]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
MFC r352917:
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42
43 /*
44  *      Main Entry: witness
45  *      Pronunciation: 'wit-n&s
46  *      Function: noun
47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *          testimony, witness, from 2wit
49  *      Date: before 12th century
50  *      1 : attestation of a fact or event : TESTIMONY
51  *      2 : one that gives evidence; specifically : one who testifies in
52  *          a cause or before a judicial tribunal
53  *      3 : one asked to be present at a transaction so as to be able to
54  *          testify to its having taken place
55  *      4 : one who has personal knowledge of something
56  *      5 a : something serving as evidence or proof : SIGN
57  *        b : public affirmation by word or example of usually
58  *            religious faith or conviction <the heroic witness to divine
59  *            life -- Pilot>
60  *      6 capitalized : a member of the Jehovah's Witnesses 
61  */
62
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117
118 #include <machine/stdarg.h>
119
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define KTR_WITNESS     KTR_SUBSYS
127 #else
128 #define KTR_WITNESS     0
129 #endif
130
131 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
132 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
133 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
134
135 #ifndef WITNESS_COUNT
136 #define WITNESS_COUNT           1536
137 #endif
138 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
139 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
140
141 /* Allocate 256 KB of stack data space */
142 #define WITNESS_LO_DATA_COUNT   2048
143
144 /* Prime, gives load factor of ~2 at full load */
145 #define WITNESS_LO_HASH_SIZE    1021
146
147 /*
148  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
149  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
150  * probably be safe for the most part, but it's still a SWAG.
151  */
152 #define LOCK_NCHILDREN  5
153 #define LOCK_CHILDCOUNT 2048
154
155 #define MAX_W_NAME      64
156
157 #define FULLGRAPH_SBUF_SIZE     512
158
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define WITNESS_RELATED_MASK                                            \
171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173                                           * observed. */
174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178 /* Descendant to ancestor flags */
179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
180
181 /* Ancestor to descendant flags */
182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
183
184 #define WITNESS_INDEX_ASSERT(i)                                         \
185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
186
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196         struct lock_object      *li_lock;
197         const char              *li_file;
198         int                     li_line;
199         u_int                   li_flags;
200 };
201
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213         struct lock_list_entry  *ll_next;
214         struct lock_instance    ll_children[LOCK_NCHILDREN];
215         u_int                   ll_count;
216 };
217
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223         char                    w_name[MAX_W_NAME];
224         uint32_t                w_index;  /* Index in the relationship matrix */
225         struct lock_class       *w_class;
226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
229         const char              *w_file; /* File where last acquired */
230         uint32_t                w_line; /* Line where last acquired */
231         uint32_t                w_refcount;
232         uint16_t                w_num_ancestors; /* direct/indirect
233                                                   * ancestor count */
234         uint16_t                w_num_descendants; /* direct/indirect
235                                                     * descendant count */
236         int16_t                 w_ddb_level;
237         unsigned                w_displayed:1;
238         unsigned                w_reversed:1;
239 };
240
241 STAILQ_HEAD(witness_list, witness);
242
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248         struct witness  *wh_array[WITNESS_HASH_SIZE];
249         uint32_t        wh_size;
250         uint32_t        wh_count;
251 };
252
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257         uint16_t        from;
258         uint16_t        to;
259 };
260
261 struct witness_lock_order_data {
262         struct stack                    wlod_stack;
263         struct witness_lock_order_key   wlod_key;
264         struct witness_lock_order_data  *wlod_next;
265 };
266
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data). 
271  */
272 struct witness_lock_order_hash {
273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
274         u_int   wloh_size;
275         u_int   wloh_count;
276 };
277
278 struct witness_blessed {
279         const char      *b_lock1;
280         const char      *b_lock2;
281 };
282
283 struct witness_pendhelp {
284         const char              *wh_type;
285         struct lock_object      *wh_lock;
286 };
287
288 struct witness_order_list_entry {
289         const char              *w_name;
290         struct lock_class       *w_class;
291 };
292
293 /*
294  * Returns 0 if one of the locks is a spin lock and the other is not.
295  * Returns 1 otherwise.
296  */
297 static __inline int
298 witness_lock_type_equal(struct witness *w1, struct witness *w2)
299 {
300
301         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
302                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
303 }
304
305 static __inline int
306 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
307     const struct witness_lock_order_key *b)
308 {
309
310         return (a->from == b->from && a->to == b->to);
311 }
312
313 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
314                     const char *fname);
315 static void     adopt(struct witness *parent, struct witness *child);
316 static int      blessed(struct witness *, struct witness *);
317 static void     depart(struct witness *w);
318 static struct witness   *enroll(const char *description,
319                             struct lock_class *lock_class);
320 static struct lock_instance     *find_instance(struct lock_list_entry *list,
321                                     const struct lock_object *lock);
322 static int      isitmychild(struct witness *parent, struct witness *child);
323 static int      isitmydescendant(struct witness *parent, struct witness *child);
324 static void     itismychild(struct witness *parent, struct witness *child);
325 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
326 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
327 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
328 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
329 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
330 #ifdef DDB
331 static void     witness_ddb_compute_levels(void);
332 static void     witness_ddb_display(int(*)(const char *fmt, ...));
333 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
334                     struct witness *, int indent);
335 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
336                     struct witness_list *list);
337 static void     witness_ddb_level_descendants(struct witness *parent, int l);
338 static void     witness_ddb_list(struct thread *td);
339 #endif
340 static void     witness_debugger(int cond, const char *msg);
341 static void     witness_free(struct witness *m);
342 static struct witness   *witness_get(void);
343 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
344 static struct witness   *witness_hash_get(const char *key);
345 static void     witness_hash_put(struct witness *w);
346 static void     witness_init_hash_tables(void);
347 static void     witness_increment_graph_generation(void);
348 static void     witness_lock_list_free(struct lock_list_entry *lle);
349 static struct lock_list_entry   *witness_lock_list_get(void);
350 static int      witness_lock_order_add(struct witness *parent,
351                     struct witness *child);
352 static int      witness_lock_order_check(struct witness *parent,
353                     struct witness *child);
354 static struct witness_lock_order_data   *witness_lock_order_get(
355                                             struct witness *parent,
356                                             struct witness *child);
357 static void     witness_list_lock(struct lock_instance *instance,
358                     int (*prnt)(const char *fmt, ...));
359 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
360 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
361 static void     witness_setflag(struct lock_object *lock, int flag, int set);
362
363 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
364     "Witness Locking");
365
366 /*
367  * If set to 0, lock order checking is disabled.  If set to -1,
368  * witness is completely disabled.  Otherwise witness performs full
369  * lock order checking for all locks.  At runtime, lock order checking
370  * may be toggled.  However, witness cannot be reenabled once it is
371  * completely disabled.
372  */
373 static int witness_watch = 1;
374 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
375     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
376
377 #ifdef KDB
378 /*
379  * When KDB is enabled and witness_kdb is 1, it will cause the system
380  * to drop into kdebug() when:
381  *      - a lock hierarchy violation occurs
382  *      - locks are held when going to sleep.
383  */
384 #ifdef WITNESS_KDB
385 int     witness_kdb = 1;
386 #else
387 int     witness_kdb = 0;
388 #endif
389 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
390 #endif /* KDB */
391
392 #if defined(DDB) || defined(KDB)
393 /*
394  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
395  * to print a stack trace:
396  *      - a lock hierarchy violation occurs
397  *      - locks are held when going to sleep.
398  */
399 int     witness_trace = 1;
400 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
401 #endif /* DDB || KDB */
402
403 #ifdef WITNESS_SKIPSPIN
404 int     witness_skipspin = 1;
405 #else
406 int     witness_skipspin = 0;
407 #endif
408 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
409
410 int badstack_sbuf_size;
411
412 int witness_count = WITNESS_COUNT;
413 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
414     &witness_count, 0, "");
415
416 /*
417  * Output channel for witness messages.  By default we print to the console.
418  */
419 enum witness_channel {
420         WITNESS_CONSOLE,
421         WITNESS_LOG,
422         WITNESS_NONE,
423 };
424
425 static enum witness_channel witness_channel = WITNESS_CONSOLE;
426 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
427     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
428     "Output channel for warnings");
429
430 /*
431  * Call this to print out the relations between locks.
432  */
433 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
434     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
435
436 /*
437  * Call this to print out the witness faulty stacks.
438  */
439 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
440     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
441
442 static struct mtx w_mtx;
443
444 /* w_list */
445 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
446 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
447
448 /* w_typelist */
449 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
450 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
451
452 /* lock list */
453 static struct lock_list_entry *w_lock_list_free = NULL;
454 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
455 static u_int pending_cnt;
456
457 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
458 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
460 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
461     "");
462
463 static struct witness *w_data;
464 static uint8_t **w_rmatrix;
465 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
466 static struct witness_hash w_hash;      /* The witness hash table. */
467
468 /* The lock order data hash */
469 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
470 static struct witness_lock_order_data *w_lofree = NULL;
471 static struct witness_lock_order_hash w_lohash;
472 static int w_max_used_index = 0;
473 static unsigned int w_generation = 0;
474 static const char w_notrunning[] = "Witness not running\n";
475 static const char w_stillcold[] = "Witness is still cold\n";
476 #ifdef __i386__
477 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
478 #endif
479
480 static struct witness_order_list_entry order_lists[] = {
481         /*
482          * sx locks
483          */
484         { "proctree", &lock_class_sx },
485         { "allproc", &lock_class_sx },
486         { "allprison", &lock_class_sx },
487         { NULL, NULL },
488         /*
489          * Various mutexes
490          */
491         { "Giant", &lock_class_mtx_sleep },
492         { "pipe mutex", &lock_class_mtx_sleep },
493         { "sigio lock", &lock_class_mtx_sleep },
494         { "process group", &lock_class_mtx_sleep },
495 #ifdef  HWPMC_HOOKS
496         { "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498         { "process lock", &lock_class_mtx_sleep },
499         { "session", &lock_class_mtx_sleep },
500         { "uidinfo hash", &lock_class_rw },
501         { "time lock", &lock_class_mtx_sleep },
502         { NULL, NULL },
503         /*
504          * umtx
505          */
506         { "umtx lock", &lock_class_mtx_sleep },
507         { NULL, NULL },
508         /*
509          * Sockets
510          */
511         { "accept", &lock_class_mtx_sleep },
512         { "so_snd", &lock_class_mtx_sleep },
513         { "so_rcv", &lock_class_mtx_sleep },
514         { "sellck", &lock_class_mtx_sleep },
515         { NULL, NULL },
516         /*
517          * Routing
518          */
519         { "so_rcv", &lock_class_mtx_sleep },
520         { "radix node head", &lock_class_rm },
521         { "rtentry", &lock_class_mtx_sleep },
522         { "ifaddr", &lock_class_mtx_sleep },
523         { NULL, NULL },
524         /*
525          * IPv4 multicast:
526          * protocol locks before interface locks, after UDP locks.
527          */
528         { "in_multi_sx", &lock_class_sx },
529         { "udpinp", &lock_class_rw },
530         { "in_multi_list_mtx", &lock_class_mtx_sleep },
531         { "igmp_mtx", &lock_class_mtx_sleep },
532         { "ifnet_rw", &lock_class_rw },
533         { "if_addr_lock", &lock_class_mtx_sleep },
534         { NULL, NULL },
535         /*
536          * IPv6 multicast:
537          * protocol locks before interface locks, after UDP locks.
