]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
- Add a new KTR_SUBSYS in place of KTR_SPARE1 to serve as a subsystem
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31
32 /*
33  * Implementation of the `witness' lock verifier.  Originally implemented for
34  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35  * classes in FreeBSD.
36  */
37
38 /*
39  *      Main Entry: witness
40  *      Pronunciation: 'wit-n&s
41  *      Function: noun
42  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
43  *          testimony, witness, from 2wit
44  *      Date: before 12th century
45  *      1 : attestation of a fact or event : TESTIMONY
46  *      2 : one that gives evidence; specifically : one who testifies in
47  *          a cause or before a judicial tribunal
48  *      3 : one asked to be present at a transaction so as to be able to
49  *          testify to its having taken place
50  *      4 : one who has personal knowledge of something
51  *      5 a : something serving as evidence or proof : SIGN
52  *        b : public affirmation by word or example of usually
53  *            religious faith or conviction <the heroic witness to divine
54  *            life -- Pilot>
55  *      6 capitalized : a member of the Jehovah's Witnesses 
56  */
57
58 /*
59  * Special rules concerning Giant and lock orders:
60  *
61  * 1) Giant must be acquired before any other mutexes.  Stated another way,
62  *    no other mutex may be held when Giant is acquired.
63  *
64  * 2) Giant must be released when blocking on a sleepable lock.
65  *
66  * This rule is less obvious, but is a result of Giant providing the same
67  * semantics as spl().  Basically, when a thread sleeps, it must release
68  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69  * 2).
70  *
71  * 3) Giant may be acquired before or after sleepable locks.
72  *
73  * This rule is also not quite as obvious.  Giant may be acquired after
74  * a sleepable lock because it is a non-sleepable lock and non-sleepable
75  * locks may always be acquired while holding a sleepable lock.  The second
76  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80  * execute.  Thus, acquiring Giant both before and after a sleepable lock
81  * will not result in a lock order reversal.
82  */
83
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86
87 #include "opt_ddb.h"
88 #include "opt_witness.h"
89
90 #include <sys/param.h>
91 #include <sys/bus.h>
92 #include <sys/kdb.h>
93 #include <sys/kernel.h>
94 #include <sys/ktr.h>
95 #include <sys/lock.h>
96 #include <sys/malloc.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sysctl.h>
100 #include <sys/systm.h>
101
102 #include <ddb/ddb.h>
103
104 #include <machine/stdarg.h>
105
106 #if 0
107 #define KTR_WITNESS     KTR_SUBSYS
108 #else
109 #define KTR_WITNESS     0
110 #endif
111
112 /* Easier to stay with the old names. */
113 #define lo_list         lo_witness_data.lod_list
114 #define lo_witness      lo_witness_data.lod_witness
115
116 /* Define this to check for blessed mutexes */
117 #undef BLESSING
118
119 #define WITNESS_COUNT 1024
120 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
121 /*
122  * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
123  * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
124  * probably be safe for the most part, but it's still a SWAG.
125  */
126 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
127
128 #define WITNESS_NCHILDREN 6
129
130 struct witness_child_list_entry;
131
132 struct witness {
133         const   char *w_name;
134         struct  lock_class *w_class;
135         STAILQ_ENTRY(witness) w_list;           /* List of all witnesses. */
136         STAILQ_ENTRY(witness) w_typelist;       /* Witnesses of a type. */
137         struct  witness_child_list_entry *w_children;   /* Great evilness... */
138         const   char *w_file;
139         int     w_line;
140         u_int   w_level;
141         u_int   w_refcount;
142         u_char  w_Giant_squawked:1;
143         u_char  w_other_squawked:1;
144         u_char  w_same_squawked:1;
145         u_char  w_displayed:1;
146 };
147
148 struct witness_child_list_entry {
149         struct  witness_child_list_entry *wcl_next;
150         struct  witness *wcl_children[WITNESS_NCHILDREN];
151         u_int   wcl_count;
152 };
153
154 STAILQ_HEAD(witness_list, witness);
155
156 #ifdef BLESSING
157 struct witness_blessed {
158         const   char *b_lock1;
159         const   char *b_lock2;
160 };
161 #endif
162
163 struct witness_order_list_entry {
164         const   char *w_name;
165         struct  lock_class *w_class;
166 };
167
168 #ifdef BLESSING
169 static int      blessed(struct witness *, struct witness *);
170 #endif
171 static int      depart(struct witness *w);
172 static struct   witness *enroll(const char *description,
173                                 struct lock_class *lock_class);
174 static int      insertchild(struct witness *parent, struct witness *child);
175 static int      isitmychild(struct witness *parent, struct witness *child);
176 static int      isitmydescendant(struct witness *parent, struct witness *child);
177 static int      itismychild(struct witness *parent, struct witness *child);
178 static void     removechild(struct witness *parent, struct witness *child);
179 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
180 static const char *fixup_filename(const char *file);
181 static struct   witness *witness_get(void);
182 static void     witness_free(struct witness *m);
183 static struct   witness_child_list_entry *witness_child_get(void);
184 static void     witness_child_free(struct witness_child_list_entry *wcl);
185 static struct   lock_list_entry *witness_lock_list_get(void);
186 static void     witness_lock_list_free(struct lock_list_entry *lle);
187 static struct   lock_instance *find_instance(struct lock_list_entry *lock_list,
188                                              struct lock_object *lock);
189 static void     witness_list_lock(struct lock_instance *instance);
190 #ifdef DDB
191 static void     witness_leveldescendents(struct witness *parent, int level);
192 static void     witness_levelall(void);
193 static void     witness_displaydescendants(void(*)(const char *fmt, ...),
194                                            struct witness *, int indent);
195 static void     witness_display_list(void(*prnt)(const char *fmt, ...),
196                                      struct witness_list *list);
197 static void     witness_display(void(*)(const char *fmt, ...));
198 static void     witness_list(struct thread *td);
199 #endif
200
201 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
202
203 /*
204  * If set to 0, witness is disabled.  If set to a non-zero value, witness
205  * performs full lock order checking for all locks.  At runtime, this
206  * value may be set to 0 to turn off witness.  witness is not allowed be
207  * turned on once it is turned off, however.
208  */
209 static int witness_watch = 1;
210 TUNABLE_INT("debug.witness.watch", &witness_watch);
211 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
212     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
213
214 #ifdef KDB
215 /*
216  * When KDB is enabled and witness_kdb is set to 1, it will cause the system
217  * to drop into kdebug() when:
218  *      - a lock hierarchy violation occurs
219  *      - locks are held when going to sleep.
220  */
221 #ifdef WITNESS_KDB
222 int     witness_kdb = 1;
223 #else
224 int     witness_kdb = 0;
225 #endif
226 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
227 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
228
229 /*
230  * When KDB is enabled and witness_trace is set to 1, it will cause the system
231  * to print a stack trace:
232  *      - a lock hierarchy violation occurs
233  *      - locks are held when going to sleep.
