]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
Fix missing pfctl(8) tunable.
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/syslog.h>
110 #include <sys/systm.h>
111
112 #ifdef DDB
113 #include <ddb/ddb.h>
114 #endif
115
116 #include <machine/stdarg.h>
117
118 #if !defined(DDB) && !defined(STACK)
119 #error "DDB or STACK options are required for WITNESS"
120 #endif
121
122 /* Note that these traces do not work with KTR_ALQ. */
123 #if 0
124 #define KTR_WITNESS     KTR_SUBSYS
125 #else
126 #define KTR_WITNESS     0
127 #endif
128
129 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
130 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
131 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
132
133 /* Define this to check for blessed mutexes */
134 #undef BLESSING
135
136 #ifndef WITNESS_COUNT
137 #define WITNESS_COUNT           1536
138 #endif
139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
140 #define WITNESS_PENDLIST        (1024 + MAXCPU)
141
142 /* Allocate 256 KB of stack data space */
143 #define WITNESS_LO_DATA_COUNT   2048
144
145 /* Prime, gives load factor of ~2 at full load */
146 #define WITNESS_LO_HASH_SIZE    1021
147
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define LOCK_NCHILDREN  5
154 #define LOCK_CHILDCOUNT 2048
155
156 #define MAX_W_NAME      64
157
158 #define FULLGRAPH_SBUF_SIZE     512
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 #ifdef BLESSING
280 struct witness_blessed {
281         const char      *b_lock1;
282         const char      *b_lock2;
283 };
284 #endif
285
286 struct witness_pendhelp {
287         const char              *wh_type;
288         struct lock_object      *wh_lock;
289 };
290
291 struct witness_order_list_entry {
292         const char              *w_name;
293         struct lock_class       *w_class;
294 };
295
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303
304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307
308 static __inline int
309 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
310     const struct witness_lock_order_key *b)
311 {
312
313         return (a->from == b->from && a->to == b->to);
314 }
315
316 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
317                     const char *fname);
318 static void     adopt(struct witness *parent, struct witness *child);
319 #ifdef BLESSING
320 static int      blessed(struct witness *, struct witness *);
321 #endif
322 static void     depart(struct witness *w);
323 static struct witness   *enroll(const char *description,
324                             struct lock_class *lock_class);
325 static struct lock_instance     *find_instance(struct lock_list_entry *list,
326                                     const struct lock_object *lock);
327 static int      isitmychild(struct witness *parent, struct witness *child);
328 static int      isitmydescendant(struct witness *parent, struct witness *child);
329 static void     itismychild(struct witness *parent, struct witness *child);
330 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
331 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
332 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
333 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
334 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
335 #ifdef DDB
336 static void     witness_ddb_compute_levels(void);
337 static void     witness_ddb_display(int(*)(const char *fmt, ...));
338 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
339                     struct witness *, int indent);
340 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
341                     struct witness_list *list);
342 static void     witness_ddb_level_descendants(struct witness *parent, int l);
343 static void     witness_ddb_list(struct thread *td);
344 #endif
345 static void     witness_debugger(int cond, const char *msg);
346 static void     witness_free(struct witness *m);
347 static struct witness   *witness_get(void);
348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness   *witness_hash_get(const char *key);
350 static void     witness_hash_put(struct witness *w);
351 static void     witness_init_hash_tables(void);
352 static void     witness_increment_graph_generation(void);
353 static void     witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry   *witness_lock_list_get(void);
355 static int      witness_lock_order_add(struct witness *parent,
356                     struct witness *child);
357 static int      witness_lock_order_check(struct witness *parent,
358                     struct witness *child);
359 static struct witness_lock_order_data   *witness_lock_order_get(
360                                             struct witness *parent,
361                                             struct witness *child);
362 static void     witness_list_lock(struct lock_instance *instance,
363                     int (*prnt)(const char *fmt, ...));
364 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
365 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
366 static void     witness_setflag(struct lock_object *lock, int flag, int set);
367
368 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
369     "Witness Locking");
370
371 /*
372  * If set to 0, lock order checking is disabled.  If set to -1,
373  * witness is completely disabled.  Otherwise witness performs full
374  * lock order checking for all locks.  At runtime, lock order checking
375  * may be toggled.  However, witness cannot be reenabled once it is
376  * completely disabled.
377  */
378 static int witness_watch = 1;
379 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
380     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
381
382 #ifdef KDB
383 /*
384  * When KDB is enabled and witness_kdb is 1, it will cause the system
385  * to drop into kdebug() when:
386  *      - a lock hierarchy violation occurs
387  *      - locks are held when going to sleep.
388  */
389 #ifdef WITNESS_KDB
390 int     witness_kdb = 1;
391 #else
392 int     witness_kdb = 0;
393 #endif
394 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
395 #endif /* KDB */
396
397 #if defined(DDB) || defined(KDB)
398 /*
399  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
400  * to print a stack trace:
401  *      - a lock hierarchy violation occurs
402  *      - locks are held when going to sleep.
403  */
404 int     witness_trace = 1;
405 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
406 #endif /* DDB || KDB */
407
408 #ifdef WITNESS_SKIPSPIN
409 int     witness_skipspin = 1;
410 #else
411 int     witness_skipspin = 0;
412 #endif
413 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
414
415 int badstack_sbuf_size;
416
417 int witness_count = WITNESS_COUNT;
418 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
419     &witness_count, 0, "");
420
421 /*
422  * Output channel for witness messages.  By default we print to the console.
423  */
424 enum witness_channel {
425         WITNESS_CONSOLE,
426         WITNESS_LOG,
427         WITNESS_NONE,
428 };
429
430 static enum witness_channel witness_channel = WITNESS_CONSOLE;
431 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
432     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
433     "Output channel for warnings");
434
435 /*
436  * Call this to print out the relations between locks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
440
441 /*
442  * Call this to print out the witness faulty stacks.
443  */
444 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
445     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
446
447 static struct mtx w_mtx;
448
449 /* w_list */
450 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
451 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
452
453 /* w_typelist */
454 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
455 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
456
457 /* lock list */
458 static struct lock_list_entry *w_lock_list_free = NULL;
459 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
460 static u_int pending_cnt;
461
462 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
463 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
464 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
465 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
466     "");
467
468 static struct witness *w_data;
469 static uint8_t **w_rmatrix;
470 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
471 static struct witness_hash w_hash;      /* The witness hash table. */
472
473 /* The lock order data hash */
474 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
475 static struct witness_lock_order_data *w_lofree = NULL;
476 static struct witness_lock_order_hash w_lohash;
477 static int w_max_used_index = 0;
478 static unsigned int w_generation = 0;
479 static const char w_notrunning[] = "Witness not running\n";
480 static const char w_stillcold[] = "Witness is still cold\n";
481
482
483 static struct witness_order_list_entry order_lists[] = {
484         /*
485          * sx locks
486          */
487         { "proctree", &lock_class_sx },
488         { "allproc", &lock_class_sx },
489         { "allprison", &lock_class_sx },
490         { NULL, NULL },
491         /*
492          * Various mutexes
493          */
494         { "Giant", &lock_class_mtx_sleep },
495         { "pipe mutex", &lock_class_mtx_sleep },
496         { "sigio lock", &lock_class_mtx_sleep },
497         { "process group", &lock_class_mtx_sleep },
498         { "process lock", &lock_class_mtx_sleep },
499         { "session", &lock_class_mtx_sleep },
500         { "uidinfo hash", &lock_class_rw },
501 #ifdef  HWPMC_HOOKS
502         { "pmc-sleep", &lock_class_mtx_sleep },
503 #endif
504         { "time lock", &lock_class_mtx_sleep },
505         { NULL, NULL },
506         /*
507          * umtx
508          */
509         { "umtx lock", &lock_class_mtx_sleep },
510         { NULL, NULL },
511         /*
512          * Sockets
513          */
514         { "accept", &lock_class_mtx_sleep },
515         { "so_snd", &lock_class_mtx_sleep },
516         { "so_rcv", &lock_class_mtx_sleep },
517         { "sellck", &lock_class_mtx_sleep },
518         { NULL, NULL },
519         /*
520          * Routing
521          */
522         { "so_rcv", &lock_class_mtx_sleep },
523         { "radix node head", &lock_class_rw },
524         { "rtentry", &lock_class_mtx_sleep },
525         { "ifaddr", &lock_class_mtx_sleep },
526         { NULL, NULL },
527         /*
528          * IPv4 multicast:
529          * protocol locks before interface locks, after UDP locks.
530          */
531         { "udpinp", &lock_class_rw },
532         { "in_multi_mtx", &lock_class_mtx_sleep },
533         { "igmp_mtx", &lock_class_mtx_sleep },
534         { "if_addr_lock", &lock_class_rw },
535         { NULL, NULL },
536         /*
537          * IPv6 multicast:
538          * protocol locks before interface locks, after UDP locks.