538          */
539         { "in6_multi_sx", &lock_class_sx },
540         { "udpinp", &lock_class_rw },
541         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
542         { "mld_mtx", &lock_class_mtx_sleep },
543         { "ifnet_rw", &lock_class_rw },
544         { "if_addr_lock", &lock_class_mtx_sleep },
545         { NULL, NULL },
546         /*
547          * UNIX Domain Sockets
548          */
549         { "unp_link_rwlock", &lock_class_rw },
550         { "unp_list_lock", &lock_class_mtx_sleep },
551         { "unp", &lock_class_mtx_sleep },
552         { "so_snd", &lock_class_mtx_sleep },
553         { NULL, NULL },
554         /*
555          * UDP/IP
556          */
557         { "udp", &lock_class_mtx_sleep },
558         { "udpinp", &lock_class_rw },
559         { "so_snd", &lock_class_mtx_sleep },
560         { NULL, NULL },
561         /*
562          * TCP/IP
563          */
564         { "tcp", &lock_class_mtx_sleep },
565         { "tcpinp", &lock_class_rw },
566         { "so_snd", &lock_class_mtx_sleep },
567         { NULL, NULL },
568         /*
569          * BPF
570          */
571         { "bpf global lock", &lock_class_sx },
572         { "bpf interface lock", &lock_class_rw },
573         { "bpf cdev lock", &lock_class_mtx_sleep },
574         { NULL, NULL },
575         /*
576          * NFS server
577          */
578         { "nfsd_mtx", &lock_class_mtx_sleep },
579         { "so_snd", &lock_class_mtx_sleep },
580         { NULL, NULL },
581
582         /*
583          * IEEE 802.11
584          */
585         { "802.11 com lock", &lock_class_mtx_sleep},
586         { NULL, NULL },
587         /*
588          * Network drivers
589          */
590         { "network driver", &lock_class_mtx_sleep},
591         { NULL, NULL },
592
593         /*
594          * Netgraph
595          */
596         { "ng_node", &lock_class_mtx_sleep },
597         { "ng_worklist", &lock_class_mtx_sleep },
598         { NULL, NULL },
599         /*
600          * CDEV
601          */
602         { "vm map (system)", &lock_class_mtx_sleep },
603         { "vnode interlock", &lock_class_mtx_sleep },
604         { "cdev", &lock_class_mtx_sleep },
605         { NULL, NULL },
606         /*
607          * VM
608          */
609         { "vm map (user)", &lock_class_sx },
610         { "vm object", &lock_class_rw },
611         { "vm page", &lock_class_mtx_sleep },
612         { "pmap pv global", &lock_class_rw },
613         { "pmap", &lock_class_mtx_sleep },
614         { "pmap pv list", &lock_class_rw },
615         { "vm page free queue", &lock_class_mtx_sleep },
616         { "vm pagequeue", &lock_class_mtx_sleep },
617         { NULL, NULL },
618         /*
619          * kqueue/VFS interaction
620          */
621         { "kqueue", &lock_class_mtx_sleep },
622         { "struct mount mtx", &lock_class_mtx_sleep },
623         { "vnode interlock", &lock_class_mtx_sleep },
624         { NULL, NULL },
625         /*
626          * VFS namecache
627          */
628         { "ncvn", &lock_class_mtx_sleep },
629         { "ncbuc", &lock_class_rw },
630         { "vnode interlock", &lock_class_mtx_sleep },
631         { "ncneg", &lock_class_mtx_sleep },
632         { NULL, NULL },
633         /*
634          * ZFS locking
635          */
636         { "dn->dn_mtx", &lock_class_sx },
637         { "dr->dt.di.dr_mtx", &lock_class_sx },
638         { "db->db_mtx", &lock_class_sx },
639         { NULL, NULL },
640         /*
641          * TCP log locks
642          */
643         { "TCP ID tree", &lock_class_rw },
644         { "tcp log id bucket", &lock_class_mtx_sleep },
645         { "tcpinp", &lock_class_rw },
646         { "TCP log expireq", &lock_class_mtx_sleep },
647         { NULL, NULL },
648         /*
649          * spin locks
650          */
651 #ifdef SMP
652         { "ap boot", &lock_class_mtx_spin },
653 #endif
654         { "rm.mutex_mtx", &lock_class_mtx_spin },
655         { "sio", &lock_class_mtx_spin },
656 #ifdef __i386__
657         { "cy", &lock_class_mtx_spin },
658 #endif
659 #ifdef __sparc64__
660         { "pcib_mtx", &lock_class_mtx_spin },
661         { "rtc_mtx", &lock_class_mtx_spin },
662 #endif
663         { "scc_hwmtx", &lock_class_mtx_spin },
664         { "uart_hwmtx", &lock_class_mtx_spin },
665         { "fast_taskqueue", &lock_class_mtx_spin },
666         { "intr table", &lock_class_mtx_spin },
667         { "process slock", &lock_class_mtx_spin },
668         { "syscons video lock", &lock_class_mtx_spin },
669         { "sleepq chain", &lock_class_mtx_spin },
670         { "rm_spinlock", &lock_class_mtx_spin },
671         { "turnstile chain", &lock_class_mtx_spin },
672         { "turnstile lock", &lock_class_mtx_spin },
673         { "sched lock", &lock_class_mtx_spin },
674         { "td_contested", &lock_class_mtx_spin },
675         { "callout", &lock_class_mtx_spin },
676         { "entropy harvest mutex", &lock_class_mtx_spin },
677 #ifdef SMP
678         { "smp rendezvous", &lock_class_mtx_spin },
679 #endif
680 #ifdef __powerpc__
681         { "tlb0", &lock_class_mtx_spin },
682 #endif
683         { NULL, NULL },
684         { "sched lock", &lock_class_mtx_spin },
685 #ifdef  HWPMC_HOOKS
686         { "pmc-per-proc", &lock_class_mtx_spin },
687 #endif
688         { NULL, NULL },
689         /*
690          * leaf locks
691          */
692         { "intrcnt", &lock_class_mtx_spin },
693         { "icu", &lock_class_mtx_spin },
694 #if defined(SMP) && defined(__sparc64__)
695         { "ipi", &lock_class_mtx_spin },
696 #endif
697 #ifdef __i386__
698         { "allpmaps", &lock_class_mtx_spin },
699         { "descriptor tables", &lock_class_mtx_spin },
700 #endif
701         { "clk", &lock_class_mtx_spin },
702         { "cpuset", &lock_class_mtx_spin },
703         { "mprof lock", &lock_class_mtx_spin },
704         { "zombie lock", &lock_class_mtx_spin },
705         { "ALD Queue", &lock_class_mtx_spin },
706 #if defined(__i386__) || defined(__amd64__)
707         { "pcicfg", &lock_class_mtx_spin },
708         { "NDIS thread lock", &lock_class_mtx_spin },
709 #endif
710         { "tw_osl_io_lock", &lock_class_mtx_spin },
711         { "tw_osl_q_lock", &lock_class_mtx_spin },
712         { "tw_cl_io_lock", &lock_class_mtx_spin },
713         { "tw_cl_intr_lock", &lock_class_mtx_spin },
714         { "tw_cl_gen_lock", &lock_class_mtx_spin },
715 #ifdef  HWPMC_HOOKS
716         { "pmc-leaf", &lock_class_mtx_spin },
717 #endif
718         { "blocked lock", &lock_class_mtx_spin },
719         { NULL, NULL },
720         { NULL, NULL }
721 };
722
723 /*
724  * Pairs of locks which have been blessed.  Witness does not complain about
725  * order problems with blessed lock pairs.  Please do not add an entry to the
726  * table without an explanatory comment.
727  */
728 static struct witness_blessed blessed_list[] = {
729         /*
730          * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
731          * both lock orders, so a deadlock cannot happen as a result of this
732          * LOR.
733          */
734         { "dirhash",    "bufwait" },
735
736         /*
737          * A UFS vnode may be locked in vget() while a buffer belonging to the
738          * parent directory vnode is locked.
739          */
740         { "ufs",        "bufwait" },
741 };
742
743 /*
744  * This global is set to 0 once it becomes safe to use the witness code.
745  */
746 static int witness_cold = 1;
747
748 /*
749  * This global is set to 1 once the static lock orders have been enrolled
750  * so that a warning can be issued for any spin locks enrolled later.
751  */
752 static int witness_spin_warn = 0;
753
754 /* Trim useless garbage from filenames. */
755 static const char *
756 fixup_filename(const char *file)
757 {
758
759         if (file == NULL)
760                 return (NULL);
761         while (strncmp(file, "../", 3) == 0)
762                 file += 3;
763         return (file);
764 }
765
766 /*
767  * Calculate the size of early witness structures.
768  */
769 int
770 witness_startup_count(void)
771 {
772         int sz;
773
774         sz = sizeof(struct witness) * witness_count;
775         sz += sizeof(*w_rmatrix) * (witness_count + 1);
776         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
777             (witness_count + 1);
778
779         return (sz);
780 }
781
782 /*
783  * The WITNESS-enabled diagnostic code.  Note that the witness code does
784  * assume that the early boot is single-threaded at least until after this
785  * routine is completed.
786  */
787 void
788 witness_startup(void *mem)
789 {
790         struct lock_object *lock;
791         struct witness_order_list_entry *order;
792         struct witness *w, *w1;
793         uintptr_t p;
794         int i;
795
796         p = (uintptr_t)mem;
797         w_data = (void *)p;
798         p += sizeof(struct witness) * witness_count;
799
800         w_rmatrix = (void *)p;
801         p += sizeof(*w_rmatrix) * (witness_count + 1);
802
803         for (i = 0; i < witness_count + 1; i++) {
804                 w_rmatrix[i] = (void *)p;
805                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
806         }
807         badstack_sbuf_size = witness_count * 256;
808
809         /*
810          * We have to release Giant before initializing its witness
811          * structure so that WITNESS doesn't get confused.