234  */
235 int     witness_trace = 1;
236 TUNABLE_INT("debug.witness.trace", &witness_trace);
237 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
238 #endif /* KDB */
239
240 #ifdef WITNESS_SKIPSPIN
241 int     witness_skipspin = 1;
242 #else
243 int     witness_skipspin = 0;
244 #endif
245 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
246 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
247     &witness_skipspin, 0, "");
248
249 static struct mtx w_mtx;
250 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
251 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
252 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
253 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
254 static struct witness_child_list_entry *w_child_free = NULL;
255 static struct lock_list_entry *w_lock_list_free = NULL;
256
257 static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
258 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
259 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
260 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
261     "");
262 SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
263     &w_child_free_cnt, 0, "");
264 SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
265     "");
266
267 static struct witness w_data[WITNESS_COUNT];
268 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
269 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
270
271 static struct witness_order_list_entry order_lists[] = {
272         /*
273          * sx locks
274          */
275         { "proctree", &lock_class_sx },
276         { "allproc", &lock_class_sx },
277         { NULL, NULL },
278         /*
279          * Various mutexes
280          */
281         { "Giant", &lock_class_mtx_sleep },
282         { "filedesc structure", &lock_class_mtx_sleep },
283         { "pipe mutex", &lock_class_mtx_sleep },
284         { "sigio lock", &lock_class_mtx_sleep },
285         { "process group", &lock_class_mtx_sleep },
286         { "process lock", &lock_class_mtx_sleep },
287         { "session", &lock_class_mtx_sleep },
288         { "uidinfo hash", &lock_class_mtx_sleep },
289         { "uidinfo struct", &lock_class_mtx_sleep },
290         { "allprison", &lock_class_mtx_sleep },
291         { NULL, NULL },
292         /*
293          * Sockets
294          */
295         { "filedesc structure", &lock_class_mtx_sleep },
296         { "accept", &lock_class_mtx_sleep },
297         { "so_snd", &lock_class_mtx_sleep },
298         { "so_rcv", &lock_class_mtx_sleep },
299         { "sellck", &lock_class_mtx_sleep },
300         { NULL, NULL },
301         /*
302          * Routing
303          */
304         { "so_rcv", &lock_class_mtx_sleep },
305         { "radix node head", &lock_class_mtx_sleep },
306         { "rtentry", &lock_class_mtx_sleep },
307         { "ifaddr", &lock_class_mtx_sleep },
308         { NULL, NULL },
309         /*
310          * Multicast - protocol locks before interface locks, after UDP locks.
311          */
312         { "udpinp", &lock_class_mtx_sleep },
313         { "in_multi_mtx", &lock_class_mtx_sleep },
314         { "igmp_mtx", &lock_class_mtx_sleep },
315         { "if_addr_mtx", &lock_class_mtx_sleep },
316         { NULL, NULL },
317         /*
318          * UNIX Domain Sockets
319          */
320         { "unp", &lock_class_mtx_sleep },
321         { "so_snd", &lock_class_mtx_sleep },
322         { NULL, NULL },
323         /*
324          * UDP/IP
325          */
326         { "udp", &lock_class_mtx_sleep },
327         { "udpinp", &lock_class_mtx_sleep },
328         { "so_snd", &lock_class_mtx_sleep },
329         { NULL, NULL },
330         /*
331          * TCP/IP
332          */
333         { "tcp", &lock_class_mtx_sleep },
334         { "tcpinp", &lock_class_mtx_sleep },
335         { "so_snd", &lock_class_mtx_sleep },
336         { NULL, NULL },
337         /*
338          * SLIP
339          */
340         { "slip_mtx", &lock_class_mtx_sleep },
341         { "slip sc_mtx", &lock_class_mtx_sleep },
342         { NULL, NULL },
343         /*
344          * netatalk
345          */
346         { "ddp_list_mtx", &lock_class_mtx_sleep },
347         { "ddp_mtx", &lock_class_mtx_sleep },
348         { NULL, NULL },
349         /*
350          * BPF
351          */
352         { "bpf global lock", &lock_class_mtx_sleep },
353         { "bpf interface lock", &lock_class_mtx_sleep },
354         { "bpf cdev lock", &lock_class_mtx_sleep },
355         { NULL, NULL },
356         /*
357          * NFS server
358          */
359         { "nfsd_mtx", &lock_class_mtx_sleep },
360         { "so_snd", &lock_class_mtx_sleep },
361         { NULL, NULL },
362         /*
363          * CDEV
364          */
365         { "system map", &lock_class_mtx_sleep },
366         { "vm page queue mutex", &lock_class_mtx_sleep },
367         { "vnode interlock", &lock_class_mtx_sleep },
368         { "cdev", &lock_class_mtx_sleep },
369         { NULL, NULL },
370         /*
371          * spin locks
372          */
373 #ifdef SMP
374         { "ap boot", &lock_class_mtx_spin },
375 #endif
376         { "rm.mutex_mtx", &lock_class_mtx_spin },
377         { "hptlock", &lock_class_mtx_spin },
378         { "sio", &lock_class_mtx_spin },
379 #ifdef __i386__
380         { "cy", &lock_class_mtx_spin },
381 #endif
382         { "uart_hwmtx", &lock_class_mtx_spin },
383         { "sabtty", &lock_class_mtx_spin },
384         { "zstty", &lock_class_mtx_spin },
385         { "ng_node", &lock_class_mtx_spin },
386         { "ng_worklist", &lock_class_mtx_spin },
387         { "taskqueue_fast", &lock_class_mtx_spin },
388         { "intr table", &lock_class_mtx_spin },
389         { "sleepq chain", &lock_class_mtx_spin },
390         { "sched lock", &lock_class_mtx_spin },
391         { "turnstile chain", &lock_class_mtx_spin },
392         { "td_contested", &lock_class_mtx_spin },
393         { "callout", &lock_class_mtx_spin },
394         { "entropy harvest mutex", &lock_class_mtx_spin },
395         /*
396          * leaf locks
397          */
398         { "allpmaps", &lock_class_mtx_spin },
399         { "vm page queue free mutex", &lock_class_mtx_spin },
400         { "icu", &lock_class_mtx_spin },
401 #ifdef SMP
402         { "smp rendezvous", &lock_class_mtx_spin },
403 #if defined(__i386__) || defined(__amd64__)
404         { "tlb", &lock_class_mtx_spin },
405 #endif
406 #ifdef __sparc64__
407         { "ipi", &lock_class_mtx_spin },
408         { "rtc_mtx", &lock_class_mtx_spin },
409 #endif
410 #endif
411         { "clk", &lock_class_mtx_spin },
412         { "mutex profiling lock", &lock_class_mtx_spin },
413         { "kse zombie lock", &lock_class_mtx_spin },
414         { "ALD Queue", &lock_class_mtx_spin },
415 #ifdef __ia64__
416         { "MCA spin lock", &lock_class_mtx_spin },
417 #endif
418 #if defined(__i386__) || defined(__amd64__)
419         { "pcicfg", &lock_class_mtx_spin },
420         { "NDIS thread lock", &lock_class_mtx_spin },
421 #endif
422         { "tw_osl_io_lock", &lock_class_mtx_spin },
423         { "tw_osl_q_lock", &lock_class_mtx_spin },
424         { "tw_cl_io_lock", &lock_class_mtx_spin },
425         { "tw_cl_intr_lock", &lock_class_mtx_spin },
426         { "tw_cl_gen_lock", &lock_class_mtx_spin },
427         { NULL, NULL },
428         { NULL, NULL }
429 };
430
431 #ifdef BLESSING
432 /*
433  * Pairs of locks which have been blessed
434  * Don't complain about order problems with blessed locks
435  */
436 static struct witness_blessed blessed_list[] = {
437 };
438 static int blessed_count =
439         sizeof(blessed_list) / sizeof(struct witness_blessed);
440 #endif
441
442 /*
443  * List of locks initialized prior to witness being initialized whose
444  * enrollment is currently deferred.
445  */
446 STAILQ_HEAD(, lock_object) pending_locks =
447     STAILQ_HEAD_INITIALIZER(pending_locks);
448
449 /*
450  * This global is set to 0 once it becomes safe to use the witness code.
451  */
452 static int witness_cold = 1;
453
454 /*
455  * This global is set to 1 once the static lock orders have been enrolled
456  * so that a warning can be issued for any spin locks enrolled later.
457  */
458 static int witness_spin_warn = 0;
459
460 /*
461  * The WITNESS-enabled diagnostic code.  Note that the witness code does
462  * assume that the early boot is single-threaded at least until after this
463  * routine is completed.
464  */
465 static void
466 witness_initialize(void *dummy __unused)
467 {
468         struct lock_object *lock;
469         struct witness_order_list_entry *order;
470         struct witness *w, *w1;
471         int i;
472
473         /*
474          * We have to release Giant before initializing its witness
475          * structure so that WITNESS doesn't get confused.
