]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
svn merge svn+ssh://svn.freebsd.org/base/head@208996
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        512
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define CYCLEGRAPH_SBUF_SIZE    8192
158 #define FULLGRAPH_SBUF_SIZE     32768
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
187
188 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 #ifdef BLESSING
280 struct witness_blessed {
281         const char      *b_lock1;
282         const char      *b_lock2;
283 };
284 #endif
285
286 struct witness_pendhelp {
287         const char              *wh_type;
288         struct lock_object      *wh_lock;
289 };
290
291 struct witness_order_list_entry {
292         const char              *w_name;
293         struct lock_class       *w_class;
294 };
295
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303
304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307
308 static __inline int
309 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
310 {
311
312         return (key->from == 0 && key->to == 0);
313 }
314
315 static __inline int
316 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
317     const struct witness_lock_order_key *b)
318 {
319
320         return (a->from == b->from && a->to == b->to);
321 }
322
323 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
324                     const char *fname);
325 #ifdef KDB
326 static void     _witness_debugger(int cond, const char *msg);
327 #endif
328 static void     adopt(struct witness *parent, struct witness *child);
329 #ifdef BLESSING
330 static int      blessed(struct witness *, struct witness *);
331 #endif
332 static void     depart(struct witness *w);
333 static struct witness   *enroll(const char *description,
334                             struct lock_class *lock_class);
335 static struct lock_instance     *find_instance(struct lock_list_entry *list,
336                                     struct lock_object *lock);
337 static int      isitmychild(struct witness *parent, struct witness *child);
338 static int      isitmydescendant(struct witness *parent, struct witness *child);
339 static void     itismychild(struct witness *parent, struct witness *child);
340 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
341 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
342 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
343 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
344 #ifdef DDB
345 static void     witness_ddb_compute_levels(void);
346 static void     witness_ddb_display(int(*)(const char *fmt, ...));
347 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
348                     struct witness *, int indent);
349 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
350                     struct witness_list *list);
351 static void     witness_ddb_level_descendants(struct witness *parent, int l);
352 static void     witness_ddb_list(struct thread *td);
353 #endif
354 static void     witness_free(struct witness *m);
355 static struct witness   *witness_get(void);
356 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
357 static struct witness   *witness_hash_get(const char *key);
358 static void     witness_hash_put(struct witness *w);
359 static void     witness_init_hash_tables(void);
360 static void     witness_increment_graph_generation(void);
361 static void     witness_lock_list_free(struct lock_list_entry *lle);
362 static struct lock_list_entry   *witness_lock_list_get(void);
363 static int      witness_lock_order_add(struct witness *parent,
364                     struct witness *child);
365 static int      witness_lock_order_check(struct witness *parent,
366                     struct witness *child);
367 static struct witness_lock_order_data   *witness_lock_order_get(
368                                             struct witness *parent,
369                                             struct witness *child);
370 static void     witness_list_lock(struct lock_instance *instance,
371                     int (*prnt)(const char *fmt, ...));
372 static void     witness_setflag(struct lock_object *lock, int flag, int set);
373
374 #ifdef KDB
375 #define witness_debugger(c)     _witness_debugger(c, __func__)
376 #else
377 #define witness_debugger(c)
378 #endif
379
380 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
381
382 /*
383  * If set to 0, lock order checking is disabled.  If set to -1,
384  * witness is completely disabled.  Otherwise witness performs full
385  * lock order checking for all locks.  At runtime, lock order checking
386  * may be toggled.  However, witness cannot be reenabled once it is
387  * completely disabled.
388  */
389 static int witness_watch = 1;
390 TUNABLE_INT("debug.witness.watch", &witness_watch);
391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393
394 #ifdef KDB
395 /*
396  * When KDB is enabled and witness_kdb is 1, it will cause the system
397  * to drop into kdebug() when:
398  *      - a lock hierarchy violation occurs
399  *      - locks are held when going to sleep.
400  */
401 #ifdef WITNESS_KDB
402 int     witness_kdb = 1;
403 #else
404 int     witness_kdb = 0;
405 #endif
406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408
409 /*
410  * When KDB is enabled and witness_trace is 1, it will cause the system
411  * to print a stack trace:
412  *      - a lock hierarchy violation occurs
413  *      - locks are held when going to sleep.