812          */
813         mtx_unlock(&Giant);
814         mtx_assert(&Giant, MA_NOTOWNED);
815
816         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
817         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
818             MTX_NOWITNESS | MTX_NOPROFILE);
819         for (i = witness_count - 1; i >= 0; i--) {
820                 w = &w_data[i];
821                 memset(w, 0, sizeof(*w));
822                 w_data[i].w_index = i;  /* Witness index never changes. */
823                 witness_free(w);
824         }
825         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
826             ("%s: Invalid list of free witness objects", __func__));
827
828         /* Witness with index 0 is not used to aid in debugging. */
829         STAILQ_REMOVE_HEAD(&w_free, w_list);
830         w_free_cnt--;
831
832         for (i = 0; i < witness_count; i++) {
833                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
834                     (witness_count + 1));
835         }
836
837         for (i = 0; i < LOCK_CHILDCOUNT; i++)
838                 witness_lock_list_free(&w_locklistdata[i]);
839         witness_init_hash_tables();
840
841         /* First add in all the specified order lists. */
842         for (order = order_lists; order->w_name != NULL; order++) {
843                 w = enroll(order->w_name, order->w_class);
844                 if (w == NULL)
845                         continue;
846                 w->w_file = "order list";
847                 for (order++; order->w_name != NULL; order++) {
848                         w1 = enroll(order->w_name, order->w_class);
849                         if (w1 == NULL)
850                                 continue;
851                         w1->w_file = "order list";
852                         itismychild(w, w1);
853                         w = w1;
854                 }
855         }
856         witness_spin_warn = 1;
857
858         /* Iterate through all locks and add them to witness. */
859         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
860                 lock = pending_locks[i].wh_lock;
861                 KASSERT(lock->lo_flags & LO_WITNESS,
862                     ("%s: lock %s is on pending list but not LO_WITNESS",
863                     __func__, lock->lo_name));
864                 lock->lo_witness = enroll(pending_locks[i].wh_type,
865                     LOCK_CLASS(lock));
866         }
867
868         /* Mark the witness code as being ready for use. */
869         witness_cold = 0;
870
871         mtx_lock(&Giant);
872 }
873
874 void
875 witness_init(struct lock_object *lock, const char *type)
876 {
877         struct lock_class *class;
878
879         /* Various sanity checks. */
880         class = LOCK_CLASS(lock);
881         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
882             (class->lc_flags & LC_RECURSABLE) == 0)
883                 kassert_panic("%s: lock (%s) %s can not be recursable",
884                     __func__, class->lc_name, lock->lo_name);
885         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
886             (class->lc_flags & LC_SLEEPABLE) == 0)
887                 kassert_panic("%s: lock (%s) %s can not be sleepable",
888                     __func__, class->lc_name, lock->lo_name);
889         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
890             (class->lc_flags & LC_UPGRADABLE) == 0)
891                 kassert_panic("%s: lock (%s) %s can not be upgradable",
892                     __func__, class->lc_name, lock->lo_name);
893
894         /*
895          * If we shouldn't watch this lock, then just clear lo_witness.
896          * Otherwise, if witness_cold is set, then it is too early to
897          * enroll this lock, so defer it to witness_initialize() by adding
898          * it to the pending_locks list.  If it is not too early, then enroll
899          * the lock now.
900          */
901         if (witness_watch < 1 || panicstr != NULL ||
902             (lock->lo_flags & LO_WITNESS) == 0)
903                 lock->lo_witness = NULL;
904         else if (witness_cold) {
905                 pending_locks[pending_cnt].wh_lock = lock;
906                 pending_locks[pending_cnt++].wh_type = type;
907                 if (pending_cnt > WITNESS_PENDLIST)
908                         panic("%s: pending locks list is too small, "
909                             "increase WITNESS_PENDLIST\n",
910                             __func__);
911         } else
912                 lock->lo_witness = enroll(type, class);
913 }
914
915 void
916 witness_destroy(struct lock_object *lock)
917 {
918         struct lock_class *class;
919         struct witness *w;
920
921         class = LOCK_CLASS(lock);
922
923         if (witness_cold)
924                 panic("lock (%s) %s destroyed while witness_cold",
925                     class->lc_name, lock->lo_name);
926
927         /* XXX: need to verify that no one holds the lock */
928         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
929                 return;
930         w = lock->lo_witness;
931
932         mtx_lock_spin(&w_mtx);
933         MPASS(w->w_refcount > 0);
934         w->w_refcount--;
935
936         if (w->w_refcount == 0)
937                 depart(w);
938         mtx_unlock_spin(&w_mtx);
939 }
940
941 #ifdef DDB
942 static void
943 witness_ddb_compute_levels(void)
944 {
945         struct witness *w;
946
947         /*
948          * First clear all levels.
949          */
950         STAILQ_FOREACH(w, &w_all, w_list)
951                 w->w_ddb_level = -1;
952
953         /*
954          * Look for locks with no parents and level all their descendants.
955          */
956         STAILQ_FOREACH(w, &w_all, w_list) {
957
958                 /* If the witness has ancestors (is not a root), skip it. */
959                 if (w->w_num_ancestors > 0)
960                         continue;
961                 witness_ddb_level_descendants(w, 0);
962         }
963 }
964
965 static void
966 witness_ddb_level_descendants(struct witness *w, int l)
967 {
968         int i;
969
970         if (w->w_ddb_level >= l)
971                 return;
972
973         w->w_ddb_level = l;
974         l++;
975
976         for (i = 1; i <= w_max_used_index; i++) {
977                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
978                         witness_ddb_level_descendants(&w_data[i], l);
979         }
980 }
981
982 static void
983 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
984     struct witness *w, int indent)
985 {
986         int i;
987
988         for (i = 0; i < indent; i++)
989                 prnt(" ");
990         prnt("%s (type: %s, depth: %d, active refs: %d)",
991              w->w_name, w->w_class->lc_name,
992              w->w_ddb_level, w->w_refcount);
993         if (w->w_displayed) {
994                 prnt(" -- (already displayed)\n");
995                 return;
996         }
997         w->w_displayed = 1;
998         if (w->w_file != NULL && w->w_line != 0)
999                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1000                     w->w_line);
1001         else
1002                 prnt(" -- never acquired\n");
1003         indent++;
1004         WITNESS_INDEX_ASSERT(w->w_index);
1005         for (i = 1; i <= w_max_used_index; i++) {
1006                 if (db_pager_quit)
1007                         return;
1008                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1009                         witness_ddb_display_descendants(prnt, &w_data[i],
1010                             indent);
1011         }
1012 }
1013
1014 static void
1015 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1016     struct witness_list *list)
1017 {
1018         struct witness *w;
1019
1020         STAILQ_FOREACH(w, list, w_typelist) {
1021                 if (w->w_file == NULL || w->w_ddb_level > 0)
1022                         continue;
1023
1024                 /* This lock has no anscestors - display its descendants. */
1025                 witness_ddb_display_descendants(prnt, w, 0);
1026                 if (db_pager_quit)
1027                         return;
1028         }
1029 }
1030         
1031 static void
1032 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1033 {
1034         struct witness *w;
1035
1036         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1037         witness_ddb_compute_levels();
1038
1039         /* Clear all the displayed flags. */
1040         STAILQ_FOREACH(w, &w_all, w_list)
1041                 w->w_displayed = 0;
1042
1043         /*
1044          * First, handle sleep locks which have been acquired at least
1045          * once.
1046          */
1047         prnt("Sleep locks:\n");
1048         witness_ddb_display_list(prnt, &w_sleep);
1049         if (db_pager_quit)
1050                 return;
1051         
1052         /*
1053          * Now do spin locks which have been acquired at least once.
1054          */
1055         prnt("\nSpin locks:\n");
1056         witness_ddb_display_list(prnt, &w_spin);
1057         if (db_pager_quit)
1058                 return;
1059         
1060         /*
1061          * Finally, any locks which have not been acquired yet.
1062          */
1063         prnt("\nLocks which were never acquired:\n");
1064         STAILQ_FOREACH(w, &w_all, w_list) {
1065                 if (w->w_file != NULL || w->w_refcount == 0)
1066                         continue;
1067                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1068                     w->w_class->lc_name, w->w_ddb_level);
1069                 if (db_pager_quit)
1070                         return;
1071         }
1072 }
1073 #endif /* DDB */
1074
1075 int
1076 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1077 {
1078
1079         if (witness_watch == -1 || panicstr != NULL)
1080                 return (0);
1081
1082         /* Require locks that witness knows about. */
1083         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1084             lock2->lo_witness == NULL)
1085                 return (EINVAL);
1086
1087         mtx_assert(&w_mtx, MA_NOTOWNED);
1088         mtx_lock_spin(&w_mtx);
1089
1090         /*
1091          * If we already have either an explicit or implied lock order that
1092          * is the other way around, then return an error.
1093          */
1094         if (witness_watch &&
1095             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1096                 mtx_unlock_spin(&w_mtx);
1097                 return (EDOOFUS);
1098         }
1099         
1100         /* Try to add the new order. */
1101         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1102             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1103         itismychild(lock1->lo_witness, lock2->lo_witness);
1104         mtx_unlock_spin(&w_mtx);
1105         return (0);
1106 }
1107
1108 void
1109 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1110     int line, struct lock_object *interlock)
1111 {
1112         struct lock_list_entry *lock_list, *lle;
1113         struct lock_instance *lock1, *lock2, *plock;
1114         struct lock_class *class, *iclass;
1115         struct witness *w, *w1;
1116         struct thread *td;
1117         int i, j;
1118
1119         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1120             panicstr != NULL)
1121                 return;
1122
1123         w = lock->lo_witness;
1124         class = LOCK_CLASS(lock);
1125         td = curthread;
1126
1127         if (class->lc_flags & LC_SLEEPLOCK) {
1128
1129                 /*
1130                  * Since spin locks include a critical section, this check
1131                  * implicitly enforces a lock order of all sleep locks before
1132                  * all spin locks.
1133                  */
1134                 if (td->td_critnest != 0 && !kdb_active)
1135                         kassert_panic("acquiring blockable sleep lock with "
1136                             "spinlock or critical section held (%s) %s @ %s:%d",
1137                             class->lc_name, lock->lo_name,
1138                             fixup_filename(file), line);
1139
1140                 /*
1141                  * If this is the first lock acquired then just return as
1142                  * no order checking is needed.
1143                  */
1144                 lock_list = td->td_sleeplocks;
1145                 if (lock_list == NULL || lock_list->ll_count == 0)
1146                         return;
1147         } else {
1148
1149                 /*
1150                  * If this is the first lock, just return as no order
1151                  * checking is needed.  Avoid problems with thread
1152                  * migration pinning the thread while checking if
1153                  * spinlocks are held.  If at least one spinlock is held
1154                  * the thread is in a safe path and it is allowed to
1155                  * unpin it.
1156                  */
1157                 sched_pin();
1158                 lock_list = PCPU_GET(spinlocks);
1159                 if (lock_list == NULL || lock_list->ll_count == 0) {
1160                         sched_unpin();
1161                         return;
1162                 }
1163                 sched_unpin();
1164         }
1165
1166         /*
1167          * Check to see if we are recursing on a lock we already own.  If
1168          * so, make sure that we don't mismatch exclusive and shared lock
1169          * acquires.
1170          */
1171         lock1 = find_instance(lock_list, lock);
1172         if (lock1 != NULL) {
1173                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1174                     (flags & LOP_EXCLUSIVE) == 0) {
1175                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1176                             class->lc_name, lock->lo_name,
1177                             fixup_filename(file), line);
1178                         witness_output("while exclusively locked from %s:%d\n",
1179                             fixup_filename(lock1->li_file), lock1->li_line);
1180                         kassert_panic("excl->share");
1181                 }
1182                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1183                     (flags & LOP_EXCLUSIVE) != 0) {
1184                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1185                             class->lc_name, lock->lo_name,
1186                             fixup_filename(file), line);
1187                         witness_output("while share locked from %s:%d\n",
1188                             fixup_filename(lock1->li_file), lock1->li_line);
1189                         kassert_panic("share->excl");
1190                 }
1191                 return;
1192         }
1193
1194         /* Warn if the interlock is not locked exactly once. */
1195         if (interlock != NULL) {
1196                 iclass = LOCK_CLASS(interlock);
1197                 lock1 = find_instance(lock_list, interlock);
1198                 if (lock1 == NULL)
1199                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1200                             iclass->lc_name, interlock->lo_name,
1201                             fixup_filename(file), line);
1202                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1203                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1204                             iclass->lc_name, interlock->lo_name,
1205                             fixup_filename(file), line);
1206         }
1207
1208         /*
1209          * Find the previously acquired lock, but ignore interlocks.