476          */
477         mtx_unlock(&Giant);
478         mtx_assert(&Giant, MA_NOTOWNED);
479
480         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
481         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
482             MTX_NOWITNESS);
483         for (i = 0; i < WITNESS_COUNT; i++)
484                 witness_free(&w_data[i]);
485         for (i = 0; i < WITNESS_CHILDCOUNT; i++)
486                 witness_child_free(&w_childdata[i]);
487         for (i = 0; i < LOCK_CHILDCOUNT; i++)
488                 witness_lock_list_free(&w_locklistdata[i]);
489
490         /* First add in all the specified order lists. */
491         for (order = order_lists; order->w_name != NULL; order++) {
492                 w = enroll(order->w_name, order->w_class);
493                 if (w == NULL)
494                         continue;
495                 w->w_file = "order list";
496                 for (order++; order->w_name != NULL; order++) {
497                         w1 = enroll(order->w_name, order->w_class);
498                         if (w1 == NULL)
499                                 continue;
500                         w1->w_file = "order list";
501                         if (!itismychild(w, w1))
502                                 panic("Not enough memory for static orders!");
503                         w = w1;
504                 }
505         }
506         witness_spin_warn = 1;
507
508         /* Iterate through all locks and add them to witness. */
509         while (!STAILQ_EMPTY(&pending_locks)) {
510                 lock = STAILQ_FIRST(&pending_locks);
511                 STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
512                 KASSERT(lock->lo_flags & LO_WITNESS,
513                     ("%s: lock %s is on pending list but not LO_WITNESS",
514                     __func__, lock->lo_name));
515                 lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
516         }
517
518         /* Mark the witness code as being ready for use. */
519         witness_cold = 0;
520
521         mtx_lock(&Giant);
522 }
523 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
524
525 static int
526 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
527 {
528         int error, value;
529
530         value = witness_watch;
531         error = sysctl_handle_int(oidp, &value, 0, req);
532         if (error != 0 || req->newptr == NULL)
533                 return (error);
534         error = suser(req->td);
535         if (error != 0)
536                 return (error);
537         if (value == witness_watch)
538                 return (0);
539         if (value != 0)
540                 return (EINVAL);
541         witness_watch = 0;
542         return (0);
543 }
544
545 void
546 witness_init(struct lock_object *lock)
547 {
548         struct lock_class *class;
549
550         /* Various sanity checks. */
551         class = LOCK_CLASS(lock);
552         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
553             (class->lc_flags & LC_RECURSABLE) == 0)
554                 panic("%s: lock (%s) %s can not be recursable", __func__,
555                     class->lc_name, lock->lo_name);
556         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
557             (class->lc_flags & LC_SLEEPABLE) == 0)
558                 panic("%s: lock (%s) %s can not be sleepable", __func__,
559                     class->lc_name, lock->lo_name);
560         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
561             (class->lc_flags & LC_UPGRADABLE) == 0)
562                 panic("%s: lock (%s) %s can not be upgradable", __func__,
563                     class->lc_name, lock->lo_name);
564
565         /*
566          * If we shouldn't watch this lock, then just clear lo_witness.
567          * Otherwise, if witness_cold is set, then it is too early to
568          * enroll this lock, so defer it to witness_initialize() by adding
569          * it to the pending_locks list.  If it is not too early, then enroll
570          * the lock now.
571          */
572         if (witness_watch == 0 || panicstr != NULL ||
573             (lock->lo_flags & LO_WITNESS) == 0)
574                 lock->lo_witness = NULL;
575         else if (witness_cold) {
576                 STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
577                 lock->lo_flags |= LO_ENROLLPEND;
578         } else
579                 lock->lo_witness = enroll(lock->lo_type, class);
580 }
581
582 void
583 witness_destroy(struct lock_object *lock)
584 {
585         struct lock_class *class;
586         struct witness *w;
587
588         class = LOCK_CLASS(lock);
589         if (witness_cold)
590                 panic("lock (%s) %s destroyed while witness_cold",
591                     class->lc_name, lock->lo_name);
592
593         /* XXX: need to verify that no one holds the lock */
594         if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
595             lock->lo_witness != NULL) {
596                 w = lock->lo_witness;
597                 mtx_lock_spin(&w_mtx);
598                 MPASS(w->w_refcount > 0);
599                 w->w_refcount--;
600
601                 /*
602                  * Lock is already released if we have an allocation failure
603                  * and depart() fails.
604                  */
605                 if (w->w_refcount != 0 || depart(w))
606                         mtx_unlock_spin(&w_mtx);
607         }
608
609         /*
610          * If this lock is destroyed before witness is up and running,
611          * remove it from the pending list.
612          */
613         if (lock->lo_flags & LO_ENROLLPEND) {
614                 STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
615                 lock->lo_flags &= ~LO_ENROLLPEND;
616         }
617 }
618
619 #ifdef DDB
620 static void
621 witness_levelall (void)
622 {
623         struct witness_list *list;
624         struct witness *w, *w1;
625
626         /*
627          * First clear all levels.
628          */
629         STAILQ_FOREACH(w, &w_all, w_list) {
630                 w->w_level = 0;
631         }
632
633         /*
634          * Look for locks with no parent and level all their descendants.
635          */
636         STAILQ_FOREACH(w, &w_all, w_list) {
637                 /*
638                  * This is just an optimization, technically we could get
639                  * away just walking the all list each time.
640                  */
641                 if (w->w_class->lc_flags & LC_SLEEPLOCK)
642                         list = &w_sleep;
643                 else
644                         list = &w_spin;
645                 STAILQ_FOREACH(w1, list, w_typelist) {
646                         if (isitmychild(w1, w))
647                                 goto skip;
648                 }
649                 witness_leveldescendents(w, 0);
650         skip:
651                 ;       /* silence GCC 3.x */
652         }
653 }
654
655 static void
656 witness_leveldescendents(struct witness *parent, int level)
657 {
658         struct witness_child_list_entry *wcl;
659         int i;
660
661         if (parent->w_level < level)
662                 parent->w_level = level;
663         level++;
664         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
665                 for (i = 0; i < wcl->wcl_count; i++)
666                         witness_leveldescendents(wcl->wcl_children[i], level);
667 }
668
669 static void
670 witness_displaydescendants(void(*prnt)(const char *fmt, ...),
671                            struct witness *parent, int indent)
672 {
673         struct witness_child_list_entry *wcl;
674         int i, level;
675
676         level = parent->w_level;
677         prnt("%-2d", level);
678         for (i = 0; i < indent; i++)
679                 prnt(" ");
680         if (parent->w_refcount > 0)
681                 prnt("%s", parent->w_name);
682         else
683                 prnt("(dead)");
684         if (parent->w_displayed) {
685                 prnt(" -- (already displayed)\n");
686                 return;
687         }
688         parent->w_displayed = 1;
689         if (parent->w_refcount > 0) {
690                 if (parent->w_file != NULL)
691                         prnt(" -- last acquired @ %s:%d", parent->w_file,
692                             parent->w_line);
693         }
694         prnt("\n");
695         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
696                 for (i = 0; i < wcl->wcl_count; i++)
697                             witness_displaydescendants(prnt,
698                                 wcl->wcl_children[i], indent + 1);
699 }
700
701 static void
702 witness_display_list(void(*prnt)(const char *fmt, ...),
703                      struct witness_list *list)
704 {
705         struct witness *w;
706
707         STAILQ_FOREACH(w, list, w_typelist) {
708                 if (w->w_file == NULL || w->w_level > 0)
709                         continue;
710                 /*
711                  * This lock has no anscestors, display its descendants. 
712                  */
713                 witness_displaydescendants(prnt, w, 0);
714         }
715 }
716         
717 static void
718 witness_display(void(*prnt)(const char *fmt, ...))
719 {
720         struct witness *w;
721
722         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
723         witness_levelall();
724
725         /* Clear all the displayed flags. */
726         STAILQ_FOREACH(w, &w_all, w_list) {
727                 w->w_displayed = 0;
728         }
729
730         /*
731          * First, handle sleep locks which have been acquired at least
732          * once.
733          */
734         prnt("Sleep locks:\n");
735         witness_display_list(prnt, &w_sleep);
736         
737         /*
738          * Now do spin locks which have been acquired at least once.
739          */
740         prnt("\nSpin locks:\n");
741         witness_display_list(prnt, &w_spin);
742         
743         /*
744          * Finally, any locks which have not been acquired yet.