539          */
540         { "udpinp", &lock_class_rw },
541         { "in6_multi_mtx", &lock_class_mtx_sleep },
542         { "mld_mtx", &lock_class_mtx_sleep },
543         { "if_addr_lock", &lock_class_rw },
544         { NULL, NULL },
545         /*
546          * UNIX Domain Sockets
547          */
548         { "unp_link_rwlock", &lock_class_rw },
549         { "unp_list_lock", &lock_class_mtx_sleep },
550         { "unp", &lock_class_mtx_sleep },
551         { "so_snd", &lock_class_mtx_sleep },
552         { NULL, NULL },
553         /*
554          * UDP/IP
555          */
556         { "udp", &lock_class_rw },
557         { "udpinp", &lock_class_rw },
558         { "so_snd", &lock_class_mtx_sleep },
559         { NULL, NULL },
560         /*
561          * TCP/IP
562          */
563         { "tcp", &lock_class_rw },
564         { "tcpinp", &lock_class_rw },
565         { "so_snd", &lock_class_mtx_sleep },
566         { NULL, NULL },
567         /*
568          * BPF
569          */
570         { "bpf global lock", &lock_class_sx },
571         { "bpf interface lock", &lock_class_rw },
572         { "bpf cdev lock", &lock_class_mtx_sleep },
573         { NULL, NULL },
574         /*
575          * NFS server
576          */
577         { "nfsd_mtx", &lock_class_mtx_sleep },
578         { "so_snd", &lock_class_mtx_sleep },
579         { NULL, NULL },
580
581         /*
582          * IEEE 802.11
583          */
584         { "802.11 com lock", &lock_class_mtx_sleep},
585         { NULL, NULL },
586         /*
587          * Network drivers
588          */
589         { "network driver", &lock_class_mtx_sleep},
590         { NULL, NULL },
591
592         /*
593          * Netgraph
594          */
595         { "ng_node", &lock_class_mtx_sleep },
596         { "ng_worklist", &lock_class_mtx_sleep },
597         { NULL, NULL },
598         /*
599          * CDEV
600          */
601         { "vm map (system)", &lock_class_mtx_sleep },
602         { "vm pagequeue", &lock_class_mtx_sleep },
603         { "vnode interlock", &lock_class_mtx_sleep },
604         { "cdev", &lock_class_mtx_sleep },
605         { NULL, NULL },
606         /*
607          * VM
608          */
609         { "vm map (user)", &lock_class_sx },
610         { "vm object", &lock_class_rw },
611         { "vm page", &lock_class_mtx_sleep },
612         { "vm pagequeue", &lock_class_mtx_sleep },
613         { "pmap pv global", &lock_class_rw },
614         { "pmap", &lock_class_mtx_sleep },
615         { "pmap pv list", &lock_class_rw },
616         { "vm page free queue", &lock_class_mtx_sleep },
617         { NULL, NULL },
618         /*
619          * kqueue/VFS interaction
620          */
621         { "kqueue", &lock_class_mtx_sleep },
622         { "struct mount mtx", &lock_class_mtx_sleep },
623         { "vnode interlock", &lock_class_mtx_sleep },
624         { NULL, NULL },
625         /*
626          * VFS namecache
627          */
628         { "ncvn", &lock_class_mtx_sleep },
629         { "ncbuc", &lock_class_rw },
630         { "vnode interlock", &lock_class_mtx_sleep },
631         { "ncneg", &lock_class_mtx_sleep },
632         { NULL, NULL },
633         /*
634          * ZFS locking
635          */
636         { "dn->dn_mtx", &lock_class_sx },
637         { "dr->dt.di.dr_mtx", &lock_class_sx },
638         { "db->db_mtx", &lock_class_sx },
639         { NULL, NULL },
640         /*
641          * spin locks
642          */
643 #ifdef SMP
644         { "ap boot", &lock_class_mtx_spin },
645 #endif
646         { "rm.mutex_mtx", &lock_class_mtx_spin },
647         { "sio", &lock_class_mtx_spin },
648 #ifdef __i386__
649         { "cy", &lock_class_mtx_spin },
650 #endif
651 #ifdef __sparc64__
652         { "pcib_mtx", &lock_class_mtx_spin },
653         { "rtc_mtx", &lock_class_mtx_spin },
654 #endif
655         { "scc_hwmtx", &lock_class_mtx_spin },
656         { "uart_hwmtx", &lock_class_mtx_spin },
657         { "fast_taskqueue", &lock_class_mtx_spin },
658         { "intr table", &lock_class_mtx_spin },
659 #ifdef  HWPMC_HOOKS
660         { "pmc-per-proc", &lock_class_mtx_spin },
661 #endif
662         { "process slock", &lock_class_mtx_spin },
663         { "syscons video lock", &lock_class_mtx_spin },
664         { "sleepq chain", &lock_class_mtx_spin },
665         { "rm_spinlock", &lock_class_mtx_spin },
666         { "turnstile chain", &lock_class_mtx_spin },
667         { "turnstile lock", &lock_class_mtx_spin },
668         { "sched lock", &lock_class_mtx_spin },
669         { "td_contested", &lock_class_mtx_spin },
670         { "callout", &lock_class_mtx_spin },
671         { "entropy harvest mutex", &lock_class_mtx_spin },
672 #ifdef SMP
673         { "smp rendezvous", &lock_class_mtx_spin },
674 #endif
675 #ifdef __powerpc__
676         { "tlb0", &lock_class_mtx_spin },
677 #endif
678         /*
679          * leaf locks
680          */
681         { "intrcnt", &lock_class_mtx_spin },
682         { "icu", &lock_class_mtx_spin },
683 #if defined(SMP) && defined(__sparc64__)
684         { "ipi", &lock_class_mtx_spin },
685 #endif
686 #ifdef __i386__
687         { "allpmaps", &lock_class_mtx_spin },
688         { "descriptor tables", &lock_class_mtx_spin },
689 #endif
690         { "clk", &lock_class_mtx_spin },
691         { "cpuset", &lock_class_mtx_spin },
692         { "mprof lock", &lock_class_mtx_spin },
693         { "zombie lock", &lock_class_mtx_spin },
694         { "ALD Queue", &lock_class_mtx_spin },
695 #if defined(__i386__) || defined(__amd64__)
696         { "pcicfg", &lock_class_mtx_spin },
697         { "NDIS thread lock", &lock_class_mtx_spin },
698 #endif
699         { "tw_osl_io_lock", &lock_class_mtx_spin },
700         { "tw_osl_q_lock", &lock_class_mtx_spin },
701         { "tw_cl_io_lock", &lock_class_mtx_spin },
702         { "tw_cl_intr_lock", &lock_class_mtx_spin },
703         { "tw_cl_gen_lock", &lock_class_mtx_spin },
704 #ifdef  HWPMC_HOOKS
705         { "pmc-leaf", &lock_class_mtx_spin },
706 #endif
707         { "blocked lock", &lock_class_mtx_spin },
708         { NULL, NULL },
709         { NULL, NULL }
710 };
711
712 #ifdef BLESSING
713 /*
714  * Pairs of locks which have been blessed
715  * Don't complain about order problems with blessed locks
716  */
717 static struct witness_blessed blessed_list[] = {
718 };
719 #endif
720
721 /*
722  * This global is set to 0 once it becomes safe to use the witness code.
723  */
724 static int witness_cold = 1;
725
726 /*
727  * This global is set to 1 once the static lock orders have been enrolled
728  * so that a warning can be issued for any spin locks enrolled later.
729  */
730 static int witness_spin_warn = 0;
731
732 /* Trim useless garbage from filenames. */
733 static const char *
734 fixup_filename(const char *file)
735 {
736
737         if (file == NULL)
738                 return (NULL);
739         while (strncmp(file, "../", 3) == 0)
740                 file += 3;
741         return (file);
742 }
743
744 /*
745  * The WITNESS-enabled diagnostic code.  Note that the witness code does
746  * assume that the early boot is single-threaded at least until after this
747  * routine is completed.
748  */
749 static void
750 witness_initialize(void *dummy __unused)
751 {
752         struct lock_object *lock;
753         struct witness_order_list_entry *order;
754         struct witness *w, *w1;
755         int i;
756
757         w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS,
758             M_WAITOK | M_ZERO);
759
760         w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1),
761             M_WITNESS, M_WAITOK | M_ZERO);
762
763         for (i = 0; i < witness_count + 1; i++) {
764                 w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) *
765                     (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO);
766         }
767         badstack_sbuf_size = witness_count * 256;
768
769         /*
770          * We have to release Giant before initializing its witness
771          * structure so that WITNESS doesn't get confused.
772          */
773         mtx_unlock(&Giant);
774         mtx_assert(&Giant, MA_NOTOWNED);
775
776         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
777         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
778             MTX_NOWITNESS | MTX_NOPROFILE);
779         for (i = witness_count - 1; i >= 0; i--) {
780                 w = &w_data[i];
781                 memset(w, 0, sizeof(*w));
782                 w_data[i].w_index = i;  /* Witness index never changes. */
783                 witness_free(w);
784         }
785         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
786             ("%s: Invalid list of free witness objects", __func__));
787
788         /* Witness with index 0 is not used to aid in debugging. */
789         STAILQ_REMOVE_HEAD(&w_free, w_list);
790         w_free_cnt--;
791
792         for (i = 0; i < witness_count; i++) {
793                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
794                     (witness_count + 1));
795         }
796
797         for (i = 0; i < LOCK_CHILDCOUNT; i++)
798                 witness_lock_list_free(&w_locklistdata[i]);
799         witness_init_hash_tables();
800
801         /* First add in all the specified order lists. */
802         for (order = order_lists; order->w_name != NULL; order++) {
803                 w = enroll(order->w_name, order->w_class);
804                 if (w == NULL)
805                         continue;
806                 w->w_file = "order list";
807                 for (order++; order->w_name != NULL; order++) {
808                         w1 = enroll(order->w_name, order->w_class);
809                         if (w1 == NULL)
810                                 continue;
811                         w1->w_file = "order list";
812                         itismychild(w, w1);
813                         w = w1;
814                 }
815         }
816         witness_spin_warn = 1;
817
818         /* Iterate through all locks and add them to witness. */
819         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
820                 lock = pending_locks[i].wh_lock;
821                 KASSERT(lock->lo_flags & LO_WITNESS,
822                     ("%s: lock %s is on pending list but not LO_WITNESS",
823                     __func__, lock->lo_name));
824                 lock->lo_witness = enroll(pending_locks[i].wh_type,
825                     LOCK_CLASS(lock));
826         }
827
828         /* Mark the witness code as being ready for use. */
829         witness_cold = 0;
830
831         mtx_lock(&Giant);
832 }
833 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
834     NULL);
835
836 void
837 witness_init(struct lock_object *lock, const char *type)
838 {
839         struct lock_class *class;
840
841         /* Various sanity checks. */
842         class = LOCK_CLASS(lock);
843         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
844             (class->lc_flags & LC_RECURSABLE) == 0)
845                 kassert_panic("%s: lock (%s) %s can not be recursable",
846                     __func__, class->lc_name, lock->lo_name);
847         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
848             (class->lc_flags & LC_SLEEPABLE) == 0)
849                 kassert_panic("%s: lock (%s) %s can not be sleepable",
850                     __func__, class->lc_name, lock->lo_name);
851         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
852             (class->lc_flags & LC_UPGRADABLE) == 0)
853                 kassert_panic("%s: lock (%s) %s can not be upgradable",
854                     __func__, class->lc_name, lock->lo_name);
855
856         /*
857          * If we shouldn't watch this lock, then just clear lo_witness.
858          * Otherwise, if witness_cold is set, then it is too early to
859          * enroll this lock, so defer it to witness_initialize() by adding
860          * it to the pending_locks list.  If it is not too early, then enroll
861          * the lock now.