1210          */
1211         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1212         if (interlock != NULL && plock->li_lock == interlock) {
1213                 if (lock_list->ll_count > 1)
1214                         plock =
1215                             &lock_list->ll_children[lock_list->ll_count - 2];
1216                 else {
1217                         lle = lock_list->ll_next;
1218
1219                         /*
1220                          * The interlock is the only lock we hold, so
1221                          * simply return.
1222                          */
1223                         if (lle == NULL)
1224                                 return;
1225                         plock = &lle->ll_children[lle->ll_count - 1];
1226                 }
1227         }
1228         
1229         /*
1230          * Try to perform most checks without a lock.  If this succeeds we
1231          * can skip acquiring the lock and return success.  Otherwise we redo
1232          * the check with the lock held to handle races with concurrent updates.
1233          */
1234         w1 = plock->li_lock->lo_witness;
1235         if (witness_lock_order_check(w1, w))
1236                 return;
1237
1238         mtx_lock_spin(&w_mtx);
1239         if (witness_lock_order_check(w1, w)) {
1240                 mtx_unlock_spin(&w_mtx);
1241                 return;
1242         }
1243         witness_lock_order_add(w1, w);
1244
1245         /*
1246          * Check for duplicate locks of the same type.  Note that we only
1247          * have to check for this on the last lock we just acquired.  Any
1248          * other cases will be caught as lock order violations.
1249          */
1250         if (w1 == w) {
1251                 i = w->w_index;
1252                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1253                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1254                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1255                         w->w_reversed = 1;
1256                         mtx_unlock_spin(&w_mtx);
1257                         witness_output(
1258                             "acquiring duplicate lock of same type: \"%s\"\n", 
1259                             w->w_name);
1260                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1261                             fixup_filename(plock->li_file), plock->li_line);
1262                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1263                             fixup_filename(file), line);
1264                         witness_debugger(1, __func__);
1265                 } else
1266                         mtx_unlock_spin(&w_mtx);
1267                 return;
1268         }
1269         mtx_assert(&w_mtx, MA_OWNED);
1270
1271         /*
1272          * If we know that the lock we are acquiring comes after
1273          * the lock we most recently acquired in the lock order tree,
1274          * then there is no need for any further checks.
1275          */
1276         if (isitmychild(w1, w))
1277                 goto out;
1278
1279         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1280                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1281
1282                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1283                         lock1 = &lle->ll_children[i];
1284
1285                         /*
1286                          * Ignore the interlock.
1287                          */
1288                         if (interlock == lock1->li_lock)
1289                                 continue;
1290
1291                         /*
1292                          * If this lock doesn't undergo witness checking,
1293                          * then skip it.
1294                          */
1295                         w1 = lock1->li_lock->lo_witness;
1296                         if (w1 == NULL) {
1297                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1298                                     ("lock missing witness structure"));
1299                                 continue;
1300                         }
1301
1302                         /*
1303                          * If we are locking Giant and this is a sleepable
1304                          * lock, then skip it.
1305                          */
1306                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1307                             lock == &Giant.lock_object)
1308                                 continue;
1309
1310                         /*
1311                          * If we are locking a sleepable lock and this lock
1312                          * is Giant, then skip it.
1313                          */
1314                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1315                             lock1->li_lock == &Giant.lock_object)
1316                                 continue;
1317
1318                         /*
1319                          * If we are locking a sleepable lock and this lock
1320                          * isn't sleepable, we want to treat it as a lock
1321                          * order violation to enfore a general lock order of
1322                          * sleepable locks before non-sleepable locks.
1323                          */
1324                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1325                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1326                                 goto reversal;
1327
1328                         /*
1329                          * If we are locking Giant and this is a non-sleepable
1330                          * lock, then treat it as a reversal.
1331                          */
1332                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1333                             lock == &Giant.lock_object)
1334                                 goto reversal;
1335
1336                         /*
1337                          * Check the lock order hierarchy for a reveresal.
1338                          */
1339                         if (!isitmydescendant(w, w1))
1340                                 continue;
1341                 reversal:
1342
1343                         /*
1344                          * We have a lock order violation, check to see if it
1345                          * is allowed or has already been yelled about.
1346                          */
1347
1348                         /* Bail if this violation is known */
1349                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1350                                 goto out;
1351
1352                         /* Record this as a violation */
1353                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1354                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1355                         w->w_reversed = w1->w_reversed = 1;
1356                         witness_increment_graph_generation();
1357
1358                         /*
1359                          * If the lock order is blessed, bail before logging
1360                          * anything.  We don't look for other lock order
1361                          * violations though, which may be a bug.
1362                          */
1363                         if (blessed(w, w1))
1364                                 goto out;
1365                         mtx_unlock_spin(&w_mtx);
1366
1367 #ifdef WITNESS_NO_VNODE
1368                         /*
1369                          * There are known LORs between VNODE locks. They are
1370                          * not an indication of a bug. VNODE locks are flagged
1371                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1372                          * is between 2 VNODE locks.
1373                          */
1374                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1375                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1376                                 return;
1377 #endif
1378
1379                         /*
1380                          * Ok, yell about it.
1381                          */
1382                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1383                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1384                                 witness_output(
1385                 "lock order reversal: (sleepable after non-sleepable)\n");
1386                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1387                             && lock == &Giant.lock_object)
1388                                 witness_output(
1389                 "lock order reversal: (Giant after non-sleepable)\n");
1390                         else
1391                                 witness_output("lock order reversal:\n");
1392
1393                         /*
1394                          * Try to locate an earlier lock with
1395                          * witness w in our list.
1396                          */
1397                         do {
1398                                 lock2 = &lle->ll_children[i];
1399                                 MPASS(lock2->li_lock != NULL);
1400                                 if (lock2->li_lock->lo_witness == w)
1401                                         break;
1402                                 if (i == 0 && lle->ll_next != NULL) {
1403                                         lle = lle->ll_next;
1404                                         i = lle->ll_count - 1;
1405                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1406                                 } else
1407                                         i--;
1408                         } while (i >= 0);
1409                         if (i < 0) {
1410                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1411                                     lock1->li_lock, lock1->li_lock->lo_name,
1412                                     w1->w_name, fixup_filename(lock1->li_file),
1413                                     lock1->li_line);
1414                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1415                                     lock->lo_name, w->w_name,
1416                                     fixup_filename(file), line);
1417                         } else {
1418                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1419                                     lock2->li_lock, lock2->li_lock->lo_name,
1420                                     lock2->li_lock->lo_witness->w_name,
1421                                     fixup_filename(lock2->li_file),
1422                                     lock2->li_line);
1423                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1424                                     lock1->li_lock, lock1->li_lock->lo_name,
1425                                     w1->w_name, fixup_filename(lock1->li_file),
1426                                     lock1->li_line);
1427                                 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1428                                     lock->lo_name, w->w_name,
1429                                     fixup_filename(file), line);
1430                         }
1431                         witness_debugger(1, __func__);
1432                         return;
1433                 }
1434         }
1435
1436         /*
1437          * If requested, build a new lock order.  However, don't build a new
1438          * relationship between a sleepable lock and Giant if it is in the
1439          * wrong direction.  The correct lock order is that sleepable locks
1440          * always come before Giant.
1441          */
1442         if (flags & LOP_NEWORDER &&
1443             !(plock->li_lock == &Giant.lock_object &&
1444             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1445                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1446                     w->w_name, plock->li_lock->lo_witness->w_name);
1447                 itismychild(plock->li_lock->lo_witness, w);
1448         }
1449 out:
1450         mtx_unlock_spin(&w_mtx);
1451 }
1452
1453 void
1454 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1455 {
1456         struct lock_list_entry **lock_list, *lle;
1457         struct lock_instance *instance;
1458         struct witness *w;
1459         struct thread *td;
1460
1461         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1462             panicstr != NULL)
1463                 return;
1464         w = lock->lo_witness;
1465         td = curthread;
1466
1467         /* Determine lock list for this lock. */
1468         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1469                 lock_list = &td->td_sleeplocks;
1470         else
1471                 lock_list = PCPU_PTR(spinlocks);
1472
1473         /* Check to see if we are recursing on a lock we already own. */
1474         instance = find_instance(*lock_list, lock);
1475         if (instance != NULL) {
1476                 instance->li_flags++;
1477                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1478                     td->td_proc->p_pid, lock->lo_name,
1479                     instance->li_flags & LI_RECURSEMASK);
1480                 instance->li_file = file;
1481                 instance->li_line = line;
1482                 return;
1483         }
1484
1485         /* Update per-witness last file and line acquire. */
1486         w->w_file = file;
1487         w->w_line = line;
1488
1489         /* Find the next open lock instance in the list and fill it. */
1490         lle = *lock_list;
1491         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1492                 lle = witness_lock_list_get();
1493                 if (lle == NULL)
1494                         return;
1495                 lle->ll_next = *lock_list;
1496                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1497                     td->td_proc->p_pid, lle);
1498                 *lock_list = lle;
1499         }
1500         instance = &lle->ll_children[lle->ll_count++];
1501         instance->li_lock = lock;
1502         instance->li_line = line;
1503         instance->li_file = file;
1504         if ((flags & LOP_EXCLUSIVE) != 0)
1505                 instance->li_flags = LI_EXCLUSIVE;
1506         else
1507                 instance->li_flags = 0;
1508         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1509             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1510 }
1511
1512 void
1513 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1514 {
1515         struct lock_instance *instance;
1516         struct lock_class *class;
1517
1518         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1519         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1520                 return;
1521         class = LOCK_CLASS(lock);
1522         if (witness_watch) {
1523                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1524                         kassert_panic(
1525                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1526                             class->lc_name, lock->lo_name,
1527                             fixup_filename(file), line);
1528                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1529                         kassert_panic(
1530                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1531                             class->lc_name, lock->lo_name,
1532                             fixup_filename(file), line);
1533         }
1534         instance = find_instance(curthread->td_sleeplocks, lock);
1535         if (instance == NULL) {
1536                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1537                     class->lc_name, lock->lo_name,
1538                     fixup_filename(file), line);
1539                 return;
1540         }
1541         if (witness_watch) {
1542                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1543                         kassert_panic(
1544                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1545                             class->lc_name, lock->lo_name,
1546                             fixup_filename(file), line);
1547                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1548                         kassert_panic(
1549                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1550                             class->lc_name, lock->lo_name,
1551                             instance->li_flags & LI_RECURSEMASK,
1552                             fixup_filename(file), line);
1553         }
1554         instance->li_flags |= LI_EXCLUSIVE;
1555 }
1556
1557 void
1558 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1559     int line)
1560 {
1561         struct lock_instance *instance;
1562         struct lock_class *class;
1563
1564         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1565         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1566                 return;
1567         class = LOCK_CLASS(lock);
1568         if (witness_watch) {
1569                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1570                         kassert_panic(
1571                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1572                             class->lc_name, lock->lo_name,
1573                             fixup_filename(file), line);
1574                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1575                         kassert_panic(
1576                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1577                             class->lc_name, lock->lo_name,
1578                             fixup_filename(file), line);
1579         }
1580         instance = find_instance(curthread->td_sleeplocks, lock);
1581         if (instance == NULL) {
1582                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1583                     class->lc_name, lock->lo_name,
1584                     fixup_filename(file), line);
1585                 return;
1586         }
1587         if (witness_watch) {
1588                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1589                         kassert_panic(
1590                             "downgrade of shared lock (%s) %s @ %s:%d",
1591                             class->lc_name, lock->lo_name,
1592                             fixup_filename(file), line);
1593                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1594                         kassert_panic(
1595                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1596                             class->lc_name, lock->lo_name,
1597                             instance->li_flags & LI_RECURSEMASK,
1598                             fixup_filename(file), line);
1599         }
1600         instance->li_flags &= ~LI_EXCLUSIVE;
1601 }
1602
1603 void
1604 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1605 {
1606         struct lock_list_entry **lock_list, *lle;
1607         struct lock_instance *instance;
1608         struct lock_class *class;
1609         struct thread *td;
1610         register_t s;
1611         int i, j;
1612
1613         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1614                 return;
1615         td = curthread;
1616         class = LOCK_CLASS(lock);
1617
1618         /* Find lock instance associated with this lock. */
1619         if (class->lc_flags & LC_SLEEPLOCK)
1620                 lock_list = &td->td_sleeplocks;
1621         else
1622                 lock_list = PCPU_PTR(spinlocks);
1623         lle = *lock_list;
1624         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1625                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1626                         instance = &(*lock_list)->ll_children[i];
1627                         if (instance->li_lock == lock)
1628                                 goto found;
1629                 }
1630
1631         /*
1632          * When disabling WITNESS through witness_watch we could end up in
1633          * having registered locks in the td_sleeplocks queue.