745          */
746         prnt("\nLocks which were never acquired:\n");
747         STAILQ_FOREACH(w, &w_all, w_list) {
748                 if (w->w_file != NULL || w->w_refcount == 0)
749                         continue;
750                 prnt("%s\n", w->w_name);
751         }
752 }
753 #endif /* DDB */
754
755 /* Trim useless garbage from filenames. */
756 static const char *
757 fixup_filename(const char *file)
758 {
759
760         if (file == NULL)
761                 return (NULL);
762         while (strncmp(file, "../", 3) == 0)
763                 file += 3;
764         return (file);
765 }
766
767 int
768 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
769 {
770
771         if (witness_watch == 0 || panicstr != NULL)
772                 return (0);
773
774         /* Require locks that witness knows about. */
775         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
776             lock2->lo_witness == NULL)
777                 return (EINVAL);
778
779         MPASS(!mtx_owned(&w_mtx));
780         mtx_lock_spin(&w_mtx);
781
782         /*
783          * If we already have either an explicit or implied lock order that
784          * is the other way around, then return an error.
785          */
786         if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
787                 mtx_unlock_spin(&w_mtx);
788                 return (EDOOFUS);
789         }
790         
791         /* Try to add the new order. */
792         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
793             lock2->lo_type, lock1->lo_type);
794         if (!itismychild(lock1->lo_witness, lock2->lo_witness))
795                 return (ENOMEM);
796         mtx_unlock_spin(&w_mtx);
797         return (0);
798 }
799
800 void
801 witness_checkorder(struct lock_object *lock, int flags, const char *file,
802     int line)
803 {
804         struct lock_list_entry **lock_list, *lle;
805         struct lock_instance *lock1, *lock2;
806         struct lock_class *class;
807         struct witness *w, *w1;
808         struct thread *td;
809         int i, j;
810
811         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
812             panicstr != NULL)
813                 return;
814
815         /*
816          * Try locks do not block if they fail to acquire the lock, thus
817          * there is no danger of deadlocks or of switching while holding a
818          * spin lock if we acquire a lock via a try operation.  This
819          * function shouldn't even be called for try locks, so panic if
820          * that happens.
821          */
822         if (flags & LOP_TRYLOCK)
823                 panic("%s should not be called for try lock operations",
824                     __func__);
825
826         w = lock->lo_witness;
827         class = LOCK_CLASS(lock);
828         td = curthread;
829         file = fixup_filename(file);
830
831         if (class->lc_flags & LC_SLEEPLOCK) {
832                 /*
833                  * Since spin locks include a critical section, this check
834                  * implicitly enforces a lock order of all sleep locks before
835                  * all spin locks.
836                  */
837                 if (td->td_critnest != 0 && !kdb_active)
838                         panic("blockable sleep lock (%s) %s @ %s:%d",
839                             class->lc_name, lock->lo_name, file, line);
840
841                 /*
842                  * If this is the first lock acquired then just return as
843                  * no order checking is needed.
844                  */
845                 if (td->td_sleeplocks == NULL)
846                         return;
847                 lock_list = &td->td_sleeplocks;
848         } else {
849                 /*
850                  * If this is the first lock, just return as no order
851                  * checking is needed.  We check this in both if clauses
852                  * here as unifying the check would require us to use a
853                  * critical section to ensure we don't migrate while doing
854                  * the check.  Note that if this is not the first lock, we
855                  * are already in a critical section and are safe for the
856                  * rest of the check.
857                  */
858                 if (PCPU_GET(spinlocks) == NULL)
859                         return;
860                 lock_list = PCPU_PTR(spinlocks);
861         }
862
863         /*
864          * Check to see if we are recursing on a lock we already own.  If
865          * so, make sure that we don't mismatch exclusive and shared lock
866          * acquires.
867          */
868         lock1 = find_instance(*lock_list, lock);
869         if (lock1 != NULL) {
870                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
871                     (flags & LOP_EXCLUSIVE) == 0) {
872                         printf("shared lock of (%s) %s @ %s:%d\n",
873                             class->lc_name, lock->lo_name, file, line);
874                         printf("while exclusively locked from %s:%d\n",
875                             lock1->li_file, lock1->li_line);
876                         panic("share->excl");
877                 }
878                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
879                     (flags & LOP_EXCLUSIVE) != 0) {
880                         printf("exclusive lock of (%s) %s @ %s:%d\n",
881                             class->lc_name, lock->lo_name, file, line);
882                         printf("while share locked from %s:%d\n",
883                             lock1->li_file, lock1->li_line);
884                         panic("excl->share");
885                 }
886                 return;
887         }
888
889         /*
890          * Try locks do not block if they fail to acquire the lock, thus
891          * there is no danger of deadlocks or of switching while holding a
892          * spin lock if we acquire a lock via a try operation.
893          */
894         if (flags & LOP_TRYLOCK)
895                 return;
896
897         /*
898          * Check for duplicate locks of the same type.  Note that we only
899          * have to check for this on the last lock we just acquired.  Any
900          * other cases will be caught as lock order violations.
901          */
902         lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
903         w1 = lock1->li_lock->lo_witness;
904         if (w1 == w) {
905                 if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
906                     (flags & LOP_DUPOK))
907                         return;
908                 w->w_same_squawked = 1;
909                 printf("acquiring duplicate lock of same type: \"%s\"\n", 
910                         lock->lo_type);
911                 printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
912                     lock1->li_file, lock1->li_line);
913                 printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
914 #ifdef KDB
915                 goto debugger;
916 #else
917                 return;
918 #endif
919         }
920         MPASS(!mtx_owned(&w_mtx));
921         mtx_lock_spin(&w_mtx);
922         /*
923          * If we know that the the lock we are acquiring comes after
924          * the lock we most recently acquired in the lock order tree,
925          * then there is no need for any further checks.
926          */
927         if (isitmychild(w1, w)) {
928                 mtx_unlock_spin(&w_mtx);
929                 return;
930         }
931         for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
932                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
933
934                         MPASS(j < WITNESS_COUNT);
935                         lock1 = &lle->ll_children[i];
936                         w1 = lock1->li_lock->lo_witness;
937
938                         /*
939                          * If this lock doesn't undergo witness checking,
940                          * then skip it.
941                          */
942                         if (w1 == NULL) {
943                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
944                                     ("lock missing witness structure"));
945                                 continue;
946                         }
947                         /*
948                          * If we are locking Giant and this is a sleepable
949                          * lock, then skip it.
950                          */
951                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
952                             lock == &Giant.mtx_object)
953                                 continue;
954                         /*
955                          * If we are locking a sleepable lock and this lock
956                          * is Giant, then skip it.
957                          */
958                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
959                             lock1->li_lock == &Giant.mtx_object)
960                                 continue;
961                         /*
962                          * If we are locking a sleepable lock and this lock
963                          * isn't sleepable, we want to treat it as a lock
964                          * order violation to enfore a general lock order of
965                          * sleepable locks before non-sleepable locks.
966                          */
967                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
968                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
969                                 goto reversal;
970                         /*
971                          * If we are locking Giant and this is a non-sleepable
972                          * lock, then treat it as a reversal.
973                          */
974                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
975                             lock == &Giant.mtx_object)
976                                 goto reversal;
977                         /*
978                          * Check the lock order hierarchy for a reveresal.
979                          */
980                         if (!isitmydescendant(w, w1))
981                                 continue;
982                 reversal:
983                         /*
984                          * We have a lock order violation, check to see if it
985                          * is allowed or has already been yelled about.
986                          */
987                         mtx_unlock_spin(&w_mtx);
988 #ifdef BLESSING
989                         /*
990                          * If the lock order is blessed, just bail.  We don't
991                          * look for other lock order violations though, which
992                          * may be a bug.
993                          */
994                         if (blessed(w, w1))
995                                 return;
996 #endif
997                         if (lock1->li_lock == &Giant.mtx_object) {
998                                 if (w1->w_Giant_squawked)
999                                         return;
1000                                 else
1001                                         w1->w_Giant_squawked = 1;
1002                         } else {
1003                                 if (w1->w_other_squawked)
1004                                         return;
1005                                 else
1006                                         w1->w_other_squawked = 1;
1007                         }
1008                         /*
1009                          * Ok, yell about it.