862          */
863         if (witness_watch < 1 || panicstr != NULL ||
864             (lock->lo_flags & LO_WITNESS) == 0)
865                 lock->lo_witness = NULL;
866         else if (witness_cold) {
867                 pending_locks[pending_cnt].wh_lock = lock;
868                 pending_locks[pending_cnt++].wh_type = type;
869                 if (pending_cnt > WITNESS_PENDLIST)
870                         panic("%s: pending locks list is too small, "
871                             "increase WITNESS_PENDLIST\n",
872                             __func__);
873         } else
874                 lock->lo_witness = enroll(type, class);
875 }
876
877 void
878 witness_destroy(struct lock_object *lock)
879 {
880         struct lock_class *class;
881         struct witness *w;
882
883         class = LOCK_CLASS(lock);
884
885         if (witness_cold)
886                 panic("lock (%s) %s destroyed while witness_cold",
887                     class->lc_name, lock->lo_name);
888
889         /* XXX: need to verify that no one holds the lock */
890         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
891                 return;
892         w = lock->lo_witness;
893
894         mtx_lock_spin(&w_mtx);
895         MPASS(w->w_refcount > 0);
896         w->w_refcount--;
897
898         if (w->w_refcount == 0)
899                 depart(w);
900         mtx_unlock_spin(&w_mtx);
901 }
902
903 #ifdef DDB
904 static void
905 witness_ddb_compute_levels(void)
906 {
907         struct witness *w;
908
909         /*
910          * First clear all levels.
911          */
912         STAILQ_FOREACH(w, &w_all, w_list)
913                 w->w_ddb_level = -1;
914
915         /*
916          * Look for locks with no parents and level all their descendants.
917          */
918         STAILQ_FOREACH(w, &w_all, w_list) {
919
920                 /* If the witness has ancestors (is not a root), skip it. */
921                 if (w->w_num_ancestors > 0)
922                         continue;
923                 witness_ddb_level_descendants(w, 0);
924         }
925 }
926
927 static void
928 witness_ddb_level_descendants(struct witness *w, int l)
929 {
930         int i;
931
932         if (w->w_ddb_level >= l)
933                 return;
934
935         w->w_ddb_level = l;
936         l++;
937
938         for (i = 1; i <= w_max_used_index; i++) {
939                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
940                         witness_ddb_level_descendants(&w_data[i], l);
941         }
942 }
943
944 static void
945 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
946     struct witness *w, int indent)
947 {
948         int i;
949
950         for (i = 0; i < indent; i++)
951                 prnt(" ");
952         prnt("%s (type: %s, depth: %d, active refs: %d)",
953              w->w_name, w->w_class->lc_name,
954              w->w_ddb_level, w->w_refcount);
955         if (w->w_displayed) {
956                 prnt(" -- (already displayed)\n");
957                 return;
958         }
959         w->w_displayed = 1;
960         if (w->w_file != NULL && w->w_line != 0)
961                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
962                     w->w_line);
963         else
964                 prnt(" -- never acquired\n");
965         indent++;
966         WITNESS_INDEX_ASSERT(w->w_index);
967         for (i = 1; i <= w_max_used_index; i++) {
968                 if (db_pager_quit)
969                         return;
970                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
971                         witness_ddb_display_descendants(prnt, &w_data[i],
972                             indent);
973         }
974 }
975
976 static void
977 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
978     struct witness_list *list)
979 {
980         struct witness *w;
981
982         STAILQ_FOREACH(w, list, w_typelist) {
983                 if (w->w_file == NULL || w->w_ddb_level > 0)
984                         continue;
985
986                 /* This lock has no anscestors - display its descendants. */
987                 witness_ddb_display_descendants(prnt, w, 0);
988                 if (db_pager_quit)
989                         return;
990         }
991 }
992         
993 static void
994 witness_ddb_display(int(*prnt)(const char *fmt, ...))
995 {
996         struct witness *w;
997
998         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
999         witness_ddb_compute_levels();
1000
1001         /* Clear all the displayed flags. */
1002         STAILQ_FOREACH(w, &w_all, w_list)
1003                 w->w_displayed = 0;
1004
1005         /*
1006          * First, handle sleep locks which have been acquired at least
1007          * once.
1008          */
1009         prnt("Sleep locks:\n");
1010         witness_ddb_display_list(prnt, &w_sleep);
1011         if (db_pager_quit)
1012                 return;
1013         
1014         /*
1015          * Now do spin locks which have been acquired at least once.
1016          */
1017         prnt("\nSpin locks:\n");
1018         witness_ddb_display_list(prnt, &w_spin);
1019         if (db_pager_quit)
1020                 return;
1021         
1022         /*
1023          * Finally, any locks which have not been acquired yet.
1024          */
1025         prnt("\nLocks which were never acquired:\n");
1026         STAILQ_FOREACH(w, &w_all, w_list) {
1027                 if (w->w_file != NULL || w->w_refcount == 0)
1028                         continue;
1029                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1030                     w->w_class->lc_name, w->w_ddb_level);
1031                 if (db_pager_quit)
1032                         return;
1033         }
1034 }
1035 #endif /* DDB */
1036
1037 int
1038 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1039 {
1040
1041         if (witness_watch == -1 || panicstr != NULL)
1042                 return (0);
1043
1044         /* Require locks that witness knows about. */
1045         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1046             lock2->lo_witness == NULL)
1047                 return (EINVAL);
1048
1049         mtx_assert(&w_mtx, MA_NOTOWNED);
1050         mtx_lock_spin(&w_mtx);
1051
1052         /*
1053          * If we already have either an explicit or implied lock order that
1054          * is the other way around, then return an error.
1055          */
1056         if (witness_watch &&
1057             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1058                 mtx_unlock_spin(&w_mtx);
1059                 return (EDOOFUS);
1060         }
1061         
1062         /* Try to add the new order. */
1063         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1064             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1065         itismychild(lock1->lo_witness, lock2->lo_witness);
1066         mtx_unlock_spin(&w_mtx);
1067         return (0);
1068 }
1069
1070 void
1071 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1072     int line, struct lock_object *interlock)
1073 {
1074         struct lock_list_entry *lock_list, *lle;
1075         struct lock_instance *lock1, *lock2, *plock;
1076         struct lock_class *class, *iclass;
1077         struct witness *w, *w1;
1078         struct thread *td;
1079         int i, j;
1080
1081         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1082             panicstr != NULL)
1083                 return;
1084
1085         w = lock->lo_witness;
1086         class = LOCK_CLASS(lock);
1087         td = curthread;
1088
1089         if (class->lc_flags & LC_SLEEPLOCK) {
1090
1091                 /*
1092                  * Since spin locks include a critical section, this check
1093                  * implicitly enforces a lock order of all sleep locks before
1094                  * all spin locks.
1095                  */
1096                 if (td->td_critnest != 0 && !kdb_active)
1097                         kassert_panic("acquiring blockable sleep lock with "
1098                             "spinlock or critical section held (%s) %s @ %s:%d",
1099                             class->lc_name, lock->lo_name,
1100                             fixup_filename(file), line);
1101
1102                 /*
1103                  * If this is the first lock acquired then just return as
1104                  * no order checking is needed.
1105                  */
1106                 lock_list = td->td_sleeplocks;
1107                 if (lock_list == NULL || lock_list->ll_count == 0)
1108                         return;
1109         } else {
1110
1111                 /*
1112                  * If this is the first lock, just return as no order
1113                  * checking is needed.  Avoid problems with thread
1114                  * migration pinning the thread while checking if
1115                  * spinlocks are held.  If at least one spinlock is held
1116                  * the thread is in a safe path and it is allowed to
1117                  * unpin it.
1118                  */
1119                 sched_pin();
1120                 lock_list = PCPU_GET(spinlocks);
1121                 if (lock_list == NULL || lock_list->ll_count == 0) {
1122                         sched_unpin();
1123                         return;
1124                 }
1125                 sched_unpin();
1126         }
1127
1128         /*
1129          * Check to see if we are recursing on a lock we already own.  If
1130          * so, make sure that we don't mismatch exclusive and shared lock
1131          * acquires.
1132          */
1133         lock1 = find_instance(lock_list, lock);
1134         if (lock1 != NULL) {
1135                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1136                     (flags & LOP_EXCLUSIVE) == 0) {
1137                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1138                             class->lc_name, lock->lo_name,
1139                             fixup_filename(file), line);
1140                         witness_output("while exclusively locked from %s:%d\n",
1141                             fixup_filename(lock1->li_file), lock1->li_line);
1142                         kassert_panic("excl->share");
1143                 }
1144                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1145                     (flags & LOP_EXCLUSIVE) != 0) {
1146                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1147                             class->lc_name, lock->lo_name,
1148                             fixup_filename(file), line);
1149                         witness_output("while share locked from %s:%d\n",
1150                             fixup_filename(lock1->li_file), lock1->li_line);
1151                         kassert_panic("share->excl");
1152                 }
1153                 return;
1154         }
1155
1156         /* Warn if the interlock is not locked exactly once. */
1157         if (interlock != NULL) {
1158                 iclass = LOCK_CLASS(interlock);
1159                 lock1 = find_instance(lock_list, interlock);
1160                 if (lock1 == NULL)
1161                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1162                             iclass->lc_name, interlock->lo_name,
1163                             fixup_filename(file), line);
1164                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1165                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1166                             iclass->lc_name, interlock->lo_name,
1167                             fixup_filename(file), line);
1168         }
1169
1170         /*
1171          * Find the previously acquired lock, but ignore interlocks.
1172          */
1173         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1174         if (interlock != NULL && plock->li_lock == interlock) {
1175                 if (lock_list->ll_count > 1)
1176                         plock =
1177                             &lock_list->ll_children[lock_list->ll_count - 2];
1178                 else {
1179                         lle = lock_list->ll_next;
1180
1181                         /*
1182                          * The interlock is the only lock we hold, so
1183                          * simply return.
1184                          */
1185                         if (lle == NULL)
1186                                 return;
1187                         plock = &lle->ll_children[lle->ll_count - 1];
1188                 }
1189         }
1190         
1191         /*
1192          * Try to perform most checks without a lock.  If this succeeds we
1193          * can skip acquiring the lock and return success.  Otherwise we redo
1194          * the check with the lock held to handle races with concurrent updates.
1195          */
1196         w1 = plock->li_lock->lo_witness;
1197         if (witness_lock_order_check(w1, w))
1198                 return;
1199
1200         mtx_lock_spin(&w_mtx);
1201         if (witness_lock_order_check(w1, w)) {
1202                 mtx_unlock_spin(&w_mtx);
1203                 return;
1204         }
1205         witness_lock_order_add(w1, w);
1206
1207         /*
1208          * Check for duplicate locks of the same type.  Note that we only
1209          * have to check for this on the last lock we just acquired.  Any
1210          * other cases will be caught as lock order violations.
1211          */
1212         if (w1 == w) {
1213                 i = w->w_index;
1214                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1215                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1216                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1217                         w->w_reversed = 1;
1218                         mtx_unlock_spin(&w_mtx);
1219                         witness_output(
1220                             "acquiring duplicate lock of same type: \"%s\"\n", 
1221                             w->w_name);
1222                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1223                             fixup_filename(plock->li_file), plock->li_line);
1224                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1225                             fixup_filename(file), line);
1226                         witness_debugger(1, __func__);
1227                 } else
1228                         mtx_unlock_spin(&w_mtx);
1229                 return;
1230         }
1231         mtx_assert(&w_mtx, MA_OWNED);
1232
1233         /*
1234          * If we know that the lock we are acquiring comes after
1235          * the lock we most recently acquired in the lock order tree,
1236          * then there is no need for any further checks.