1634          * We have to make sure we flush these queues, so just search for
1635          * eventual register locks and remove them.
1636          */
1637         if (witness_watch > 0) {
1638                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1639                     lock->lo_name, fixup_filename(file), line);
1640                 return;
1641         } else {
1642                 return;
1643         }
1644 found:
1645
1646         /* First, check for shared/exclusive mismatches. */
1647         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1648             (flags & LOP_EXCLUSIVE) == 0) {
1649                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1650                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1651                 witness_output("while exclusively locked from %s:%d\n",
1652                     fixup_filename(instance->li_file), instance->li_line);
1653                 kassert_panic("excl->ushare");
1654         }
1655         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1656             (flags & LOP_EXCLUSIVE) != 0) {
1657                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1658                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1659                 witness_output("while share locked from %s:%d\n",
1660                     fixup_filename(instance->li_file),
1661                     instance->li_line);
1662                 kassert_panic("share->uexcl");
1663         }
1664         /* If we are recursed, unrecurse. */
1665         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1666                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1667                     td->td_proc->p_pid, instance->li_lock->lo_name,
1668                     instance->li_flags);
1669                 instance->li_flags--;
1670                 return;
1671         }
1672         /* The lock is now being dropped, check for NORELEASE flag */
1673         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1674                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1675                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1676                 kassert_panic("lock marked norelease");
1677         }
1678
1679         /* Otherwise, remove this item from the list. */
1680         s = intr_disable();
1681         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1682             td->td_proc->p_pid, instance->li_lock->lo_name,
1683             (*lock_list)->ll_count - 1);
1684         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1685                 (*lock_list)->ll_children[j] =
1686                     (*lock_list)->ll_children[j + 1];
1687         (*lock_list)->ll_count--;
1688         intr_restore(s);
1689
1690         /*
1691          * In order to reduce contention on w_mtx, we want to keep always an
1692          * head object into lists so that frequent allocation from the 
1693          * free witness pool (and subsequent locking) is avoided.
1694          * In order to maintain the current code simple, when the head
1695          * object is totally unloaded it means also that we do not have
1696          * further objects in the list, so the list ownership needs to be
1697          * hand over to another object if the current head needs to be freed.
1698          */
1699         if ((*lock_list)->ll_count == 0) {
1700                 if (*lock_list == lle) {
1701                         if (lle->ll_next == NULL)
1702                                 return;
1703                 } else
1704                         lle = *lock_list;
1705                 *lock_list = lle->ll_next;
1706                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1707                     td->td_proc->p_pid, lle);
1708                 witness_lock_list_free(lle);
1709         }
1710 }
1711
1712 void
1713 witness_thread_exit(struct thread *td)
1714 {
1715         struct lock_list_entry *lle;
1716         int i, n;
1717
1718         lle = td->td_sleeplocks;
1719         if (lle == NULL || panicstr != NULL)
1720                 return;
1721         if (lle->ll_count != 0) {
1722                 for (n = 0; lle != NULL; lle = lle->ll_next)
1723                         for (i = lle->ll_count - 1; i >= 0; i--) {
1724                                 if (n == 0)
1725                                         witness_output(
1726                     "Thread %p exiting with the following locks held:\n", td);
1727                                 n++;
1728                                 witness_list_lock(&lle->ll_children[i],
1729                                     witness_output);
1730                                 
1731                         }
1732                 kassert_panic(
1733                     "Thread %p cannot exit while holding sleeplocks\n", td);
1734         }
1735         witness_lock_list_free(lle);
1736 }
1737
1738 /*
1739  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1740  * exempt Giant and sleepable locks from the checks as well.  If any
1741  * non-exempt locks are held, then a supplied message is printed to the
1742  * output channel along with a list of the offending locks.  If indicated in the
1743  * flags then a failure results in a panic as well.
1744  */
1745 int
1746 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1747 {
1748         struct lock_list_entry *lock_list, *lle;
1749         struct lock_instance *lock1;
1750         struct thread *td;
1751         va_list ap;
1752         int i, n;
1753
1754         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1755                 return (0);
1756         n = 0;
1757         td = curthread;
1758         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1759                 for (i = lle->ll_count - 1; i >= 0; i--) {
1760                         lock1 = &lle->ll_children[i];
1761                         if (lock1->li_lock == lock)
1762                                 continue;
1763                         if (flags & WARN_GIANTOK &&
1764                             lock1->li_lock == &Giant.lock_object)
1765                                 continue;
1766                         if (flags & WARN_SLEEPOK &&
1767                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1768                                 continue;
1769                         if (n == 0) {
1770                                 va_start(ap, fmt);
1771                                 vprintf(fmt, ap);
1772                                 va_end(ap);
1773                                 printf(" with the following %slocks held:\n",
1774                                     (flags & WARN_SLEEPOK) != 0 ?
1775                                     "non-sleepable " : "");
1776                         }
1777                         n++;
1778                         witness_list_lock(lock1, printf);
1779                 }
1780
1781         /*
1782          * Pin the thread in order to avoid problems with thread migration.
1783          * Once that all verifies are passed about spinlocks ownership,
1784          * the thread is in a safe path and it can be unpinned.
1785          */
1786         sched_pin();
1787         lock_list = PCPU_GET(spinlocks);
1788         if (lock_list != NULL && lock_list->ll_count != 0) {
1789                 sched_unpin();
1790
1791                 /*
1792                  * We should only have one spinlock and as long as
1793                  * the flags cannot match for this locks class,
1794                  * check if the first spinlock is the one curthread
1795                  * should hold.
1796                  */
1797                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1798                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1799                     lock1->li_lock == lock && n == 0)
1800                         return (0);
1801
1802                 va_start(ap, fmt);
1803                 vprintf(fmt, ap);
1804                 va_end(ap);
1805                 printf(" with the following %slocks held:\n",
1806                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1807                 n += witness_list_locks(&lock_list, printf);
1808         } else
1809                 sched_unpin();
1810         if (flags & WARN_PANIC && n)
1811                 kassert_panic("%s", __func__);
1812         else
1813                 witness_debugger(n, __func__);
1814         return (n);
1815 }
1816
1817 const char *
1818 witness_file(struct lock_object *lock)
1819 {
1820         struct witness *w;
1821
1822         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1823                 return ("?");
1824         w = lock->lo_witness;
1825         return (w->w_file);
1826 }
1827
1828 int
1829 witness_line(struct lock_object *lock)
1830 {
1831         struct witness *w;
1832
1833         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1834                 return (0);
1835         w = lock->lo_witness;
1836         return (w->w_line);
1837 }
1838
1839 static struct witness *
1840 enroll(const char *description, struct lock_class *lock_class)
1841 {
1842         struct witness *w;
1843
1844         MPASS(description != NULL);
1845
1846         if (witness_watch == -1 || panicstr != NULL)
1847                 return (NULL);
1848         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1849                 if (witness_skipspin)
1850                         return (NULL);
1851         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1852                 kassert_panic("lock class %s is not sleep or spin",
1853                     lock_class->lc_name);
1854                 return (NULL);
1855         }
1856
1857         mtx_lock_spin(&w_mtx);
1858         w = witness_hash_get(description);
1859         if (w)
1860                 goto found;
1861         if ((w = witness_get()) == NULL)
1862                 return (NULL);
1863         MPASS(strlen(description) < MAX_W_NAME);
1864         strcpy(w->w_name, description);
1865         w->w_class = lock_class;
1866         w->w_refcount = 1;
1867         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1868         if (lock_class->lc_flags & LC_SPINLOCK) {
1869                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1870                 w_spin_cnt++;
1871         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1872                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1873                 w_sleep_cnt++;
1874         }
1875
1876         /* Insert new witness into the hash */
1877         witness_hash_put(w);
1878         witness_increment_graph_generation();
1879         mtx_unlock_spin(&w_mtx);
1880         return (w);
1881 found:
1882         w->w_refcount++;
1883         if (w->w_refcount == 1)
1884                 w->w_class = lock_class;
1885         mtx_unlock_spin(&w_mtx);
1886         if (lock_class != w->w_class)
1887                 kassert_panic(
1888                     "lock (%s) %s does not match earlier (%s) lock",
1889                     description, lock_class->lc_name,
1890                     w->w_class->lc_name);
1891         return (w);
1892 }
1893
1894 static void
1895 depart(struct witness *w)
1896 {
1897
1898         MPASS(w->w_refcount == 0);
1899         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1900                 w_sleep_cnt--;
1901         } else {
1902                 w_spin_cnt--;
1903         }
1904         /*
1905          * Set file to NULL as it may point into a loadable module.
1906          */
1907         w->w_file = NULL;
1908         w->w_line = 0;
1909         witness_increment_graph_generation();
1910 }
1911
1912
1913 static void
1914 adopt(struct witness *parent, struct witness *child)
1915 {
1916         int pi, ci, i, j;
1917
1918         if (witness_cold == 0)
1919                 mtx_assert(&w_mtx, MA_OWNED);
1920
1921         /* If the relationship is already known, there's no work to be done. */
1922         if (isitmychild(parent, child))
1923                 return;
1924
1925         /* When the structure of the graph changes, bump up the generation. */
1926         witness_increment_graph_generation();
1927
1928         /*
1929          * The hard part ... create the direct relationship, then propagate all
1930          * indirect relationships.