1010                          */
1011                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1012                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1013                                 printf(
1014                 "lock order reversal: (sleepable after non-sleepable)\n");
1015                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1016                             && lock == &Giant.mtx_object)
1017                                 printf(
1018                 "lock order reversal: (Giant after non-sleepable)\n");
1019                         else
1020                                 printf("lock order reversal:\n");
1021                         /*
1022                          * Try to locate an earlier lock with
1023                          * witness w in our list.
1024                          */
1025                         do {
1026                                 lock2 = &lle->ll_children[i];
1027                                 MPASS(lock2->li_lock != NULL);
1028                                 if (lock2->li_lock->lo_witness == w)
1029                                         break;
1030                                 if (i == 0 && lle->ll_next != NULL) {
1031                                         lle = lle->ll_next;
1032                                         i = lle->ll_count - 1;
1033                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1034                                 } else
1035                                         i--;
1036                         } while (i >= 0);
1037                         if (i < 0) {
1038                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1039                                     lock1->li_lock, lock1->li_lock->lo_name,
1040                                     lock1->li_lock->lo_type, lock1->li_file,
1041                                     lock1->li_line);
1042                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1043                                     lock->lo_name, lock->lo_type, file, line);
1044                         } else {
1045                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1046                                     lock2->li_lock, lock2->li_lock->lo_name,
1047                                     lock2->li_lock->lo_type, lock2->li_file,
1048                                     lock2->li_line);
1049                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1050                                     lock1->li_lock, lock1->li_lock->lo_name,
1051                                     lock1->li_lock->lo_type, lock1->li_file,
1052                                     lock1->li_line);
1053                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1054                                     lock->lo_name, lock->lo_type, file, line);
1055                         }
1056 #ifdef KDB
1057                         goto debugger;
1058 #else
1059                         return;
1060 #endif
1061                 }
1062         }
1063         lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
1064         /*
1065          * If requested, build a new lock order.  However, don't build a new
1066          * relationship between a sleepable lock and Giant if it is in the
1067          * wrong direction.  The correct lock order is that sleepable locks
1068          * always come before Giant.
1069          */
1070         if (flags & LOP_NEWORDER &&
1071             !(lock1->li_lock == &Giant.mtx_object &&
1072             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1073                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1074                     lock->lo_type, lock1->li_lock->lo_type);
1075                 if (!itismychild(lock1->li_lock->lo_witness, w))
1076                         /* Witness is dead. */
1077                         return;
1078         } 
1079         mtx_unlock_spin(&w_mtx);
1080         return;
1081
1082 #ifdef KDB
1083 debugger:
1084         if (witness_trace)
1085                 kdb_backtrace();
1086         if (witness_kdb)
1087                 kdb_enter(__func__);
1088 #endif
1089 }
1090
1091 void
1092 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1093 {
1094         struct lock_list_entry **lock_list, *lle;
1095         struct lock_instance *instance;
1096         struct witness *w;
1097         struct thread *td;
1098
1099         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1100             panicstr != NULL)
1101                 return;
1102         w = lock->lo_witness;
1103         td = curthread;
1104         file = fixup_filename(file);
1105
1106         /* Determine lock list for this lock. */
1107         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1108                 lock_list = &td->td_sleeplocks;
1109         else
1110                 lock_list = PCPU_PTR(spinlocks);
1111
1112         /* Check to see if we are recursing on a lock we already own. */
1113         instance = find_instance(*lock_list, lock);
1114         if (instance != NULL) {
1115                 instance->li_flags++;
1116                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1117                     td->td_proc->p_pid, lock->lo_name,
1118                     instance->li_flags & LI_RECURSEMASK);
1119                 instance->li_file = file;
1120                 instance->li_line = line;
1121                 return;
1122         }
1123
1124         /* Update per-witness last file and line acquire. */
1125         w->w_file = file;
1126         w->w_line = line;
1127
1128         /* Find the next open lock instance in the list and fill it. */
1129         lle = *lock_list;
1130         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1131                 lle = witness_lock_list_get();
1132                 if (lle == NULL)
1133                         return;
1134                 lle->ll_next = *lock_list;
1135                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1136                     td->td_proc->p_pid, lle);
1137                 *lock_list = lle;
1138         }
1139         instance = &lle->ll_children[lle->ll_count++];
1140         instance->li_lock = lock;
1141         instance->li_line = line;
1142         instance->li_file = file;
1143         if ((flags & LOP_EXCLUSIVE) != 0)
1144                 instance->li_flags = LI_EXCLUSIVE;
1145         else
1146                 instance->li_flags = 0;
1147         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1148             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1149 }
1150
1151 void
1152 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1153 {
1154         struct lock_instance *instance;
1155         struct lock_class *class;
1156
1157         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1158         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1159                 return;
1160         class = LOCK_CLASS(lock);
1161         file = fixup_filename(file);
1162         if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1163                 panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1164                     class->lc_name, lock->lo_name, file, line);
1165         if ((flags & LOP_TRYLOCK) == 0)
1166                 panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1167                     lock->lo_name, file, line);
1168         if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1169                 panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1170                     class->lc_name, lock->lo_name, file, line);
1171         instance = find_instance(curthread->td_sleeplocks, lock);
1172         if (instance == NULL)
1173                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1174                     class->lc_name, lock->lo_name, file, line);
1175         if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1176                 panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1177                     class->lc_name, lock->lo_name, file, line);
1178         if ((instance->li_flags & LI_RECURSEMASK) != 0)
1179                 panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1180                     class->lc_name, lock->lo_name,
1181                     instance->li_flags & LI_RECURSEMASK, file, line);
1182         instance->li_flags |= LI_EXCLUSIVE;
1183 }
1184
1185 void
1186 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1187     int line)
1188 {
1189         struct lock_instance *instance;
1190         struct lock_class *class;
1191
1192         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1193         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1194                 return;
1195         class = LOCK_CLASS(lock);
1196         file = fixup_filename(file);
1197         if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1198                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1199                     class->lc_name, lock->lo_name, file, line);
1200         if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1201                 panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1202                     class->lc_name, lock->lo_name, file, line);
1203         instance = find_instance(curthread->td_sleeplocks, lock);
1204         if (instance == NULL)
1205                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1206                     class->lc_name, lock->lo_name, file, line);
1207         if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1208                 panic("downgrade of shared lock (%s) %s @ %s:%d",
1209                     class->lc_name, lock->lo_name, file, line);
1210         if ((instance->li_flags & LI_RECURSEMASK) != 0)
1211                 panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1212                     class->lc_name, lock->lo_name,
1213                     instance->li_flags & LI_RECURSEMASK, file, line);
1214         instance->li_flags &= ~LI_EXCLUSIVE;
1215 }
1216
1217 void
1218 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1219 {
1220         struct lock_list_entry **lock_list, *lle;
1221         struct lock_instance *instance;
1222         struct lock_class *class;
1223         struct thread *td;
1224         register_t s;
1225         int i, j;
1226
1227         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1228             panicstr != NULL)
1229                 return;
1230         td = curthread;
1231         class = LOCK_CLASS(lock);
1232         file = fixup_filename(file);
1233
1234         /* Find lock instance associated with this lock. */
1235         if (class->lc_flags & LC_SLEEPLOCK)
1236                 lock_list = &td->td_sleeplocks;
1237         else
1238                 lock_list = PCPU_PTR(spinlocks);
1239         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1240                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1241                         instance = &(*lock_list)->ll_children[i];
1242                         if (instance->li_lock == lock)
1243                                 goto found;
1244                 }
1245         panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1246             file, line);
1247 found:
1248
1249         /* First, check for shared/exclusive mismatches. */
1250         if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1251             (flags & LOP_EXCLUSIVE) == 0) {
1252                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1253                     lock->lo_name, file, line);
1254                 printf("while exclusively locked from %s:%d\n",
1255                     instance->li_file, instance->li_line);
1256                 panic("excl->ushare");
1257         }
1258         if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1259             (flags & LOP_EXCLUSIVE) != 0) {
1260                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1261                     lock->lo_name, file, line);
1262                 printf("while share locked from %s:%d\n", instance->li_file,
1263                     instance->li_line);
1264                 panic("share->uexcl");
1265         }
1266
1267         /* If we are recursed, unrecurse. */
1268         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1269                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1270                     td->td_proc->p_pid, instance->li_lock->lo_name,
1271                     instance->li_flags);
1272                 instance->li_flags--;
1273                 return;
1274         }
1275
1276         /* Otherwise, remove this item from the list. */
1277         s = intr_disable();
1278         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1279             td->td_proc->p_pid, instance->li_lock->lo_name,
1280             (*lock_list)->ll_count - 1);
1281         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1282                 (*lock_list)->ll_children[j] =
1283                     (*lock_list)->ll_children[j + 1];
1284         (*lock_list)->ll_count--;
1285         intr_restore(s);
1286
1287         /* If this lock list entry is now empty, free it. */
1288         if ((*lock_list)->ll_count == 0) {
1289                 lle = *lock_list;
1290                 *lock_list = lle->ll_next;
1291                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1292                     td->td_proc->p_pid, lle);
1293                 witness_lock_list_free(lle);
1294         }
1295 }
1296
1297 /*
1298  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1299  * exempt Giant and sleepable locks from the checks as well.  If any
1300  * non-exempt locks are held, then a supplied message is printed to the
1301  * console along with a list of the offending locks.  If indicated in the
1302  * flags then a failure results in a panic as well.