1237          */
1238         if (isitmychild(w1, w))
1239                 goto out;
1240
1241         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1242                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1243
1244                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1245                         lock1 = &lle->ll_children[i];
1246
1247                         /*
1248                          * Ignore the interlock.
1249                          */
1250                         if (interlock == lock1->li_lock)
1251                                 continue;
1252
1253                         /*
1254                          * If this lock doesn't undergo witness checking,
1255                          * then skip it.
1256                          */
1257                         w1 = lock1->li_lock->lo_witness;
1258                         if (w1 == NULL) {
1259                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1260                                     ("lock missing witness structure"));
1261                                 continue;
1262                         }
1263
1264                         /*
1265                          * If we are locking Giant and this is a sleepable
1266                          * lock, then skip it.
1267                          */
1268                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1269                             lock == &Giant.lock_object)
1270                                 continue;
1271
1272                         /*
1273                          * If we are locking a sleepable lock and this lock
1274                          * is Giant, then skip it.
1275                          */
1276                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1277                             lock1->li_lock == &Giant.lock_object)
1278                                 continue;
1279
1280                         /*
1281                          * If we are locking a sleepable lock and this lock
1282                          * isn't sleepable, we want to treat it as a lock
1283                          * order violation to enfore a general lock order of
1284                          * sleepable locks before non-sleepable locks.
1285                          */
1286                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1287                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1288                                 goto reversal;
1289
1290                         /*
1291                          * If we are locking Giant and this is a non-sleepable
1292                          * lock, then treat it as a reversal.
1293                          */
1294                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1295                             lock == &Giant.lock_object)
1296                                 goto reversal;
1297
1298                         /*
1299                          * Check the lock order hierarchy for a reveresal.
1300                          */
1301                         if (!isitmydescendant(w, w1))
1302                                 continue;
1303                 reversal:
1304
1305                         /*
1306                          * We have a lock order violation, check to see if it
1307                          * is allowed or has already been yelled about.
1308                          */
1309 #ifdef BLESSING
1310
1311                         /*
1312                          * If the lock order is blessed, just bail.  We don't
1313                          * look for other lock order violations though, which
1314                          * may be a bug.
1315                          */
1316                         if (blessed(w, w1))
1317                                 goto out;
1318 #endif
1319
1320                         /* Bail if this violation is known */
1321                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1322                                 goto out;
1323
1324                         /* Record this as a violation */
1325                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1326                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1327                         w->w_reversed = w1->w_reversed = 1;
1328                         witness_increment_graph_generation();
1329                         mtx_unlock_spin(&w_mtx);
1330
1331 #ifdef WITNESS_NO_VNODE
1332                         /*
1333                          * There are known LORs between VNODE locks. They are
1334                          * not an indication of a bug. VNODE locks are flagged
1335                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1336                          * is between 2 VNODE locks.
1337                          */
1338                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1339                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1340                                 return;
1341 #endif
1342
1343                         /*
1344                          * Ok, yell about it.
1345                          */
1346                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1347                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1348                                 witness_output(
1349                 "lock order reversal: (sleepable after non-sleepable)\n");
1350                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1351                             && lock == &Giant.lock_object)
1352                                 witness_output(
1353                 "lock order reversal: (Giant after non-sleepable)\n");
1354                         else
1355                                 witness_output("lock order reversal:\n");
1356
1357                         /*
1358                          * Try to locate an earlier lock with
1359                          * witness w in our list.
1360                          */
1361                         do {
1362                                 lock2 = &lle->ll_children[i];
1363                                 MPASS(lock2->li_lock != NULL);
1364                                 if (lock2->li_lock->lo_witness == w)
1365                                         break;
1366                                 if (i == 0 && lle->ll_next != NULL) {
1367                                         lle = lle->ll_next;
1368                                         i = lle->ll_count - 1;
1369                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1370                                 } else
1371                                         i--;
1372                         } while (i >= 0);
1373                         if (i < 0) {
1374                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1375                                     lock1->li_lock, lock1->li_lock->lo_name,
1376                                     w1->w_name, fixup_filename(lock1->li_file),
1377                                     lock1->li_line);
1378                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1379                                     lock->lo_name, w->w_name,
1380                                     fixup_filename(file), line);
1381                         } else {
1382                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1383                                     lock2->li_lock, lock2->li_lock->lo_name,
1384                                     lock2->li_lock->lo_witness->w_name,
1385                                     fixup_filename(lock2->li_file),
1386                                     lock2->li_line);
1387                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1388                                     lock1->li_lock, lock1->li_lock->lo_name,
1389                                     w1->w_name, fixup_filename(lock1->li_file),
1390                                     lock1->li_line);
1391                                 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1392                                     lock->lo_name, w->w_name,
1393                                     fixup_filename(file), line);
1394                         }
1395                         witness_debugger(1, __func__);
1396                         return;
1397                 }
1398         }
1399
1400         /*
1401          * If requested, build a new lock order.  However, don't build a new
1402          * relationship between a sleepable lock and Giant if it is in the
1403          * wrong direction.  The correct lock order is that sleepable locks
1404          * always come before Giant.
1405          */
1406         if (flags & LOP_NEWORDER &&
1407             !(plock->li_lock == &Giant.lock_object &&
1408             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1409                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1410                     w->w_name, plock->li_lock->lo_witness->w_name);
1411                 itismychild(plock->li_lock->lo_witness, w);
1412         }
1413 out:
1414         mtx_unlock_spin(&w_mtx);
1415 }
1416
1417 void
1418 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1419 {
1420         struct lock_list_entry **lock_list, *lle;
1421         struct lock_instance *instance;
1422         struct witness *w;
1423         struct thread *td;
1424
1425         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1426             panicstr != NULL)
1427                 return;
1428         w = lock->lo_witness;
1429         td = curthread;
1430
1431         /* Determine lock list for this lock. */
1432         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1433                 lock_list = &td->td_sleeplocks;
1434         else
1435                 lock_list = PCPU_PTR(spinlocks);
1436
1437         /* Check to see if we are recursing on a lock we already own. */
1438         instance = find_instance(*lock_list, lock);
1439         if (instance != NULL) {
1440                 instance->li_flags++;
1441                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1442                     td->td_proc->p_pid, lock->lo_name,
1443                     instance->li_flags & LI_RECURSEMASK);
1444                 instance->li_file = file;
1445                 instance->li_line = line;
1446                 return;
1447         }
1448
1449         /* Update per-witness last file and line acquire. */
1450         w->w_file = file;
1451         w->w_line = line;
1452
1453         /* Find the next open lock instance in the list and fill it. */
1454         lle = *lock_list;
1455         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1456                 lle = witness_lock_list_get();
1457                 if (lle == NULL)
1458                         return;
1459                 lle->ll_next = *lock_list;
1460                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1461                     td->td_proc->p_pid, lle);
1462                 *lock_list = lle;
1463         }
1464         instance = &lle->ll_children[lle->ll_count++];
1465         instance->li_lock = lock;
1466         instance->li_line = line;
1467         instance->li_file = file;
1468         if ((flags & LOP_EXCLUSIVE) != 0)
1469                 instance->li_flags = LI_EXCLUSIVE;
1470         else
1471                 instance->li_flags = 0;
1472         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1473             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1474 }
1475
1476 void
1477 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1478 {
1479         struct lock_instance *instance;
1480         struct lock_class *class;
1481
1482         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1483         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1484                 return;
1485         class = LOCK_CLASS(lock);
1486         if (witness_watch) {
1487                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1488                         kassert_panic(
1489                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1490                             class->lc_name, lock->lo_name,
1491                             fixup_filename(file), line);
1492                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1493                         kassert_panic(
1494                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1495                             class->lc_name, lock->lo_name,
1496                             fixup_filename(file), line);
1497         }
1498         instance = find_instance(curthread->td_sleeplocks, lock);
1499         if (instance == NULL) {
1500                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1501                     class->lc_name, lock->lo_name,
1502                     fixup_filename(file), line);
1503                 return;
1504         }
1505         if (witness_watch) {
1506                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1507                         kassert_panic(
1508                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1509                             class->lc_name, lock->lo_name,
1510                             fixup_filename(file), line);
1511                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1512                         kassert_panic(
1513                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1514                             class->lc_name, lock->lo_name,
1515                             instance->li_flags & LI_RECURSEMASK,
1516                             fixup_filename(file), line);
1517         }
1518         instance->li_flags |= LI_EXCLUSIVE;
1519 }
1520
1521 void
1522 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1523     int line)
1524 {
1525         struct lock_instance *instance;
1526         struct lock_class *class;
1527
1528         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1529         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1530                 return;
1531         class = LOCK_CLASS(lock);
1532         if (witness_watch) {
1533                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1534                         kassert_panic(
1535                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1536                             class->lc_name, lock->lo_name,
1537                             fixup_filename(file), line);
1538                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1539                         kassert_panic(
1540                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1541                             class->lc_name, lock->lo_name,
1542                             fixup_filename(file), line);
1543         }
1544         instance = find_instance(curthread->td_sleeplocks, lock);
1545         if (instance == NULL) {
1546                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1547                     class->lc_name, lock->lo_name,
1548                     fixup_filename(file), line);
1549                 return;
1550         }
1551         if (witness_watch) {
1552                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1553                         kassert_panic(
1554                             "downgrade of shared lock (%s) %s @ %s:%d",
1555                             class->lc_name, lock->lo_name,
1556                             fixup_filename(file), line);
1557                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1558                         kassert_panic(
1559                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1560                             class->lc_name, lock->lo_name,
1561                             instance->li_flags & LI_RECURSEMASK,
1562                             fixup_filename(file), line);
1563         }
1564         instance->li_flags &= ~LI_EXCLUSIVE;
1565 }
1566
1567 void
1568 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1569 {
1570         struct lock_list_entry **lock_list, *lle;
1571         struct lock_instance *instance;
1572         struct lock_class *class;
1573         struct thread *td;
1574         register_t s;
1575         int i, j;
1576
1577         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1578                 return;
1579         td = curthread;
1580         class = LOCK_CLASS(lock);
1581
1582         /* Find lock instance associated with this lock. */
1583         if (class->lc_flags & LC_SLEEPLOCK)
1584                 lock_list = &td->td_sleeplocks;
1585         else
1586                 lock_list = PCPU_PTR(spinlocks);
1587         lle = *lock_list;
1588         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1589                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1590                         instance = &(*lock_list)->ll_children[i];
1591                         if (instance->li_lock == lock)
1592                                 goto found;
1593                 }
1594
1595         /*
1596          * When disabling WITNESS through witness_watch we could end up in
1597          * having registered locks in the td_sleeplocks queue.