1931          */
1932         pi = parent->w_index;
1933         ci = child->w_index;
1934         WITNESS_INDEX_ASSERT(pi);
1935         WITNESS_INDEX_ASSERT(ci);
1936         MPASS(pi != ci);
1937         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1938         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1939
1940         /*
1941          * If parent was not already an ancestor of child,
1942          * then we increment the descendant and ancestor counters.
1943          */
1944         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1945                 parent->w_num_descendants++;
1946                 child->w_num_ancestors++;
1947         }
1948
1949         /* 
1950          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1951          * an ancestor of 'pi' during this loop.
1952          */
1953         for (i = 1; i <= w_max_used_index; i++) {
1954                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1955                     (i != pi))
1956                         continue;
1957
1958                 /* Find each descendant of 'i' and mark it as a descendant. */
1959                 for (j = 1; j <= w_max_used_index; j++) {
1960
1961                         /* 
1962                          * Skip children that are already marked as
1963                          * descendants of 'i'.
1964                          */
1965                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1966                                 continue;
1967
1968                         /*
1969                          * We are only interested in descendants of 'ci'. Note
1970                          * that 'ci' itself is counted as a descendant of 'ci'.
1971                          */
1972                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1973                             (j != ci))
1974                                 continue;
1975                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1976                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1977                         w_data[i].w_num_descendants++;
1978                         w_data[j].w_num_ancestors++;
1979
1980                         /* 
1981                          * Make sure we aren't marking a node as both an
1982                          * ancestor and descendant. We should have caught 
1983                          * this as a lock order reversal earlier.
1984                          */
1985                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1986                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1987                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1988                                     "both ancestor and descendant\n",
1989                                     i, j, w_rmatrix[i][j]); 
1990                                 kdb_backtrace();
1991                                 printf("Witness disabled.\n");
1992                                 witness_watch = -1;
1993                         }
1994                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1995                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1996                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1997                                     "both ancestor and descendant\n",
1998                                     j, i, w_rmatrix[j][i]); 
1999                                 kdb_backtrace();
2000                                 printf("Witness disabled.\n");
2001                                 witness_watch = -1;
2002                         }
2003                 }
2004         }
2005 }
2006
2007 static void
2008 itismychild(struct witness *parent, struct witness *child)
2009 {
2010         int unlocked;
2011
2012         MPASS(child != NULL && parent != NULL);
2013         if (witness_cold == 0)
2014                 mtx_assert(&w_mtx, MA_OWNED);
2015
2016         if (!witness_lock_type_equal(parent, child)) {
2017                 if (witness_cold == 0) {
2018                         unlocked = 1;
2019                         mtx_unlock_spin(&w_mtx);
2020                 } else {
2021                         unlocked = 0;
2022                 }
2023                 kassert_panic(
2024                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2025                     "the same lock type", __func__, parent->w_name,
2026                     parent->w_class->lc_name, child->w_name,
2027                     child->w_class->lc_name);
2028                 if (unlocked)
2029                         mtx_lock_spin(&w_mtx);
2030         }
2031         adopt(parent, child);
2032 }
2033
2034 /*
2035  * Generic code for the isitmy*() functions. The rmask parameter is the
2036  * expected relationship of w1 to w2.
2037  */
2038 static int
2039 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2040 {
2041         unsigned char r1, r2;
2042         int i1, i2;
2043
2044         i1 = w1->w_index;
2045         i2 = w2->w_index;
2046         WITNESS_INDEX_ASSERT(i1);
2047         WITNESS_INDEX_ASSERT(i2);
2048         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2049         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2050
2051         /* The flags on one better be the inverse of the flags on the other */
2052         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2053             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2054                 /* Don't squawk if we're potentially racing with an update. */
2055                 if (!mtx_owned(&w_mtx))
2056                         return (0);
2057                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2058                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2059                     "w_rmatrix[%d][%d] == %hhx\n",
2060                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2061                     i2, i1, r2);
2062                 kdb_backtrace();
2063                 printf("Witness disabled.\n");
2064                 witness_watch = -1;
2065         }
2066         return (r1 & rmask);
2067 }
2068
2069 /*
2070  * Checks if @child is a direct child of @parent.
2071  */
2072 static int
2073 isitmychild(struct witness *parent, struct witness *child)
2074 {
2075
2076         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2077 }
2078
2079 /*
2080  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2081  */
2082 static int
2083 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2084 {
2085
2086         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2087             __func__));
2088 }
2089
2090 static int
2091 blessed(struct witness *w1, struct witness *w2)
2092 {
2093         int i;
2094         struct witness_blessed *b;
2095
2096         for (i = 0; i < nitems(blessed_list); i++) {
2097                 b = &blessed_list[i];
2098                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2099                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2100                                 return (1);
2101                         continue;
2102                 }
2103                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2104                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2105                                 return (1);
2106         }
2107         return (0);
2108 }
2109
2110 static struct witness *
2111 witness_get(void)
2112 {
2113         struct witness *w;
2114         int index;
2115
2116         if (witness_cold == 0)
2117                 mtx_assert(&w_mtx, MA_OWNED);
2118
2119         if (witness_watch == -1) {
2120                 mtx_unlock_spin(&w_mtx);
2121                 return (NULL);
2122         }
2123         if (STAILQ_EMPTY(&w_free)) {
2124                 witness_watch = -1;
2125                 mtx_unlock_spin(&w_mtx);
2126                 printf("WITNESS: unable to allocate a new witness object\n");
2127                 return (NULL);
2128         }
2129         w = STAILQ_FIRST(&w_free);
2130         STAILQ_REMOVE_HEAD(&w_free, w_list);
2131         w_free_cnt--;
2132         index = w->w_index;
2133         MPASS(index > 0 && index == w_max_used_index+1 &&
2134             index < witness_count);
2135         bzero(w, sizeof(*w));
2136         w->w_index = index;
2137         if (index > w_max_used_index)
2138                 w_max_used_index = index;
2139         return (w);
2140 }
2141
2142 static void
2143 witness_free(struct witness *w)
2144 {
2145
2146         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2147         w_free_cnt++;
2148 }
2149
2150 static struct lock_list_entry *
2151 witness_lock_list_get(void)
2152 {
2153         struct lock_list_entry *lle;
2154
2155         if (witness_watch == -1)
2156                 return (NULL);
2157         mtx_lock_spin(&w_mtx);
2158         lle = w_lock_list_free;
2159         if (lle == NULL) {
2160                 witness_watch = -1;
2161                 mtx_unlock_spin(&w_mtx);
2162                 printf("%s: witness exhausted\n", __func__);
2163                 return (NULL);
2164         }
2165         w_lock_list_free = lle->ll_next;
2166         mtx_unlock_spin(&w_mtx);
2167         bzero(lle, sizeof(*lle));
2168         return (lle);
2169 }
2170                 
2171 static void
2172 witness_lock_list_free(struct lock_list_entry *lle)
2173 {
2174
2175         mtx_lock_spin(&w_mtx);
2176         lle->ll_next = w_lock_list_free;
2177         w_lock_list_free = lle;
2178         mtx_unlock_spin(&w_mtx);
2179 }
2180
2181 static struct lock_instance *
2182 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2183 {
2184         struct lock_list_entry *lle;
2185         struct lock_instance *instance;
2186         int i;
2187
2188         for (lle = list; lle != NULL; lle = lle->ll_next)
2189                 for (i = lle->ll_count - 1; i >= 0; i--) {
2190                         instance = &lle->ll_children[i];
2191                         if (instance->li_lock == lock)
2192                                 return (instance);
2193                 }
2194         return (NULL);
2195 }
2196
2197 static void
2198 witness_list_lock(struct lock_instance *instance,
2199     int (*prnt)(const char *fmt, ...))
2200 {
2201         struct lock_object *lock;
2202
2203         lock = instance->li_lock;
2204         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2205             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2206         if (lock->lo_witness->w_name != lock->lo_name)
2207                 prnt(" (%s)", lock->lo_witness->w_name);
2208         prnt(" r = %d (%p) locked @ %s:%d\n",
2209             instance->li_flags & LI_RECURSEMASK, lock,
2210             fixup_filename(instance->li_file), instance->li_line);
2211 }
2212
2213 static int
2214 witness_output(const char *fmt, ...)
2215 {
2216         va_list ap;
2217         int ret;
2218
2219         va_start(ap, fmt);
2220         ret = witness_voutput(fmt, ap);
2221         va_end(ap);
2222         return (ret);
2223 }
2224
2225 static int
2226 witness_voutput(const char *fmt, va_list ap)
2227 {
2228         int ret;
2229
2230         ret = 0;
2231         switch (witness_channel) {
2232         case WITNESS_CONSOLE:
2233                 ret = vprintf(fmt, ap);
2234                 break;
2235         case WITNESS_LOG:
2236                 vlog(LOG_NOTICE, fmt, ap);
2237                 break;
2238         case WITNESS_NONE:
2239                 break;
2240         }
2241         return (ret);
2242 }
2243
2244 #ifdef DDB
2245 static int
2246 witness_thread_has_locks(struct thread *td)
2247 {
2248
2249         if (td->td_sleeplocks == NULL)
2250                 return (0);
2251         return (td->td_sleeplocks->ll_count != 0);
2252 }
2253
2254 static int
2255 witness_proc_has_locks(struct proc *p)
2256 {
2257         struct thread *td;
2258
2259         FOREACH_THREAD_IN_PROC(p, td) {
2260                 if (witness_thread_has_locks(td))
2261                         return (1);
2262         }
2263         return (0);
2264 }
2265 #endif
2266
2267 int
2268 witness_list_locks(struct lock_list_entry **lock_list,
2269     int (*prnt)(const char *fmt, ...))
2270 {
2271         struct lock_list_entry *lle;
2272         int i, nheld;
2273
2274         nheld = 0;
2275         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2276                 for (i = lle->ll_count - 1; i >= 0; i--) {
2277                         witness_list_lock(&lle->ll_children[i], prnt);
2278                         nheld++;
2279                 }
2280         return (nheld);
2281 }
2282
2283 /*
2284  * This is a bit risky at best.  We call this function when we have timed
2285  * out acquiring a spin lock, and we assume that the other CPU is stuck
2286  * with this lock held.  So, we go groveling around in the other CPU's
2287  * per-cpu data to try to find the lock instance for this spin lock to
2288  * see when it was last acquired.
2289  */
2290 void
2291 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2292     int (*prnt)(const char *fmt, ...))
2293 {
2294         struct lock_instance *instance;
2295         struct pcpu *pc;
2296
2297         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2298                 return;
2299         pc = pcpu_find(owner->td_oncpu);
2300         instance = find_instance(pc->pc_spinlocks, lock);
2301         if (instance != NULL)
2302                 witness_list_lock(instance, prnt);
2303 }
2304
2305 void
2306 witness_save(struct lock_object *lock, const char **filep, int *linep)
2307 {
2308         struct lock_list_entry *lock_list;
2309         struct lock_instance *instance;
2310         struct lock_class *class;
2311
2312         /*
2313          * This function is used independently in locking code to deal with
2314          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2315          * is gone.