1303  */
1304 int
1305 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1306 {
1307         struct lock_list_entry *lle;
1308         struct lock_instance *lock1;
1309         struct thread *td;
1310         va_list ap;
1311         int i, n;
1312
1313         if (witness_cold || witness_watch == 0 || panicstr != NULL)
1314                 return (0);
1315         n = 0;
1316         td = curthread;
1317         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1318                 for (i = lle->ll_count - 1; i >= 0; i--) {
1319                         lock1 = &lle->ll_children[i];
1320                         if (lock1->li_lock == lock)
1321                                 continue;
1322                         if (flags & WARN_GIANTOK &&
1323                             lock1->li_lock == &Giant.mtx_object)
1324                                 continue;
1325                         if (flags & WARN_SLEEPOK &&
1326                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1327                                 continue;
1328                         if (n == 0) {
1329                                 va_start(ap, fmt);
1330                                 vprintf(fmt, ap);
1331                                 va_end(ap);
1332                                 printf(" with the following");
1333                                 if (flags & WARN_SLEEPOK)
1334                                         printf(" non-sleepable");
1335                                 printf(" locks held:\n");
1336                         }
1337                         n++;
1338                         witness_list_lock(lock1);
1339                 }
1340         if (PCPU_GET(spinlocks) != NULL) {
1341                 /*
1342                  * Since we already hold a spinlock preemption is
1343                  * already blocked.
1344                  */
1345                 if (n == 0) {
1346                         va_start(ap, fmt);
1347                         vprintf(fmt, ap);
1348                         va_end(ap);
1349                         printf(" with the following");
1350                         if (flags & WARN_SLEEPOK)
1351                                 printf(" non-sleepable");
1352                         printf(" locks held:\n");
1353                 }
1354                 n += witness_list_locks(PCPU_PTR(spinlocks));
1355         }
1356         if (flags & WARN_PANIC && n)
1357                 panic("witness_warn");
1358 #ifdef KDB
1359         else if (witness_kdb && n)
1360                 kdb_enter(__func__);
1361         else if (witness_trace && n)
1362                 kdb_backtrace();
1363 #endif
1364         return (n);
1365 }
1366
1367 const char *
1368 witness_file(struct lock_object *lock)
1369 {
1370         struct witness *w;
1371
1372         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1373                 return ("?");
1374         w = lock->lo_witness;
1375         return (w->w_file);
1376 }
1377
1378 int
1379 witness_line(struct lock_object *lock)
1380 {
1381         struct witness *w;
1382
1383         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1384                 return (0);
1385         w = lock->lo_witness;
1386         return (w->w_line);
1387 }
1388
1389 static struct witness *
1390 enroll(const char *description, struct lock_class *lock_class)
1391 {
1392         struct witness *w;
1393
1394         if (witness_watch == 0 || panicstr != NULL)
1395                 return (NULL);
1396         if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1397                 return (NULL);
1398         mtx_lock_spin(&w_mtx);
1399         STAILQ_FOREACH(w, &w_all, w_list) {
1400                 if (w->w_name == description || (w->w_refcount > 0 &&
1401                     strcmp(description, w->w_name) == 0)) {
1402                         w->w_refcount++;
1403                         mtx_unlock_spin(&w_mtx);
1404                         if (lock_class != w->w_class)
1405                                 panic(
1406                                 "lock (%s) %s does not match earlier (%s) lock",
1407                                     description, lock_class->lc_name,
1408                                     w->w_class->lc_name);
1409                         return (w);
1410                 }
1411         }
1412         if ((w = witness_get()) == NULL)
1413                 goto out;
1414         w->w_name = description;
1415         w->w_class = lock_class;
1416         w->w_refcount = 1;
1417         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1418         if (lock_class->lc_flags & LC_SPINLOCK) {
1419                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1420                 w_spin_cnt++;
1421         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1422                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1423                 w_sleep_cnt++;
1424         } else {
1425                 mtx_unlock_spin(&w_mtx);
1426                 panic("lock class %s is not sleep or spin",
1427                     lock_class->lc_name);
1428         }
1429         mtx_unlock_spin(&w_mtx);
1430 out:
1431         /*
1432          * We issue a warning for any spin locks not defined in the static
1433          * order list as a way to discourage their use (folks should really
1434          * be using non-spin mutexes most of the time).  However, several
1435          * 3rd part device drivers use spin locks because that is all they
1436          * have available on Windows and Linux and they think that normal
1437          * mutexes are insufficient.
1438          */
1439         if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
1440                 printf("WITNESS: spin lock %s not in order list\n",
1441                     description);
1442         return (w);
1443 }
1444
1445 /* Don't let the door bang you on the way out... */
1446 static int
1447 depart(struct witness *w)
1448 {
1449         struct witness_child_list_entry *wcl, *nwcl;
1450         struct witness_list *list;
1451         struct witness *parent;
1452
1453         MPASS(w->w_refcount == 0);
1454         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1455                 list = &w_sleep;
1456                 w_sleep_cnt--;
1457         } else {
1458                 list = &w_spin;
1459                 w_spin_cnt--;
1460         }
1461         /*
1462          * First, we run through the entire tree looking for any
1463          * witnesses that the outgoing witness is a child of.  For
1464          * each parent that we find, we reparent all the direct
1465          * children of the outgoing witness to its parent.
1466          */
1467         STAILQ_FOREACH(parent, list, w_typelist) {
1468                 if (!isitmychild(parent, w))
1469                         continue;
1470                 removechild(parent, w);
1471         }
1472
1473         /*
1474          * Now we go through and free up the child list of the
1475          * outgoing witness.
1476          */
1477         for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1478                 nwcl = wcl->wcl_next;
1479                 w_child_cnt--;
1480                 witness_child_free(wcl);
1481         }
1482
1483         /*
1484          * Detach from various lists and free.
1485          */
1486         STAILQ_REMOVE(list, w, witness, w_typelist);
1487         STAILQ_REMOVE(&w_all, w, witness, w_list);
1488         witness_free(w);
1489
1490         return (1);
1491 }
1492
1493 /*
1494  * Add "child" as a direct child of "parent".  Returns false if
1495  * we fail due to out of memory.