1598          * We have to make sure we flush these queues, so just search for
1599          * eventual register locks and remove them.
1600          */
1601         if (witness_watch > 0) {
1602                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1603                     lock->lo_name, fixup_filename(file), line);
1604                 return;
1605         } else {
1606                 return;
1607         }
1608 found:
1609
1610         /* First, check for shared/exclusive mismatches. */
1611         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1612             (flags & LOP_EXCLUSIVE) == 0) {
1613                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1614                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1615                 witness_output("while exclusively locked from %s:%d\n",
1616                     fixup_filename(instance->li_file), instance->li_line);
1617                 kassert_panic("excl->ushare");
1618         }
1619         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1620             (flags & LOP_EXCLUSIVE) != 0) {
1621                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1622                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1623                 witness_output("while share locked from %s:%d\n",
1624                     fixup_filename(instance->li_file),
1625                     instance->li_line);
1626                 kassert_panic("share->uexcl");
1627         }
1628         /* If we are recursed, unrecurse. */
1629         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1630                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1631                     td->td_proc->p_pid, instance->li_lock->lo_name,
1632                     instance->li_flags);
1633                 instance->li_flags--;
1634                 return;
1635         }
1636         /* The lock is now being dropped, check for NORELEASE flag */
1637         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1638                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1639                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1640                 kassert_panic("lock marked norelease");
1641         }
1642
1643         /* Otherwise, remove this item from the list. */
1644         s = intr_disable();
1645         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1646             td->td_proc->p_pid, instance->li_lock->lo_name,
1647             (*lock_list)->ll_count - 1);
1648         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1649                 (*lock_list)->ll_children[j] =
1650                     (*lock_list)->ll_children[j + 1];
1651         (*lock_list)->ll_count--;
1652         intr_restore(s);
1653
1654         /*
1655          * In order to reduce contention on w_mtx, we want to keep always an
1656          * head object into lists so that frequent allocation from the 
1657          * free witness pool (and subsequent locking) is avoided.
1658          * In order to maintain the current code simple, when the head
1659          * object is totally unloaded it means also that we do not have
1660          * further objects in the list, so the list ownership needs to be
1661          * hand over to another object if the current head needs to be freed.
1662          */
1663         if ((*lock_list)->ll_count == 0) {
1664                 if (*lock_list == lle) {
1665                         if (lle->ll_next == NULL)
1666                                 return;
1667                 } else
1668                         lle = *lock_list;
1669                 *lock_list = lle->ll_next;
1670                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1671                     td->td_proc->p_pid, lle);
1672                 witness_lock_list_free(lle);
1673         }
1674 }
1675
1676 void
1677 witness_thread_exit(struct thread *td)
1678 {
1679         struct lock_list_entry *lle;
1680         int i, n;
1681
1682         lle = td->td_sleeplocks;
1683         if (lle == NULL || panicstr != NULL)
1684                 return;
1685         if (lle->ll_count != 0) {
1686                 for (n = 0; lle != NULL; lle = lle->ll_next)
1687                         for (i = lle->ll_count - 1; i >= 0; i--) {
1688                                 if (n == 0)
1689                                         witness_output(
1690                     "Thread %p exiting with the following locks held:\n", td);
1691                                 n++;
1692                                 witness_list_lock(&lle->ll_children[i],
1693                                     witness_output);
1694                                 
1695                         }
1696                 kassert_panic(
1697                     "Thread %p cannot exit while holding sleeplocks\n", td);
1698         }
1699         witness_lock_list_free(lle);
1700 }
1701
1702 /*
1703  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1704  * exempt Giant and sleepable locks from the checks as well.  If any
1705  * non-exempt locks are held, then a supplied message is printed to the
1706  * output channel along with a list of the offending locks.  If indicated in the
1707  * flags then a failure results in a panic as well.
1708  */
1709 int
1710 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1711 {
1712         struct lock_list_entry *lock_list, *lle;
1713         struct lock_instance *lock1;
1714         struct thread *td;
1715         va_list ap;
1716         int i, n;
1717
1718         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1719                 return (0);
1720         n = 0;
1721         td = curthread;
1722         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1723                 for (i = lle->ll_count - 1; i >= 0; i--) {
1724                         lock1 = &lle->ll_children[i];
1725                         if (lock1->li_lock == lock)
1726                                 continue;
1727                         if (flags & WARN_GIANTOK &&
1728                             lock1->li_lock == &Giant.lock_object)
1729                                 continue;
1730                         if (flags & WARN_SLEEPOK &&
1731                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1732                                 continue;
1733                         if (n == 0) {
1734                                 va_start(ap, fmt);
1735                                 vprintf(fmt, ap);
1736                                 va_end(ap);
1737                                 printf(" with the following %slocks held:\n",
1738                                     (flags & WARN_SLEEPOK) != 0 ?
1739                                     "non-sleepable " : "");
1740                         }
1741                         n++;
1742                         witness_list_lock(lock1, printf);
1743                 }
1744
1745         /*
1746          * Pin the thread in order to avoid problems with thread migration.
1747          * Once that all verifies are passed about spinlocks ownership,
1748          * the thread is in a safe path and it can be unpinned.
1749          */
1750         sched_pin();
1751         lock_list = PCPU_GET(spinlocks);
1752         if (lock_list != NULL && lock_list->ll_count != 0) {
1753                 sched_unpin();
1754
1755                 /*
1756                  * We should only have one spinlock and as long as
1757                  * the flags cannot match for this locks class,
1758                  * check if the first spinlock is the one curthread
1759                  * should hold.
1760                  */
1761                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1762                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1763                     lock1->li_lock == lock && n == 0)
1764                         return (0);
1765
1766                 va_start(ap, fmt);
1767                 vprintf(fmt, ap);
1768                 va_end(ap);
1769                 printf(" with the following %slocks held:\n",
1770                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1771                 n += witness_list_locks(&lock_list, printf);
1772         } else
1773                 sched_unpin();
1774         if (flags & WARN_PANIC && n)
1775                 kassert_panic("%s", __func__);
1776         else
1777                 witness_debugger(n, __func__);
1778         return (n);
1779 }
1780
1781 const char *
1782 witness_file(struct lock_object *lock)
1783 {
1784         struct witness *w;
1785
1786         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1787                 return ("?");
1788         w = lock->lo_witness;
1789         return (w->w_file);
1790 }
1791
1792 int
1793 witness_line(struct lock_object *lock)
1794 {
1795         struct witness *w;
1796
1797         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1798                 return (0);
1799         w = lock->lo_witness;
1800         return (w->w_line);
1801 }
1802
1803 static struct witness *
1804 enroll(const char *description, struct lock_class *lock_class)
1805 {
1806         struct witness *w;
1807         struct witness_list *typelist;
1808
1809         MPASS(description != NULL);
1810
1811         if (witness_watch == -1 || panicstr != NULL)
1812                 return (NULL);
1813         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1814                 if (witness_skipspin)
1815                         return (NULL);
1816                 else
1817                         typelist = &w_spin;
1818         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1819                 typelist = &w_sleep;
1820         } else {
1821                 kassert_panic("lock class %s is not sleep or spin",
1822                     lock_class->lc_name);
1823                 return (NULL);
1824         }
1825
1826         mtx_lock_spin(&w_mtx);
1827         w = witness_hash_get(description);
1828         if (w)
1829                 goto found;
1830         if ((w = witness_get()) == NULL)
1831                 return (NULL);
1832         MPASS(strlen(description) < MAX_W_NAME);
1833         strcpy(w->w_name, description);
1834         w->w_class = lock_class;
1835         w->w_refcount = 1;
1836         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1837         if (lock_class->lc_flags & LC_SPINLOCK) {
1838                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1839                 w_spin_cnt++;
1840         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1841                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1842                 w_sleep_cnt++;
1843         }
1844
1845         /* Insert new witness into the hash */
1846         witness_hash_put(w);
1847         witness_increment_graph_generation();
1848         mtx_unlock_spin(&w_mtx);
1849         return (w);
1850 found:
1851         w->w_refcount++;
1852         if (w->w_refcount == 1)
1853                 w->w_class = lock_class;
1854         mtx_unlock_spin(&w_mtx);
1855         if (lock_class != w->w_class)
1856                 kassert_panic(
1857                     "lock (%s) %s does not match earlier (%s) lock",
1858                     description, lock_class->lc_name,
1859                     w->w_class->lc_name);
1860         return (w);
1861 }
1862
1863 static void
1864 depart(struct witness *w)
1865 {
1866         struct witness_list *list;
1867
1868         MPASS(w->w_refcount == 0);
1869         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1870                 list = &w_sleep;
1871                 w_sleep_cnt--;
1872         } else {
1873                 list = &w_spin;
1874                 w_spin_cnt--;
1875         }
1876         /*
1877          * Set file to NULL as it may point into a loadable module.
1878          */
1879         w->w_file = NULL;
1880         w->w_line = 0;
1881         witness_increment_graph_generation();
1882 }
1883
1884
1885 static void
1886 adopt(struct witness *parent, struct witness *child)
1887 {
1888         int pi, ci, i, j;
1889
1890         if (witness_cold == 0)
1891                 mtx_assert(&w_mtx, MA_OWNED);
1892
1893         /* If the relationship is already known, there's no work to be done. */
1894         if (isitmychild(parent, child))
1895                 return;
1896
1897         /* When the structure of the graph changes, bump up the generation. */
1898         witness_increment_graph_generation();
1899
1900         /*
1901          * The hard part ... create the direct relationship, then propagate all
1902          * indirect relationships.
1903          */
1904         pi = parent->w_index;
1905         ci = child->w_index;
1906         WITNESS_INDEX_ASSERT(pi);
1907         WITNESS_INDEX_ASSERT(ci);
1908         MPASS(pi != ci);
1909         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1910         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1911
1912         /*
1913          * If parent was not already an ancestor of child,
1914          * then we increment the descendant and ancestor counters.
1915          */
1916         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1917                 parent->w_num_descendants++;
1918                 child->w_num_ancestors++;
1919         }
1920
1921         /* 
1922          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1923          * an ancestor of 'pi' during this loop.
1924          */
1925         for (i = 1; i <= w_max_used_index; i++) {
1926                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1927                     (i != pi))
1928                         continue;
1929
1930                 /* Find each descendant of 'i' and mark it as a descendant. */
1931                 for (j = 1; j <= w_max_used_index; j++) {
1932
1933                         /* 
1934                          * Skip children that are already marked as
1935                          * descendants of 'i'.