2316          */
2317         if (SCHEDULER_STOPPED())
2318                 return;
2319         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2320         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2321                 return;
2322         class = LOCK_CLASS(lock);
2323         if (class->lc_flags & LC_SLEEPLOCK)
2324                 lock_list = curthread->td_sleeplocks;
2325         else {
2326                 if (witness_skipspin)
2327                         return;
2328                 lock_list = PCPU_GET(spinlocks);
2329         }
2330         instance = find_instance(lock_list, lock);
2331         if (instance == NULL) {
2332                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2333                     class->lc_name, lock->lo_name);
2334                 return;
2335         }
2336         *filep = instance->li_file;
2337         *linep = instance->li_line;
2338 }
2339
2340 void
2341 witness_restore(struct lock_object *lock, const char *file, int line)
2342 {
2343         struct lock_list_entry *lock_list;
2344         struct lock_instance *instance;
2345         struct lock_class *class;
2346
2347         /*
2348          * This function is used independently in locking code to deal with
2349          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2350          * is gone.
2351          */
2352         if (SCHEDULER_STOPPED())
2353                 return;
2354         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2355         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2356                 return;
2357         class = LOCK_CLASS(lock);
2358         if (class->lc_flags & LC_SLEEPLOCK)
2359                 lock_list = curthread->td_sleeplocks;
2360         else {
2361                 if (witness_skipspin)
2362                         return;
2363                 lock_list = PCPU_GET(spinlocks);
2364         }
2365         instance = find_instance(lock_list, lock);
2366         if (instance == NULL)
2367                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2368                     class->lc_name, lock->lo_name);
2369         lock->lo_witness->w_file = file;
2370         lock->lo_witness->w_line = line;
2371         if (instance == NULL)
2372                 return;
2373         instance->li_file = file;
2374         instance->li_line = line;
2375 }
2376
2377 void
2378 witness_assert(const struct lock_object *lock, int flags, const char *file,
2379     int line)
2380 {
2381 #ifdef INVARIANT_SUPPORT
2382         struct lock_instance *instance;
2383         struct lock_class *class;
2384
2385         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2386                 return;
2387         class = LOCK_CLASS(lock);
2388         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2389                 instance = find_instance(curthread->td_sleeplocks, lock);
2390         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2391                 instance = find_instance(PCPU_GET(spinlocks), lock);
2392         else {
2393                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2394                     class->lc_name, lock->lo_name);
2395                 return;
2396         }
2397         switch (flags) {
2398         case LA_UNLOCKED:
2399                 if (instance != NULL)
2400                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2401                             class->lc_name, lock->lo_name,
2402                             fixup_filename(file), line);
2403                 break;
2404         case LA_LOCKED:
2405         case LA_LOCKED | LA_RECURSED:
2406         case LA_LOCKED | LA_NOTRECURSED:
2407         case LA_SLOCKED:
2408         case LA_SLOCKED | LA_RECURSED:
2409         case LA_SLOCKED | LA_NOTRECURSED:
2410         case LA_XLOCKED:
2411         case LA_XLOCKED | LA_RECURSED:
2412         case LA_XLOCKED | LA_NOTRECURSED:
2413                 if (instance == NULL) {
2414                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2415                             class->lc_name, lock->lo_name,
2416                             fixup_filename(file), line);
2417                         break;
2418                 }
2419                 if ((flags & LA_XLOCKED) != 0 &&
2420                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2421                         kassert_panic(
2422                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2423                             class->lc_name, lock->lo_name,
2424                             fixup_filename(file), line);
2425                 if ((flags & LA_SLOCKED) != 0 &&
2426                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2427                         kassert_panic(
2428                             "Lock (%s) %s exclusively locked @ %s:%d.",
2429                             class->lc_name, lock->lo_name,
2430                             fixup_filename(file), line);
2431                 if ((flags & LA_RECURSED) != 0 &&
2432                     (instance->li_flags & LI_RECURSEMASK) == 0)
2433                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2434                             class->lc_name, lock->lo_name,
2435                             fixup_filename(file), line);
2436                 if ((flags & LA_NOTRECURSED) != 0 &&
2437                     (instance->li_flags & LI_RECURSEMASK) != 0)
2438                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2439                             class->lc_name, lock->lo_name,
2440                             fixup_filename(file), line);
2441                 break;
2442         default:
2443                 kassert_panic("Invalid lock assertion at %s:%d.",
2444                     fixup_filename(file), line);
2445
2446         }
2447 #endif  /* INVARIANT_SUPPORT */
2448 }
2449
2450 static void
2451 witness_setflag(struct lock_object *lock, int flag, int set)
2452 {
2453         struct lock_list_entry *lock_list;
2454         struct lock_instance *instance;
2455         struct lock_class *class;
2456
2457         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2458                 return;
2459         class = LOCK_CLASS(lock);
2460         if (class->lc_flags & LC_SLEEPLOCK)
2461                 lock_list = curthread->td_sleeplocks;
2462         else {
2463                 if (witness_skipspin)
2464                         return;
2465                 lock_list = PCPU_GET(spinlocks);
2466         }
2467         instance = find_instance(lock_list, lock);
2468         if (instance == NULL) {
2469                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2470                     class->lc_name, lock->lo_name);
2471                 return;
2472         }
2473
2474         if (set)
2475                 instance->li_flags |= flag;
2476         else
2477                 instance->li_flags &= ~flag;
2478 }
2479
2480 void
2481 witness_norelease(struct lock_object *lock)
2482 {
2483
2484         witness_setflag(lock, LI_NORELEASE, 1);
2485 }
2486
2487 void
2488 witness_releaseok(struct lock_object *lock)
2489 {
2490
2491         witness_setflag(lock, LI_NORELEASE, 0);
2492 }
2493
2494 #ifdef DDB
2495 static void
2496 witness_ddb_list(struct thread *td)
2497 {
2498
2499         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2500         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2501
2502         if (witness_watch < 1)
2503                 return;
2504
2505         witness_list_locks(&td->td_sleeplocks, db_printf);
2506
2507         /*
2508          * We only handle spinlocks if td == curthread.  This is somewhat broken
2509          * if td is currently executing on some other CPU and holds spin locks
2510          * as we won't display those locks.  If we had a MI way of getting
2511          * the per-cpu data for a given cpu then we could use
2512          * td->td_oncpu to get the list of spinlocks for this thread
2513          * and "fix" this.
2514          *
2515          * That still wouldn't really fix this unless we locked the scheduler
2516          * lock or stopped the other CPU to make sure it wasn't changing the
2517          * list out from under us.  It is probably best to just not try to
2518          * handle threads on other CPU's for now.
2519          */
2520         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2521                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2522 }
2523
2524 DB_SHOW_COMMAND(locks, db_witness_list)
2525 {
2526         struct thread *td;
2527
2528         if (have_addr)
2529                 td = db_lookup_thread(addr, true);
2530         else
2531                 td = kdb_thread;
2532         witness_ddb_list(td);
2533 }
2534
2535 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2536 {
2537         struct thread *td;
2538         struct proc *p;
2539
2540         /*
2541          * It would be nice to list only threads and processes that actually
2542          * held sleep locks, but that information is currently not exported
2543          * by WITNESS.
2544          */
2545         FOREACH_PROC_IN_SYSTEM(p) {
2546                 if (!witness_proc_has_locks(p))
2547                         continue;
2548                 FOREACH_THREAD_IN_PROC(p, td) {
2549                         if (!witness_thread_has_locks(td))
2550                                 continue;
2551                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2552                             p->p_comm, td, td->td_tid);
2553                         witness_ddb_list(td);
2554                         if (db_pager_quit)
2555                                 return;
2556                 }
2557         }
2558 }
2559 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2560
2561 DB_SHOW_COMMAND(witness, db_witness_display)
2562 {
2563
2564         witness_ddb_display(db_printf);
2565 }
2566 #endif
2567
2568 static void
2569 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2570 {
2571         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2572         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2573         int generation, i, j;
2574
2575         tmp_data1 = NULL;
2576         tmp_data2 = NULL;
2577         tmp_w1 = NULL;
2578         tmp_w2 = NULL;
2579
2580         /* Allocate and init temporary storage space. */
2581         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2582         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2583         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2584             M_WAITOK | M_ZERO);
2585         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2586             M_WAITOK | M_ZERO);
2587         stack_zero(&tmp_data1->wlod_stack);
2588         stack_zero(&tmp_data2->wlod_stack);
2589
2590 restart:
2591         mtx_lock_spin(&w_mtx);
2592         generation = w_generation;
2593         mtx_unlock_spin(&w_mtx);
2594         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2595             w_lohash.wloh_count);
2596         for (i = 1; i < w_max_used_index; i++) {
2597                 mtx_lock_spin(&w_mtx);
2598                 if (generation != w_generation) {
2599                         mtx_unlock_spin(&w_mtx);
2600
2601                         /* The graph has changed, try again. */
2602                         *oldidx = 0;
2603                         sbuf_clear(sb);
2604                         goto restart;
2605                 }
2606
2607                 w1 = &w_data[i];
2608                 if (w1->w_reversed == 0) {
2609                         mtx_unlock_spin(&w_mtx);
2610                         continue;
2611                 }
2612
2613                 /* Copy w1 locally so we can release the spin lock. */
2614                 *tmp_w1 = *w1;
2615                 mtx_unlock_spin(&w_mtx);
2616
2617                 if (tmp_w1->w_reversed == 0)
2618                         continue;
2619                 for (j = 1; j < w_max_used_index; j++) {
2620                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2621                                 continue;
2622
2623                         mtx_lock_spin(&w_mtx);
2624                         if (generation != w_generation) {
2625                                 mtx_unlock_spin(&w_mtx);
2626
2627                                 /* The graph has changed, try again. */
2628                                 *oldidx = 0;
2629                                 sbuf_clear(sb);
2630                                 goto restart;
2631                         }
2632
2633                         w2 = &w_data[j];
2634                         data1 = witness_lock_order_get(w1, w2);
2635                         data2 = witness_lock_order_get(w2, w1);
2636
2637                         /*
2638                          * Copy information locally so we can release the
2639                          * spin lock.
2640                          */
2641                         *tmp_w2 = *w2;
2642
2643                         if (data1) {
2644                                 stack_zero(&tmp_data1->wlod_stack);
2645                                 stack_copy(&data1->wlod_stack,
2646                                     &tmp_data1->wlod_stack);
2647                         }
2648                         if (data2 && data2 != data1) {
2649                                 stack_zero(&tmp_data2->wlod_stack);
2650                                 stack_copy(&data2->wlod_stack,
2651                                     &tmp_data2->wlod_stack);
2652                         }
2653                         mtx_unlock_spin(&w_mtx);
2654
2655                         if (blessed(tmp_w1, tmp_w2))
2656                                 continue;
2657
2658                         sbuf_printf(sb,
2659             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2660                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2661                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2662                         if (data1) {
2663                                 sbuf_printf(sb,
2664                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2665                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2666                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2667                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2668                                 sbuf_printf(sb, "\n");
2669                         }
2670                         if (data2 && data2 != data1) {
2671                                 sbuf_printf(sb,
2672                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2673                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2674                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2675                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2676                                 sbuf_printf(sb, "\n");
2677                         }
2678                 }
2679         }
2680         mtx_lock_spin(&w_mtx);
2681         if (generation != w_generation) {
2682                 mtx_unlock_spin(&w_mtx);
2683
2684                 /*
2685                  * The graph changed while we were printing stack data,
2686                  * try again.