1496  */
1497 static int
1498 insertchild(struct witness *parent, struct witness *child)
1499 {
1500         struct witness_child_list_entry **wcl;
1501
1502         MPASS(child != NULL && parent != NULL);
1503
1504         /*
1505          * Insert "child" after "parent"
1506          */
1507         wcl = &parent->w_children;
1508         while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1509                 wcl = &(*wcl)->wcl_next;
1510         if (*wcl == NULL) {
1511                 *wcl = witness_child_get();
1512                 if (*wcl == NULL)
1513                         return (0);
1514                 w_child_cnt++;
1515         }
1516         (*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1517
1518         return (1);
1519 }
1520
1521
1522 static int
1523 itismychild(struct witness *parent, struct witness *child)
1524 {
1525         struct witness_list *list;
1526
1527         MPASS(child != NULL && parent != NULL);
1528         if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1529             (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1530                 panic(
1531                 "%s: parent (%s) and child (%s) are not the same lock type",
1532                     __func__, parent->w_class->lc_name,
1533                     child->w_class->lc_name);
1534
1535         if (!insertchild(parent, child))
1536                 return (0);
1537
1538         if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1539                 list = &w_sleep;
1540         else
1541                 list = &w_spin;
1542         return (1);
1543 }
1544
1545 static void
1546 removechild(struct witness *parent, struct witness *child)
1547 {
1548         struct witness_child_list_entry **wcl, *wcl1;
1549         int i;
1550
1551         for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1552                 for (i = 0; i < (*wcl)->wcl_count; i++)
1553                         if ((*wcl)->wcl_children[i] == child)
1554                                 goto found;
1555         return;
1556 found:
1557         (*wcl)->wcl_count--;
1558         if ((*wcl)->wcl_count > i)
1559                 (*wcl)->wcl_children[i] =
1560                     (*wcl)->wcl_children[(*wcl)->wcl_count];
1561         MPASS((*wcl)->wcl_children[i] != NULL);
1562         if ((*wcl)->wcl_count != 0)
1563                 return;
1564         wcl1 = *wcl;
1565         *wcl = wcl1->wcl_next;
1566         w_child_cnt--;
1567         witness_child_free(wcl1);
1568 }
1569
1570 static int
1571 isitmychild(struct witness *parent, struct witness *child)
1572 {
1573         struct witness_child_list_entry *wcl;
1574         int i;
1575
1576         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1577                 for (i = 0; i < wcl->wcl_count; i++) {
1578                         if (wcl->wcl_children[i] == child)
1579                                 return (1);
1580                 }
1581         }
1582         return (0);
1583 }
1584
1585 static int
1586 isitmydescendant(struct witness *parent, struct witness *child)
1587 {
1588         struct witness_child_list_entry *wcl;
1589         int i, j;
1590
1591         if (isitmychild(parent, child))
1592                 return (1);
1593         j = 0;
1594         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1595                 MPASS(j < 1000);
1596                 for (i = 0; i < wcl->wcl_count; i++) {
1597                         if (isitmydescendant(wcl->wcl_children[i], child))
1598                                 return (1);
1599                 }
1600                 j++;
1601         }
1602         return (0);
1603 }
1604
1605 #ifdef BLESSING
1606 static int
1607 blessed(struct witness *w1, struct witness *w2)
1608 {
1609         int i;
1610         struct witness_blessed *b;
1611
1612         for (i = 0; i < blessed_count; i++) {
1613                 b = &blessed_list[i];
1614                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1615                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1616                                 return (1);
1617                         continue;
1618                 }
1619                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1620                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1621                                 return (1);
1622         }
1623         return (0);
1624 }
1625 #endif
1626
1627 static struct witness *
1628 witness_get(void)
1629 {
1630         struct witness *w;
1631
1632         if (witness_watch == 0) {
1633                 mtx_unlock_spin(&w_mtx);
1634                 return (NULL);
1635         }
1636         if (STAILQ_EMPTY(&w_free)) {
1637                 witness_watch = 0;
1638                 mtx_unlock_spin(&w_mtx);
1639                 printf("%s: witness exhausted\n", __func__);
1640                 return (NULL);
1641         }
1642         w = STAILQ_FIRST(&w_free);
1643         STAILQ_REMOVE_HEAD(&w_free, w_list);
1644         w_free_cnt--;
1645         bzero(w, sizeof(*w));
1646         return (w);
1647 }
1648
1649 static void
1650 witness_free(struct witness *w)
1651 {
1652
1653         STAILQ_INSERT_HEAD(&w_free, w, w_list);
1654         w_free_cnt++;
1655 }
1656
1657 static struct witness_child_list_entry *
1658 witness_child_get(void)
1659 {
1660         struct witness_child_list_entry *wcl;
1661
1662         if (witness_watch == 0) {
1663                 mtx_unlock_spin(&w_mtx);
1664                 return (NULL);
1665         }
1666         wcl = w_child_free;
1667         if (wcl == NULL) {
1668                 witness_watch = 0;
1669                 mtx_unlock_spin(&w_mtx);
1670                 printf("%s: witness exhausted\n", __func__);
1671                 return (NULL);
1672         }
1673         w_child_free = wcl->wcl_next;
1674         w_child_free_cnt--;
1675         bzero(wcl, sizeof(*wcl));
1676         return (wcl);
1677 }
1678
1679 static void
1680 witness_child_free(struct witness_child_list_entry *wcl)
1681 {
1682
1683         wcl->wcl_next = w_child_free;
1684         w_child_free = wcl;
1685         w_child_free_cnt++;
1686 }
1687
1688 static struct lock_list_entry *
1689 witness_lock_list_get(void)
1690 {
1691         struct lock_list_entry *lle;
1692
1693         if (witness_watch == 0)
1694                 return (NULL);
1695         mtx_lock_spin(&w_mtx);
1696         lle = w_lock_list_free;
1697         if (lle == NULL) {
1698                 witness_watch = 0;
1699                 mtx_unlock_spin(&w_mtx);
1700                 printf("%s: witness exhausted\n", __func__);
1701                 return (NULL);
1702         }
1703         w_lock_list_free = lle->ll_next;
1704         mtx_unlock_spin(&w_mtx);
1705         bzero(lle, sizeof(*lle));
1706         return (lle);
1707 }
1708                 
1709 static void
1710 witness_lock_list_free(struct lock_list_entry *lle)
1711 {
1712
1713         mtx_lock_spin(&w_mtx);
1714         lle->ll_next = w_lock_list_free;
1715         w_lock_list_free = lle;
1716         mtx_unlock_spin(&w_mtx);
1717 }
1718
1719 static struct lock_instance *
1720 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1721 {
1722         struct lock_list_entry *lle;
1723         struct lock_instance *instance;
1724         int i;
1725
1726         for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1727                 for (i = lle->ll_count - 1; i >= 0; i--) {
1728                         instance = &lle->ll_children[i];
1729                         if (instance->li_lock == lock)
1730                                 return (instance);
1731                 }
1732         return (NULL);
1733 }
1734
1735 static void
1736 witness_list_lock(struct lock_instance *instance)
1737 {
1738         struct lock_object *lock;
1739
1740         lock = instance->li_lock;
1741         printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1742             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
1743         if (lock->lo_type != lock->lo_name)
1744                 printf(" (%s)", lock->lo_type);
1745         printf(" r = %d (%p) locked @ %s:%d\n",
1746             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1747             instance->li_line);
1748 }
1749
1750 #ifdef DDB
1751 static int
1752 witness_thread_has_locks(struct thread *td)
1753 {
1754
1755         return (td->td_sleeplocks != NULL);
1756 }
1757
1758 static int
1759 witness_proc_has_locks(struct proc *p)
1760 {
1761         struct thread *td;
1762
1763         FOREACH_THREAD_IN_PROC(p, td) {
1764                 if (witness_thread_has_locks(td))
1765                         return (1);
1766         }
1767         return (0);
1768 }
1769 #endif
1770
1771 int
1772 witness_list_locks(struct lock_list_entry **lock_list)
1773 {
1774         struct lock_list_entry *lle;
1775         int i, nheld;
1776
1777         nheld = 0;
1778         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1779                 for (i = lle->ll_count - 1; i >= 0; i--) {
1780                         witness_list_lock(&lle->ll_children[i]);
1781                         nheld++;
1782                 }
1783         return (nheld);
1784 }
1785
1786 /*
1787  * This is a bit risky at best.  We call this function when we have timed
1788  * out acquiring a spin lock, and we assume that the other CPU is stuck
1789  * with this lock held.  So, we go groveling around in the other CPU's
1790  * per-cpu data to try to find the lock instance for this spin lock to
1791  * see when it was last acquired.
