
3180         if (witness_kdb)
3181                 kdb_enter(KDB_WHY_WITNESS, msg);
3182 #endif
3183 }