1936                          */
1937                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1938                                 continue;
1939
1940                         /*
1941                          * We are only interested in descendants of 'ci'. Note
1942                          * that 'ci' itself is counted as a descendant of 'ci'.
1943                          */
1944                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1945                             (j != ci))
1946                                 continue;
1947                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1948                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1949                         w_data[i].w_num_descendants++;
1950                         w_data[j].w_num_ancestors++;
1951
1952                         /* 
1953                          * Make sure we aren't marking a node as both an
1954                          * ancestor and descendant. We should have caught 
1955                          * this as a lock order reversal earlier.
1956                          */
1957                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1958                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1959                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1960                                     "both ancestor and descendant\n",
1961                                     i, j, w_rmatrix[i][j]); 
1962                                 kdb_backtrace();
1963                                 printf("Witness disabled.\n");
1964                                 witness_watch = -1;
1965                         }
1966                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1967                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1968                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1969                                     "both ancestor and descendant\n",
1970                                     j, i, w_rmatrix[j][i]); 
1971                                 kdb_backtrace();
1972                                 printf("Witness disabled.\n");
1973                                 witness_watch = -1;
1974                         }
1975                 }
1976         }
1977 }
1978
1979 static void
1980 itismychild(struct witness *parent, struct witness *child)
1981 {
1982         int unlocked;
1983
1984         MPASS(child != NULL && parent != NULL);
1985         if (witness_cold == 0)
1986                 mtx_assert(&w_mtx, MA_OWNED);
1987
1988         if (!witness_lock_type_equal(parent, child)) {
1989                 if (witness_cold == 0) {
1990                         unlocked = 1;
1991                         mtx_unlock_spin(&w_mtx);
1992                 } else {
1993                         unlocked = 0;
1994                 }
1995                 kassert_panic(
1996                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1997                     "the same lock type", __func__, parent->w_name,
1998                     parent->w_class->lc_name, child->w_name,
1999                     child->w_class->lc_name);
2000                 if (unlocked)
2001                         mtx_lock_spin(&w_mtx);
2002         }
2003         adopt(parent, child);
2004 }
2005
2006 /*
2007  * Generic code for the isitmy*() functions. The rmask parameter is the
2008  * expected relationship of w1 to w2.
2009  */
2010 static int
2011 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2012 {
2013         unsigned char r1, r2;
2014         int i1, i2;
2015
2016         i1 = w1->w_index;
2017         i2 = w2->w_index;
2018         WITNESS_INDEX_ASSERT(i1);
2019         WITNESS_INDEX_ASSERT(i2);
2020         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2021         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2022
2023         /* The flags on one better be the inverse of the flags on the other */
2024         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2025             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2026                 /* Don't squawk if we're potentially racing with an update. */
2027                 if (!mtx_owned(&w_mtx))
2028                         return (0);
2029                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2030                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2031                     "w_rmatrix[%d][%d] == %hhx\n",
2032                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2033                     i2, i1, r2);
2034                 kdb_backtrace();
2035                 printf("Witness disabled.\n");
2036                 witness_watch = -1;
2037         }
2038         return (r1 & rmask);
2039 }
2040
2041 /*
2042  * Checks if @child is a direct child of @parent.
2043  */
2044 static int
2045 isitmychild(struct witness *parent, struct witness *child)
2046 {
2047
2048         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2049 }
2050
2051 /*
2052  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2053  */
2054 static int
2055 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2056 {
2057
2058         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2059             __func__));
2060 }
2061
2062 #ifdef BLESSING
2063 static int
2064 blessed(struct witness *w1, struct witness *w2)
2065 {
2066         int i;
2067         struct witness_blessed *b;
2068
2069         for (i = 0; i < nitems(blessed_list); i++) {
2070                 b = &blessed_list[i];
2071                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2072                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2073                                 return (1);
2074                         continue;
2075                 }
2076                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2077                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2078                                 return (1);
2079         }
2080         return (0);
2081 }
2082 #endif
2083
2084 static struct witness *
2085 witness_get(void)
2086 {
2087         struct witness *w;
2088         int index;
2089
2090         if (witness_cold == 0)
2091                 mtx_assert(&w_mtx, MA_OWNED);
2092
2093         if (witness_watch == -1) {
2094                 mtx_unlock_spin(&w_mtx);
2095                 return (NULL);
2096         }
2097         if (STAILQ_EMPTY(&w_free)) {
2098                 witness_watch = -1;
2099                 mtx_unlock_spin(&w_mtx);
2100                 printf("WITNESS: unable to allocate a new witness object\n");
2101                 return (NULL);
2102         }
2103         w = STAILQ_FIRST(&w_free);
2104         STAILQ_REMOVE_HEAD(&w_free, w_list);
2105         w_free_cnt--;
2106         index = w->w_index;
2107         MPASS(index > 0 && index == w_max_used_index+1 &&
2108             index < witness_count);
2109         bzero(w, sizeof(*w));
2110         w->w_index = index;
2111         if (index > w_max_used_index)
2112                 w_max_used_index = index;
2113         return (w);
2114 }
2115
2116 static void
2117 witness_free(struct witness *w)
2118 {
2119
2120         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2121         w_free_cnt++;
2122 }
2123
2124 static struct lock_list_entry *
2125 witness_lock_list_get(void)
2126 {
2127         struct lock_list_entry *lle;
2128
2129         if (witness_watch == -1)
2130                 return (NULL);
2131         mtx_lock_spin(&w_mtx);
2132         lle = w_lock_list_free;
2133         if (lle == NULL) {
2134                 witness_watch = -1;
2135                 mtx_unlock_spin(&w_mtx);
2136                 printf("%s: witness exhausted\n", __func__);
2137                 return (NULL);
2138         }
2139         w_lock_list_free = lle->ll_next;
2140         mtx_unlock_spin(&w_mtx);
2141         bzero(lle, sizeof(*lle));
2142         return (lle);
2143 }
2144                 
2145 static void
2146 witness_lock_list_free(struct lock_list_entry *lle)
2147 {
2148
2149         mtx_lock_spin(&w_mtx);
2150         lle->ll_next = w_lock_list_free;
2151         w_lock_list_free = lle;
2152         mtx_unlock_spin(&w_mtx);
2153 }
2154
2155 static struct lock_instance *
2156 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2157 {
2158         struct lock_list_entry *lle;
2159         struct lock_instance *instance;
2160         int i;
2161
2162         for (lle = list; lle != NULL; lle = lle->ll_next)
2163                 for (i = lle->ll_count - 1; i >= 0; i--) {
2164                         instance = &lle->ll_children[i];
2165                         if (instance->li_lock == lock)
2166                                 return (instance);
2167                 }
2168         return (NULL);
2169 }
2170
2171 static void
2172 witness_list_lock(struct lock_instance *instance,
2173     int (*prnt)(const char *fmt, ...))
2174 {
2175         struct lock_object *lock;
2176
2177         lock = instance->li_lock;
2178         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2179             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2180         if (lock->lo_witness->w_name != lock->lo_name)
2181                 prnt(" (%s)", lock->lo_witness->w_name);
2182         prnt(" r = %d (%p) locked @ %s:%d\n",
2183             instance->li_flags & LI_RECURSEMASK, lock,
2184             fixup_filename(instance->li_file), instance->li_line);
2185 }
2186
2187 static int
2188 witness_output(const char *fmt, ...)
2189 {
2190         va_list ap;
2191         int ret;
2192
2193         va_start(ap, fmt);
2194         ret = witness_voutput(fmt, ap);
2195         va_end(ap);
2196         return (ret);
2197 }
2198
2199 static int
2200 witness_voutput(const char *fmt, va_list ap)
2201 {
2202         int ret;
2203
2204         ret = 0;
2205         switch (witness_channel) {
2206         case WITNESS_CONSOLE:
2207                 ret = vprintf(fmt, ap);
2208                 break;
2209         case WITNESS_LOG:
2210                 vlog(LOG_NOTICE, fmt, ap);
2211                 break;
2212         case WITNESS_NONE:
2213                 break;
2214         }
2215         return (ret);
2216 }
2217
2218 #ifdef DDB
2219 static int
2220 witness_thread_has_locks(struct thread *td)
2221 {
2222
2223         if (td->td_sleeplocks == NULL)
2224                 return (0);
2225         return (td->td_sleeplocks->ll_count != 0);
2226 }
2227
2228 static int
2229 witness_proc_has_locks(struct proc *p)
2230 {
2231         struct thread *td;
2232
2233         FOREACH_THREAD_IN_PROC(p, td) {
2234                 if (witness_thread_has_locks(td))
2235                         return (1);
2236         }
2237         return (0);
2238 }
2239 #endif
2240
2241 int
2242 witness_list_locks(struct lock_list_entry **lock_list,
2243     int (*prnt)(const char *fmt, ...))
2244 {
2245         struct lock_list_entry *lle;
2246         int i, nheld;
2247
2248         nheld = 0;
2249         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2250                 for (i = lle->ll_count - 1; i >= 0; i--) {
2251                         witness_list_lock(&lle->ll_children[i], prnt);
2252                         nheld++;
2253                 }
2254         return (nheld);
2255 }
2256
2257 /*
2258  * This is a bit risky at best.  We call this function when we have timed
2259  * out acquiring a spin lock, and we assume that the other CPU is stuck
2260  * with this lock held.  So, we go groveling around in the other CPU's
2261  * per-cpu data to try to find the lock instance for this spin lock to
2262  * see when it was last acquired.
2263  */
2264 void
2265 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2266     int (*prnt)(const char *fmt, ...))
2267 {
2268         struct lock_instance *instance;
2269         struct pcpu *pc;
2270
2271         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2272                 return;
2273         pc = pcpu_find(owner->td_oncpu);
2274         instance = find_instance(pc->pc_spinlocks, lock);
2275         if (instance != NULL)
2276                 witness_list_lock(instance, prnt);
2277 }
2278
2279 void
2280 witness_save(struct lock_object *lock, const char **filep, int *linep)
2281 {
2282         struct lock_list_entry *lock_list;
2283         struct lock_instance *instance;
2284         struct lock_class *class;
2285
2286         /*
2287          * This function is used independently in locking code to deal with
2288          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2289          * is gone.
2290          */
2291         if (SCHEDULER_STOPPED())
2292                 return;
2293         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2294         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2295                 return;
2296         class = LOCK_CLASS(lock);
2297         if (class->lc_flags & LC_SLEEPLOCK)
2298                 lock_list = curthread->td_sleeplocks;
2299         else {
2300                 if (witness_skipspin)
2301                         return;
2302                 lock_list = PCPU_GET(spinlocks);
2303         }
2304         instance = find_instance(lock_list, lock);
2305         if (instance == NULL) {
2306                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2307                     class->lc_name, lock->lo_name);
2308                 return;
2309         }
2310         *filep = instance->li_file;
2311         *linep = instance->li_line;
2312 }
2313
2314 void
2315 witness_restore(struct lock_object *lock, const char *file, int line)
2316 {
2317         struct lock_list_entry *lock_list;
2318         struct lock_instance *instance;
2319         struct lock_class *class;
2320
2321         /*
2322          * This function is used independently in locking code to deal with
2323          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2324          * is gone.