1792  */
1793 void
1794 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1795 {
1796         struct lock_instance *instance;
1797         struct pcpu *pc;
1798
1799         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1800                 return;
1801         pc = pcpu_find(owner->td_oncpu);
1802         instance = find_instance(pc->pc_spinlocks, lock);
1803         if (instance != NULL)
1804                 witness_list_lock(instance);
1805 }
1806
1807 void
1808 witness_save(struct lock_object *lock, const char **filep, int *linep)
1809 {
1810         struct lock_list_entry *lock_list;
1811         struct lock_instance *instance;
1812         struct lock_class *class;
1813
1814         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1815         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1816                 return;
1817         class = LOCK_CLASS(lock);
1818         if (class->lc_flags & LC_SLEEPLOCK)
1819                 lock_list = curthread->td_sleeplocks;
1820         else {
1821                 if (witness_skipspin)
1822                         return;
1823                 lock_list = PCPU_GET(spinlocks);
1824         }
1825         instance = find_instance(lock_list, lock);
1826         if (instance == NULL)
1827                 panic("%s: lock (%s) %s not locked", __func__,
1828                     class->lc_name, lock->lo_name);
1829         *filep = instance->li_file;
1830         *linep = instance->li_line;
1831 }
1832
1833 void
1834 witness_restore(struct lock_object *lock, const char *file, int line)
1835 {
1836         struct lock_list_entry *lock_list;
1837         struct lock_instance *instance;
1838         struct lock_class *class;
1839
1840         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1841         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1842                 return;
1843         class = LOCK_CLASS(lock);
1844         if (class->lc_flags & LC_SLEEPLOCK)
1845                 lock_list = curthread->td_sleeplocks;
1846         else {
1847                 if (witness_skipspin)
1848                         return;
1849                 lock_list = PCPU_GET(spinlocks);
1850         }
1851         instance = find_instance(lock_list, lock);
1852         if (instance == NULL)
1853                 panic("%s: lock (%s) %s not locked", __func__,
1854                     class->lc_name, lock->lo_name);
1855         lock->lo_witness->w_file = file;
1856         lock->lo_witness->w_line = line;
1857         instance->li_file = file;
1858         instance->li_line = line;
1859 }
1860
1861 void
1862 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1863 {
1864 #ifdef INVARIANT_SUPPORT
1865         struct lock_instance *instance;
1866         struct lock_class *class;
1867
1868         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1869                 return;
1870         class = LOCK_CLASS(lock);
1871         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
1872                 instance = find_instance(curthread->td_sleeplocks, lock);
1873         else if ((class->lc_flags & LC_SPINLOCK) != 0)
1874                 instance = find_instance(PCPU_GET(spinlocks), lock);
1875         else {
1876                 panic("Lock (%s) %s is not sleep or spin!",
1877                     class->lc_name, lock->lo_name);
1878         }
1879         file = fixup_filename(file);
1880         switch (flags) {
1881         case LA_UNLOCKED:
1882                 if (instance != NULL)
1883                         panic("Lock (%s) %s locked @ %s:%d.",
1884                             class->lc_name, lock->lo_name, file, line);
1885                 break;
1886         case LA_LOCKED:
1887         case LA_LOCKED | LA_RECURSED:
1888         case LA_LOCKED | LA_NOTRECURSED:
1889         case LA_SLOCKED:
1890         case LA_SLOCKED | LA_RECURSED:
1891         case LA_SLOCKED | LA_NOTRECURSED:
1892         case LA_XLOCKED:
1893         case LA_XLOCKED | LA_RECURSED:
1894         case LA_XLOCKED | LA_NOTRECURSED:
1895                 if (instance == NULL) {
1896                         panic("Lock (%s) %s not locked @ %s:%d.",
1897                             class->lc_name, lock->lo_name, file, line);
1898                         break;
1899                 }
1900                 if ((flags & LA_XLOCKED) != 0 &&
1901                     (instance->li_flags & LI_EXCLUSIVE) == 0)
1902                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1903                             class->lc_name, lock->lo_name, file, line);
1904                 if ((flags & LA_SLOCKED) != 0 &&
1905                     (instance->li_flags & LI_EXCLUSIVE) != 0)
1906                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
1907                             class->lc_name, lock->lo_name, file, line);
1908                 if ((flags & LA_RECURSED) != 0 &&
1909                     (instance->li_flags & LI_RECURSEMASK) == 0)
1910                         panic("Lock (%s) %s not recursed @ %s:%d.",
1911                             class->lc_name, lock->lo_name, file, line);
1912                 if ((flags & LA_NOTRECURSED) != 0 &&
1913                     (instance->li_flags & LI_RECURSEMASK) != 0)
1914                         panic("Lock (%s) %s recursed @ %s:%d.",
1915                             class->lc_name, lock->lo_name, file, line);
1916                 break;
1917         default:
1918                 panic("Invalid lock assertion at %s:%d.", file, line);
1919
1920         }
1921 #endif  /* INVARIANT_SUPPORT */
1922 }
1923
1924 #ifdef DDB
1925 static void
1926 witness_list(struct thread *td)
1927 {
1928
1929         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1930         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1931
1932         if (witness_watch == 0)
1933                 return;
1934
1935         witness_list_locks(&td->td_sleeplocks);
1936
1937         /*
1938          * We only handle spinlocks if td == curthread.  This is somewhat broken
1939          * if td is currently executing on some other CPU and holds spin locks
1940          * as we won't display those locks.  If we had a MI way of getting
1941          * the per-cpu data for a given cpu then we could use
1942          * td->td_oncpu to get the list of spinlocks for this thread
1943          * and "fix" this.
1944          *
1945          * That still wouldn't really fix this unless we locked sched_lock
1946          * or stopped the other CPU to make sure it wasn't changing the list
1947          * out from under us.  It is probably best to just not try to handle
1948          * threads on other CPU's for now.
1949          */
1950         if (td == curthread && PCPU_GET(spinlocks) != NULL)
1951                 witness_list_locks(PCPU_PTR(spinlocks));
1952 }
1953
1954 DB_SHOW_COMMAND(locks, db_witness_list)
1955 {
1956         struct thread *td;
1957         pid_t pid;
1958         struct proc *p;
1959
1960         if (have_addr) {
1961                 pid = (addr % 16) + ((addr >> 4) % 16) * 10 +
1962                     ((addr >> 8) % 16) * 100 + ((addr >> 12) % 16) * 1000 +
1963                     ((addr >> 16) % 16) * 10000;
1964                 /* sx_slock(&allproc_lock); */
1965                 FOREACH_PROC_IN_SYSTEM(p) {
1966                         if (p->p_pid == pid)
1967                                 break;
1968                 }
1969                 /* sx_sunlock(&allproc_lock); */
1970                 if (p == NULL) {
1971                         db_printf("pid %d not found\n", pid);
1972                         return;
1973                 }
1974                 FOREACH_THREAD_IN_PROC(p, td) {
1975                         witness_list(td);
1976                 }
1977         } else {
1978                 td = curthread;
1979                 witness_list(td);
1980         }
1981 }
1982
1983 DB_SHOW_COMMAND(alllocks, db_witness_list_all)
1984 {
1985         struct thread *td;
1986         struct proc *p;
1987
1988         /*
1989          * It would be nice to list only threads and processes that actually
1990          * held sleep locks, but that information is currently not exported
1991          * by WITNESS.
1992          */
1993         FOREACH_PROC_IN_SYSTEM(p) {
1994                 if (!witness_proc_has_locks(p))
1995                         continue;
1996                 FOREACH_THREAD_IN_PROC(p, td) {
1997                         if (!witness_thread_has_locks(td))
1998                                 continue;
1999                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2000                             p->p_comm, td, td->td_tid);
2001                         witness_list(td);
2002                 }
2003         }
2004 }
2005
2006 DB_SHOW_COMMAND(witness, db_witness_display)
2007 {
2008
2009         witness_display(db_printf);
2010 }
2011 #endif