2687                  */
2688                 *oldidx = 0;
2689                 sbuf_clear(sb);
2690                 goto restart;
2691         }
2692         mtx_unlock_spin(&w_mtx);
2693
2694         /* Free temporary storage space. */
2695         free(tmp_data1, M_TEMP);
2696         free(tmp_data2, M_TEMP);
2697         free(tmp_w1, M_TEMP);
2698         free(tmp_w2, M_TEMP);
2699 }
2700
2701 static int
2702 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2703 {
2704         struct sbuf *sb;
2705         int error;
2706
2707         if (witness_watch < 1) {
2708                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2709                 return (error);
2710         }
2711         if (witness_cold) {
2712                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2713                 return (error);
2714         }
2715         error = 0;
2716         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2717         if (sb == NULL)
2718                 return (ENOMEM);
2719
2720         sbuf_print_witness_badstacks(sb, &req->oldidx);
2721
2722         sbuf_finish(sb);
2723         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2724         sbuf_delete(sb);
2725
2726         return (error);
2727 }
2728
2729 #ifdef DDB
2730 static int
2731 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2732 {
2733
2734         return (db_printf("%.*s", len, data));
2735 }
2736
2737 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2738 {
2739         struct sbuf sb;
2740         char buffer[128];
2741         size_t dummy;
2742
2743         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2744         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2745         sbuf_print_witness_badstacks(&sb, &dummy);
2746         sbuf_finish(&sb);
2747 }
2748 #endif
2749
2750 static int
2751 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2752 {
2753         static const struct {
2754                 enum witness_channel channel;
2755                 const char *name;
2756         } channels[] = {
2757                 { WITNESS_CONSOLE, "console" },
2758                 { WITNESS_LOG, "log" },
2759                 { WITNESS_NONE, "none" },
2760         };
2761         char buf[16];
2762         u_int i;
2763         int error;
2764
2765         buf[0] = '\0';
2766         for (i = 0; i < nitems(channels); i++)
2767                 if (witness_channel == channels[i].channel) {
2768                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2769                         break;
2770                 }
2771
2772         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2773         if (error != 0 || req->newptr == NULL)
2774                 return (error);
2775
2776         error = EINVAL;
2777         for (i = 0; i < nitems(channels); i++)
2778                 if (strcmp(channels[i].name, buf) == 0) {
2779                         witness_channel = channels[i].channel;
2780                         error = 0;
2781                         break;
2782                 }
2783         return (error);
2784 }
2785
2786 static int
2787 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2788 {
2789         struct witness *w;
2790         struct sbuf *sb;
2791         int error;
2792
2793 #ifdef __i386__
2794         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2795         return (error);
2796 #endif
2797
2798         if (witness_watch < 1) {
2799                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2800                 return (error);
2801         }
2802         if (witness_cold) {
2803                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2804                 return (error);
2805         }
2806         error = 0;
2807
2808         error = sysctl_wire_old_buffer(req, 0);
2809         if (error != 0)
2810                 return (error);
2811         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2812         if (sb == NULL)
2813                 return (ENOMEM);
2814         sbuf_printf(sb, "\n");
2815
2816         mtx_lock_spin(&w_mtx);
2817         STAILQ_FOREACH(w, &w_all, w_list)
2818                 w->w_displayed = 0;
2819         STAILQ_FOREACH(w, &w_all, w_list)
2820                 witness_add_fullgraph(sb, w);
2821         mtx_unlock_spin(&w_mtx);
2822
2823         /*
2824          * Close the sbuf and return to userland.
2825          */
2826         error = sbuf_finish(sb);
2827         sbuf_delete(sb);
2828
2829         return (error);
2830 }
2831
2832 static int
2833 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2834 {
2835         int error, value;
2836
2837         value = witness_watch;
2838         error = sysctl_handle_int(oidp, &value, 0, req);
2839         if (error != 0 || req->newptr == NULL)
2840                 return (error);
2841         if (value > 1 || value < -1 ||
2842             (witness_watch == -1 && value != witness_watch))
2843                 return (EINVAL);
2844         witness_watch = value;
2845         return (0);
2846 }
2847
2848 static void
2849 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2850 {
2851         int i;
2852
2853         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2854                 return;
2855         w->w_displayed = 1;
2856
2857         WITNESS_INDEX_ASSERT(w->w_index);
2858         for (i = 1; i <= w_max_used_index; i++) {
2859                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2860                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2861                             w_data[i].w_name);
2862                         witness_add_fullgraph(sb, &w_data[i]);
2863                 }
2864         }
2865 }
2866
2867 /*
2868  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2869  * interprets the key as a string and reads until the null
2870  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2871  * hash value computed from the key.
2872  */
2873 static uint32_t
2874 witness_hash_djb2(const uint8_t *key, uint32_t size)
2875 {
2876         unsigned int hash = 5381;
2877         int i;
2878
2879         /* hash = hash * 33 + key[i] */
2880         if (size)
2881                 for (i = 0; i < size; i++)
2882                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2883         else
2884                 for (i = 0; key[i] != 0; i++)
2885                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2886
2887         return (hash);
2888 }
2889
2890
2891 /*
2892  * Initializes the two witness hash tables. Called exactly once from
2893  * witness_initialize().
2894  */
2895 static void
2896 witness_init_hash_tables(void)
2897 {
2898         int i;
2899
2900         MPASS(witness_cold);
2901
2902         /* Initialize the hash tables. */
2903         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2904                 w_hash.wh_array[i] = NULL;
2905
2906         w_hash.wh_size = WITNESS_HASH_SIZE;
2907         w_hash.wh_count = 0;
2908
2909         /* Initialize the lock order data hash. */
2910         w_lofree = NULL;
2911         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2912                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2913                 w_lodata[i].wlod_next = w_lofree;
2914                 w_lofree = &w_lodata[i];
2915         }
2916         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2917         w_lohash.wloh_count = 0;
2918         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2919                 w_lohash.wloh_array[i] = NULL;
2920 }
2921
2922 static struct witness *
2923 witness_hash_get(const char *key)
2924 {
2925         struct witness *w;
2926         uint32_t hash;
2927         
2928         MPASS(key != NULL);
2929         if (witness_cold == 0)
2930                 mtx_assert(&w_mtx, MA_OWNED);
2931         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2932         w = w_hash.wh_array[hash];
2933         while (w != NULL) {
2934                 if (strcmp(w->w_name, key) == 0)
2935                         goto out;
2936                 w = w->w_hash_next;
2937         }
2938
2939 out:
2940         return (w);
2941 }
2942
2943 static void
2944 witness_hash_put(struct witness *w)
2945 {
2946         uint32_t hash;
2947
2948         MPASS(w != NULL);
2949         MPASS(w->w_name != NULL);
2950         if (witness_cold == 0)
2951                 mtx_assert(&w_mtx, MA_OWNED);
2952         KASSERT(witness_hash_get(w->w_name) == NULL,
2953             ("%s: trying to add a hash entry that already exists!", __func__));
2954         KASSERT(w->w_hash_next == NULL,
2955             ("%s: w->w_hash_next != NULL", __func__));
2956
2957         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2958         w->w_hash_next = w_hash.wh_array[hash];
2959         w_hash.wh_array[hash] = w;
2960         w_hash.wh_count++;
2961 }
2962
2963
2964 static struct witness_lock_order_data *
2965 witness_lock_order_get(struct witness *parent, struct witness *child)
2966 {
2967         struct witness_lock_order_data *data = NULL;
2968         struct witness_lock_order_key key;
2969         unsigned int hash;
2970
2971         MPASS(parent != NULL && child != NULL);
2972         key.from = parent->w_index;
2973         key.to = child->w_index;
2974         WITNESS_INDEX_ASSERT(key.from);
2975         WITNESS_INDEX_ASSERT(key.to);
2976         if ((w_rmatrix[parent->w_index][child->w_index]
2977             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2978                 goto out;
2979
2980         hash = witness_hash_djb2((const char*)&key,
2981             sizeof(key)) % w_lohash.wloh_size;
2982         data = w_lohash.wloh_array[hash];
2983         while (data != NULL) {
2984                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2985                         break;
2986                 data = data->wlod_next;
2987         }
2988
2989 out:
2990         return (data);
2991 }
2992
2993 /*
2994  * Verify that parent and child have a known relationship, are not the same,
2995  * and child is actually a child of parent.  This is done without w_mtx
2996  * to avoid contention in the common case.
2997  */
2998 static int
2999 witness_lock_order_check(struct witness *parent, struct witness *child)
3000 {
3001
3002         if (parent != child &&
3003             w_rmatrix[parent->w_index][child->w_index]
3004             & WITNESS_LOCK_ORDER_KNOWN &&
3005             isitmychild(parent, child))
3006                 return (1);
3007
3008         return (0);
3009 }
3010
3011 static int
3012 witness_lock_order_add(struct witness *parent, struct witness *child)
3013 {
3014         struct witness_lock_order_data *data = NULL;
3015         struct witness_lock_order_key key;
3016         unsigned int hash;
3017         
3018         MPASS(parent != NULL && child != NULL);
3019         key.from = parent->w_index;
3020         key.to = child->w_index;
3021         WITNESS_INDEX_ASSERT(key.from);
3022         WITNESS_INDEX_ASSERT(key.to);
3023         if (w_rmatrix[parent->w_index][child->w_index]
3024             & WITNESS_LOCK_ORDER_KNOWN)
3025                 return (1);
3026
3027         hash = witness_hash_djb2((const char*)&key,
3028             sizeof(key)) % w_lohash.wloh_size;
3029         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3030         data = w_lofree;
3031         if (data == NULL)
3032                 return (0);
3033         w_lofree = data->wlod_next;
3034         data->wlod_next = w_lohash.wloh_array[hash];
3035         data->wlod_key = key;
3036         w_lohash.wloh_array[hash] = data;
3037         w_lohash.wloh_count++;
3038         stack_zero(&data->wlod_stack);
3039         stack_save(&data->wlod_stack);
3040         return (1);
3041 }
3042
3043 /* Call this whenever the structure of the witness graph changes. */
3044 static void
3045 witness_increment_graph_generation(void)
3046 {
3047
3048         if (witness_cold == 0)
3049                 mtx_assert(&w_mtx, MA_OWNED);
3050         w_generation++;
3051 }
3052
3053 static int
3054 witness_output_drain(void *arg __unused, const char *data, int len)
3055 {
3056
3057         witness_output("%.*s", len, data);
3058         return (len);
3059 }
3060
3061 static void
3062 witness_debugger(int cond, const char *msg)
3063 {
3064         char buf[32];
3065         struct sbuf sb;
3066         struct stack st;
3067
3068         if (!cond)
3069                 return;
3070
3071         if (witness_trace) {
3072                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3073                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3074
3075                 stack_zero(&st);
3076                 stack_save(&st);
3077                 witness_output("stack backtrace:\n");
3078                 stack_sbuf_print_ddb(&sb, &st);
3079
3080                 sbuf_finish(&sb);
3081         }
3082
3083 #ifdef KDB
3084         if (witness_kdb)
3085                 kdb_enter(KDB_WHY_WITNESS, msg);
3086 #endif
3087 }