2325          */
2326         if (SCHEDULER_STOPPED())
2327                 return;
2328         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2329         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2330                 return;
2331         class = LOCK_CLASS(lock);
2332         if (class->lc_flags & LC_SLEEPLOCK)
2333                 lock_list = curthread->td_sleeplocks;
2334         else {
2335                 if (witness_skipspin)
2336                         return;
2337                 lock_list = PCPU_GET(spinlocks);
2338         }
2339         instance = find_instance(lock_list, lock);
2340         if (instance == NULL)
2341                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2342                     class->lc_name, lock->lo_name);
2343         lock->lo_witness->w_file = file;
2344         lock->lo_witness->w_line = line;
2345         if (instance == NULL)
2346                 return;
2347         instance->li_file = file;
2348         instance->li_line = line;
2349 }
2350
2351 void
2352 witness_assert(const struct lock_object *lock, int flags, const char *file,
2353     int line)
2354 {
2355 #ifdef INVARIANT_SUPPORT
2356         struct lock_instance *instance;
2357         struct lock_class *class;
2358
2359         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2360                 return;
2361         class = LOCK_CLASS(lock);
2362         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2363                 instance = find_instance(curthread->td_sleeplocks, lock);
2364         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2365                 instance = find_instance(PCPU_GET(spinlocks), lock);
2366         else {
2367                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2368                     class->lc_name, lock->lo_name);
2369                 return;
2370         }
2371         switch (flags) {
2372         case LA_UNLOCKED:
2373                 if (instance != NULL)
2374                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2375                             class->lc_name, lock->lo_name,
2376                             fixup_filename(file), line);
2377                 break;
2378         case LA_LOCKED:
2379         case LA_LOCKED | LA_RECURSED:
2380         case LA_LOCKED | LA_NOTRECURSED:
2381         case LA_SLOCKED:
2382         case LA_SLOCKED | LA_RECURSED:
2383         case LA_SLOCKED | LA_NOTRECURSED:
2384         case LA_XLOCKED:
2385         case LA_XLOCKED | LA_RECURSED:
2386         case LA_XLOCKED | LA_NOTRECURSED:
2387                 if (instance == NULL) {
2388                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2389                             class->lc_name, lock->lo_name,
2390                             fixup_filename(file), line);
2391                         break;
2392                 }
2393                 if ((flags & LA_XLOCKED) != 0 &&
2394                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2395                         kassert_panic(
2396                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2397                             class->lc_name, lock->lo_name,
2398                             fixup_filename(file), line);
2399                 if ((flags & LA_SLOCKED) != 0 &&
2400                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2401                         kassert_panic(
2402                             "Lock (%s) %s exclusively locked @ %s:%d.",
2403                             class->lc_name, lock->lo_name,
2404                             fixup_filename(file), line);
2405                 if ((flags & LA_RECURSED) != 0 &&
2406                     (instance->li_flags & LI_RECURSEMASK) == 0)
2407                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2408                             class->lc_name, lock->lo_name,
2409                             fixup_filename(file), line);
2410                 if ((flags & LA_NOTRECURSED) != 0 &&
2411                     (instance->li_flags & LI_RECURSEMASK) != 0)
2412                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2413                             class->lc_name, lock->lo_name,
2414                             fixup_filename(file), line);
2415                 break;
2416         default:
2417                 kassert_panic("Invalid lock assertion at %s:%d.",
2418                     fixup_filename(file), line);
2419
2420         }
2421 #endif  /* INVARIANT_SUPPORT */
2422 }
2423
2424 static void
2425 witness_setflag(struct lock_object *lock, int flag, int set)
2426 {
2427         struct lock_list_entry *lock_list;
2428         struct lock_instance *instance;
2429         struct lock_class *class;
2430
2431         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2432                 return;
2433         class = LOCK_CLASS(lock);
2434         if (class->lc_flags & LC_SLEEPLOCK)
2435                 lock_list = curthread->td_sleeplocks;
2436         else {
2437                 if (witness_skipspin)
2438                         return;
2439                 lock_list = PCPU_GET(spinlocks);
2440         }
2441         instance = find_instance(lock_list, lock);
2442         if (instance == NULL) {
2443                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2444                     class->lc_name, lock->lo_name);
2445                 return;
2446         }
2447
2448         if (set)
2449                 instance->li_flags |= flag;
2450         else
2451                 instance->li_flags &= ~flag;
2452 }
2453
2454 void
2455 witness_norelease(struct lock_object *lock)
2456 {
2457
2458         witness_setflag(lock, LI_NORELEASE, 1);
2459 }
2460
2461 void
2462 witness_releaseok(struct lock_object *lock)
2463 {
2464
2465         witness_setflag(lock, LI_NORELEASE, 0);
2466 }
2467
2468 #ifdef DDB
2469 static void
2470 witness_ddb_list(struct thread *td)
2471 {
2472
2473         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2474         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2475
2476         if (witness_watch < 1)
2477                 return;
2478
2479         witness_list_locks(&td->td_sleeplocks, db_printf);
2480
2481         /*
2482          * We only handle spinlocks if td == curthread.  This is somewhat broken
2483          * if td is currently executing on some other CPU and holds spin locks
2484          * as we won't display those locks.  If we had a MI way of getting
2485          * the per-cpu data for a given cpu then we could use
2486          * td->td_oncpu to get the list of spinlocks for this thread
2487          * and "fix" this.
2488          *
2489          * That still wouldn't really fix this unless we locked the scheduler
2490          * lock or stopped the other CPU to make sure it wasn't changing the
2491          * list out from under us.  It is probably best to just not try to
2492          * handle threads on other CPU's for now.
2493          */
2494         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2495                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2496 }
2497
2498 DB_SHOW_COMMAND(locks, db_witness_list)
2499 {
2500         struct thread *td;
2501
2502         if (have_addr)
2503                 td = db_lookup_thread(addr, true);
2504         else
2505                 td = kdb_thread;
2506         witness_ddb_list(td);
2507 }
2508
2509 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2510 {
2511         struct thread *td;
2512         struct proc *p;
2513
2514         /*
2515          * It would be nice to list only threads and processes that actually
2516          * held sleep locks, but that information is currently not exported
2517          * by WITNESS.
2518          */
2519         FOREACH_PROC_IN_SYSTEM(p) {
2520                 if (!witness_proc_has_locks(p))
2521                         continue;
2522                 FOREACH_THREAD_IN_PROC(p, td) {
2523                         if (!witness_thread_has_locks(td))
2524                                 continue;
2525                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2526                             p->p_comm, td, td->td_tid);
2527                         witness_ddb_list(td);
2528                         if (db_pager_quit)
2529                                 return;
2530                 }
2531         }
2532 }
2533 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2534
2535 DB_SHOW_COMMAND(witness, db_witness_display)
2536 {
2537
2538         witness_ddb_display(db_printf);
2539 }
2540 #endif
2541
2542 static int
2543 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2544 {
2545         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2546         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2547         struct sbuf *sb;
2548         u_int w_rmatrix1, w_rmatrix2;
2549         int error, generation, i, j;
2550
2551         tmp_data1 = NULL;
2552         tmp_data2 = NULL;
2553         tmp_w1 = NULL;
2554         tmp_w2 = NULL;
2555         if (witness_watch < 1) {
2556                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2557                 return (error);
2558         }
2559         if (witness_cold) {
2560                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2561                 return (error);
2562         }
2563         error = 0;
2564         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2565         if (sb == NULL)
2566                 return (ENOMEM);
2567
2568         /* Allocate and init temporary storage space. */
2569         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2570         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2571         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2572             M_WAITOK | M_ZERO);
2573         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2574             M_WAITOK | M_ZERO);
2575         stack_zero(&tmp_data1->wlod_stack);
2576         stack_zero(&tmp_data2->wlod_stack);
2577
2578 restart:
2579         mtx_lock_spin(&w_mtx);
2580         generation = w_generation;
2581         mtx_unlock_spin(&w_mtx);
2582         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2583             w_lohash.wloh_count);
2584         for (i = 1; i < w_max_used_index; i++) {
2585                 mtx_lock_spin(&w_mtx);
2586                 if (generation != w_generation) {
2587                         mtx_unlock_spin(&w_mtx);
2588
2589                         /* The graph has changed, try again. */
2590                         req->oldidx = 0;
2591                         sbuf_clear(sb);
2592                         goto restart;
2593                 }
2594
2595                 w1 = &w_data[i];
2596                 if (w1->w_reversed == 0) {
2597                         mtx_unlock_spin(&w_mtx);
2598                         continue;
2599                 }
2600
2601                 /* Copy w1 locally so we can release the spin lock. */
2602                 *tmp_w1 = *w1;
2603                 mtx_unlock_spin(&w_mtx);
2604
2605                 if (tmp_w1->w_reversed == 0)
2606                         continue;
2607                 for (j = 1; j < w_max_used_index; j++) {
2608                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2609                                 continue;
2610
2611                         mtx_lock_spin(&w_mtx);
2612                         if (generation != w_generation) {
2613                                 mtx_unlock_spin(&w_mtx);
2614
2615                                 /* The graph has changed, try again. */
2616                                 req->oldidx = 0;
2617                                 sbuf_clear(sb);
2618                                 goto restart;
2619                         }
2620
2621                         w2 = &w_data[j];
2622                         data1 = witness_lock_order_get(w1, w2);
2623                         data2 = witness_lock_order_get(w2, w1);
2624
2625                         /*
2626                          * Copy information locally so we can release the
2627                          * spin lock.
2628                          */
2629                         *tmp_w2 = *w2;
2630                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2631                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2632
2633                         if (data1) {
2634                                 stack_zero(&tmp_data1->wlod_stack);
2635                                 stack_copy(&data1->wlod_stack,
2636                                     &tmp_data1->wlod_stack);
2637                         }
2638                         if (data2 && data2 != data1) {
2639                                 stack_zero(&tmp_data2->wlod_stack);
2640                                 stack_copy(&data2->wlod_stack,
2641                                     &tmp_data2->wlod_stack);
2642                         }
2643                         mtx_unlock_spin(&w_mtx);
2644
2645                         sbuf_printf(sb,
2646             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2647                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2648                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2649                         if (data1) {
2650                                 sbuf_printf(sb,
2651                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2652                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2653                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2654                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2655                                 sbuf_printf(sb, "\n");
2656                         }
2657                         if (data2 && data2 != data1) {
2658                                 sbuf_printf(sb,
2659                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2660                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2661                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2662                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2663                                 sbuf_printf(sb, "\n");
2664                         }
2665                 }
2666         }
2667         mtx_lock_spin(&w_mtx);
2668         if (generation != w_generation) {
2669                 mtx_unlock_spin(&w_mtx);
2670
2671                 /*
2672                  * The graph changed while we were printing stack data,
2673                  * try again.
2674                  */
2675                 req->oldidx = 0;
2676                 sbuf_clear(sb);
2677                 goto restart;
2678         }
2679         mtx_unlock_spin(&w_mtx);
2680
2681         /* Free temporary storage space. */
2682         free(tmp_data1, M_TEMP);
2683         free(tmp_data2, M_TEMP);
2684         free(tmp_w1, M_TEMP);
2685         free(tmp_w2, M_TEMP);
2686
2687         sbuf_finish(sb);
2688         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2689         sbuf_delete(sb);
2690
2691         return (error);
2692 }
2693
2694 static int
2695 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2696 {
2697         static const struct {
2698                 enum witness_channel channel;
2699                 const char *name;
2700         } channels[] = {
2701                 { WITNESS_CONSOLE, "console" },
2702                 { WITNESS_LOG, "log" },
2703                 { WITNESS_NONE, "none" },
2704         };
2705         char buf[16];
2706         u_int i;
2707         int error;
2708
2709         buf[0] = '\0';
2710         for (i = 0; i < nitems(channels); i++)
2711                 if (witness_channel == channels[i].channel) {
2712                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2713                         break;
2714                 }
2715
2716         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2717         if (error != 0 || req->newptr == NULL)
2718                 return (error);
2719
2720         error = EINVAL;
2721         for (i = 0; i < nitems(channels); i++)
2722                 if (strcmp(channels[i].name, buf) == 0) {
2723                         witness_channel = channels[i].channel;
2724                         error = 0;
2725                         break;
2726                 }
2727         return (error);
2728 }
2729
2730 static int
2731 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2732 {
2733         struct witness *w;
2734         struct sbuf *sb;
2735         int error;
2736
2737         if (witness_watch < 1) {
2738                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2739                 return (error);
2740         }
2741         if (witness_cold) {
2742                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2743                 return (error);
2744         }
2745         error = 0;
2746
2747         error = sysctl_wire_old_buffer(req, 0);
2748         if (error != 0)
2749                 return (error);
2750         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2751         if (sb == NULL)
2752                 return (ENOMEM);
2753         sbuf_printf(sb, "\n");
2754
2755         mtx_lock_spin(&w_mtx);
2756         STAILQ_FOREACH(w, &w_all, w_list)
2757                 w->w_displayed = 0;
2758         STAILQ_FOREACH(w, &w_all, w_list)
2759                 witness_add_fullgraph(sb, w);
2760         mtx_unlock_spin(&w_mtx);
2761
2762         /*
2763          * Close the sbuf and return to userland.
2764          */
2765         error = sbuf_finish(sb);
2766         sbuf_delete(sb);
2767
2768         return (error);
2769 }
2770
2771 static int
2772 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2773 {
2774         int error, value;
2775
2776         value = witness_watch;
2777         error = sysctl_handle_int(oidp, &value, 0, req);
2778         if (error != 0 || req->newptr == NULL)
2779                 return (error);
2780         if (value > 1 || value < -1 ||
2781             (witness_watch == -1 && value != witness_watch))
2782                 return (EINVAL);
2783         witness_watch = value;
2784         return (0);
2785 }
2786
2787 static void
2788 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2789 {
2790         int i;
2791
2792         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2793                 return;
2794         w->w_displayed = 1;
2795
2796         WITNESS_INDEX_ASSERT(w->w_index);
2797         for (i = 1; i <= w_max_used_index; i++) {
2798                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2799                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2800                             w_data[i].w_name);
2801                         witness_add_fullgraph(sb, &w_data[i]);
2802                 }
2803         }
2804 }
2805
2806 /*
2807  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2808  * interprets the key as a string and reads until the null
2809  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2810  * hash value computed from the key.
2811  */
2812 static uint32_t
2813 witness_hash_djb2(const uint8_t *key, uint32_t size)
2814 {
2815         unsigned int hash = 5381;
2816         int i;
2817
2818         /* hash = hash * 33 + key[i] */
2819         if (size)
2820                 for (i = 0; i < size; i++)
2821                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2822         else
2823                 for (i = 0; key[i] != 0; i++)
2824                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2825
2826         return (hash);
2827 }
2828
2829
2830 /*
2831  * Initializes the two witness hash tables. Called exactly once from
2832  * witness_initialize().
2833  */
2834 static void
2835 witness_init_hash_tables(void)
2836 {
2837         int i;
2838
2839         MPASS(witness_cold);
2840
2841         /* Initialize the hash tables. */
2842         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2843                 w_hash.wh_array[i] = NULL;
2844
2845         w_hash.wh_size = WITNESS_HASH_SIZE;
2846         w_hash.wh_count = 0;
2847
2848         /* Initialize the lock order data hash. */
2849         w_lofree = NULL;
2850         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2851                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2852                 w_lodata[i].wlod_next = w_lofree;
2853                 w_lofree = &w_lodata[i];
2854         }
2855         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2856         w_lohash.wloh_count = 0;
2857         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2858                 w_lohash.wloh_array[i] = NULL;
2859 }
2860
2861 static struct witness *
2862 witness_hash_get(const char *key)
2863 {
2864         struct witness *w;
2865         uint32_t hash;
2866         
2867         MPASS(key != NULL);
2868         if (witness_cold == 0)
2869                 mtx_assert(&w_mtx, MA_OWNED);
2870         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2871         w = w_hash.wh_array[hash];
2872         while (w != NULL) {
2873                 if (strcmp(w->w_name, key) == 0)
2874                         goto out;
2875                 w = w->w_hash_next;
2876         }
2877
2878 out:
2879         return (w);
2880 }
2881
2882 static void
2883 witness_hash_put(struct witness *w)
2884 {
2885         uint32_t hash;
2886
2887         MPASS(w != NULL);
2888         MPASS(w->w_name != NULL);
2889         if (witness_cold == 0)
2890                 mtx_assert(&w_mtx, MA_OWNED);
2891         KASSERT(witness_hash_get(w->w_name) == NULL,
2892             ("%s: trying to add a hash entry that already exists!", __func__));
2893         KASSERT(w->w_hash_next == NULL,
2894             ("%s: w->w_hash_next != NULL", __func__));
2895
2896         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2897         w->w_hash_next = w_hash.wh_array[hash];
2898         w_hash.wh_array[hash] = w;
2899         w_hash.wh_count++;
2900 }
2901
2902
2903 static struct witness_lock_order_data *
2904 witness_lock_order_get(struct witness *parent, struct witness *child)
2905 {
2906         struct witness_lock_order_data *data = NULL;
2907         struct witness_lock_order_key key;
2908         unsigned int hash;
2909
2910         MPASS(parent != NULL && child != NULL);
2911         key.from = parent->w_index;
2912         key.to = child->w_index;
2913         WITNESS_INDEX_ASSERT(key.from);
2914         WITNESS_INDEX_ASSERT(key.to);
2915         if ((w_rmatrix[parent->w_index][child->w_index]
2916             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2917                 goto out;
2918
2919         hash = witness_hash_djb2((const char*)&key,
2920             sizeof(key)) % w_lohash.wloh_size;
2921         data = w_lohash.wloh_array[hash];
2922         while (data != NULL) {
2923                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2924                         break;
2925                 data = data->wlod_next;
2926         }
2927
2928 out:
2929         return (data);
2930 }
2931
2932 /*
2933  * Verify that parent and child have a known relationship, are not the same,
2934  * and child is actually a child of parent.  This is done without w_mtx
2935  * to avoid contention in the common case.
2936  */
2937 static int
2938 witness_lock_order_check(struct witness *parent, struct witness *child)
2939 {
2940
2941         if (parent != child &&
2942             w_rmatrix[parent->w_index][child->w_index]
2943             & WITNESS_LOCK_ORDER_KNOWN &&
2944             isitmychild(parent, child))
2945                 return (1);
2946
2947         return (0);
2948 }
2949
2950 static int
2951 witness_lock_order_add(struct witness *parent, struct witness *child)
2952 {
2953         struct witness_lock_order_data *data = NULL;
2954         struct witness_lock_order_key key;
2955         unsigned int hash;
2956         
2957         MPASS(parent != NULL && child != NULL);
2958         key.from = parent->w_index;
2959         key.to = child->w_index;
2960         WITNESS_INDEX_ASSERT(key.from);
2961         WITNESS_INDEX_ASSERT(key.to);
2962         if (w_rmatrix[parent->w_index][child->w_index]
2963             & WITNESS_LOCK_ORDER_KNOWN)
2964                 return (1);
2965
2966         hash = witness_hash_djb2((const char*)&key,
2967             sizeof(key)) % w_lohash.wloh_size;
2968         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2969         data = w_lofree;
2970         if (data == NULL)
2971                 return (0);
2972         w_lofree = data->wlod_next;
2973         data->wlod_next = w_lohash.wloh_array[hash];
2974         data->wlod_key = key;
2975         w_lohash.wloh_array[hash] = data;
2976         w_lohash.wloh_count++;
2977         stack_zero(&data->wlod_stack);
2978         stack_save(&data->wlod_stack);
2979         return (1);
2980 }
2981
2982 /* Call this whenever the structure of the witness graph changes. */
2983 static void
2984 witness_increment_graph_generation(void)
2985 {
2986
2987         if (witness_cold == 0)
2988                 mtx_assert(&w_mtx, MA_OWNED);
2989         w_generation++;
2990 }
2991
2992 static int
2993 witness_output_drain(void *arg __unused, const char *data, int len)
2994 {
2995
2996         witness_output("%.*s", len, data);
2997         return (len);
2998 }
2999
3000 static void
3001 witness_debugger(int cond, const char *msg)
3002 {
3003         char buf[32];
3004         struct sbuf sb;
3005         struct stack st;
3006
3007         if (!cond)
3008                 return;
3009
3010         if (witness_trace) {
3011                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3012                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3013
3014                 stack_zero(&st);
3015                 stack_save(&st);
3016                 witness_output("stack backtrace:\n");
3017                 stack_sbuf_print_ddb(&sb, &st);
3018
3019                 sbuf_finish(&sb);
3020         }
3021
3022 #ifdef KDB
3023         if (witness_kdb)
3024                 kdb_enter(KDB_WHY_WITNESS, msg);
3025 #endif
3026 }