414  */
415 int     witness_trace = 1;
416 TUNABLE_INT("debug.witness.trace", &witness_trace);
417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418 #endif /* KDB */
419
420 #ifdef WITNESS_SKIPSPIN
421 int     witness_skipspin = 1;
422 #else
423 int     witness_skipspin = 0;
424 #endif
425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427     0, "");
428
429 /*
430  * Call this to print out the relations between locks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434
435 /*
436  * Call this to print out the witness faulty stacks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440
441 static struct mtx w_mtx;
442
443 /* w_list */
444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446
447 /* w_typelist */
448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450
451 /* lock list */
452 static struct lock_list_entry *w_lock_list_free = NULL;
453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454 static u_int pending_cnt;
455
456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460     "");
461
462 static struct witness *w_data;
463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465 static struct witness_hash w_hash;      /* The witness hash table. */
466
467 /* The lock order data hash */
468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469 static struct witness_lock_order_data *w_lofree = NULL;
470 static struct witness_lock_order_hash w_lohash;
471 static int w_max_used_index = 0;
472 static unsigned int w_generation = 0;
473 static const char w_notrunning[] = "Witness not running\n";
474 static const char w_stillcold[] = "Witness is still cold\n";
475
476
477 static struct witness_order_list_entry order_lists[] = {
478         /*
479          * sx locks
480          */
481         { "proctree", &lock_class_sx },
482         { "allproc", &lock_class_sx },
483         { "allprison", &lock_class_sx },
484         { NULL, NULL },
485         /*
486          * Various mutexes
487          */
488         { "Giant", &lock_class_mtx_sleep },
489         { "pipe mutex", &lock_class_mtx_sleep },
490         { "sigio lock", &lock_class_mtx_sleep },
491         { "process group", &lock_class_mtx_sleep },
492         { "process lock", &lock_class_mtx_sleep },
493         { "session", &lock_class_mtx_sleep },
494         { "uidinfo hash", &lock_class_rw },
495 #ifdef  HWPMC_HOOKS
496         { "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498         { NULL, NULL },
499         /*
500          * Sockets
501          */
502         { "accept", &lock_class_mtx_sleep },
503         { "so_snd", &lock_class_mtx_sleep },
504         { "so_rcv", &lock_class_mtx_sleep },
505         { "sellck", &lock_class_mtx_sleep },
506         { NULL, NULL },
507         /*
508          * Routing
509          */
510         { "so_rcv", &lock_class_mtx_sleep },
511         { "radix node head", &lock_class_rw },
512         { "rtentry", &lock_class_mtx_sleep },
513         { "ifaddr", &lock_class_mtx_sleep },
514         { NULL, NULL },
515         /*
516          * IPv4 multicast:
517          * protocol locks before interface locks, after UDP locks.
518          */
519         { "udpinp", &lock_class_rw },
520         { "in_multi_mtx", &lock_class_mtx_sleep },
521         { "igmp_mtx", &lock_class_mtx_sleep },
522         { "if_addr_mtx", &lock_class_mtx_sleep },
523         { NULL, NULL },
524         /*
525          * IPv6 multicast:
526          * protocol locks before interface locks, after UDP locks.
527          */
528         { "udpinp", &lock_class_rw },
529         { "in6_multi_mtx", &lock_class_mtx_sleep },
530         { "mld_mtx", &lock_class_mtx_sleep },
531         { "if_addr_mtx", &lock_class_mtx_sleep },
532         { NULL, NULL },
533         /*
534          * UNIX Domain Sockets
535          */
536         { "unp_global_rwlock", &lock_class_rw },
537         { "unp_list_lock", &lock_class_mtx_sleep },
538         { "unp", &lock_class_mtx_sleep },
539         { "so_snd", &lock_class_mtx_sleep },
540         { NULL, NULL },
541         /*
542          * UDP/IP
543          */
544         { "udp", &lock_class_rw },
545         { "udpinp", &lock_class_rw },
546         { "so_snd", &lock_class_mtx_sleep },
547         { NULL, NULL },
548         /*
549          * TCP/IP
550          */
551         { "tcp", &lock_class_rw },
552         { "tcpinp", &lock_class_rw },
553         { "so_snd", &lock_class_mtx_sleep },
554         { NULL, NULL },
555         /*
556          * netatalk
557          */
558         { "ddp_list_mtx", &lock_class_mtx_sleep },
559         { "ddp_mtx", &lock_class_mtx_sleep },
560         { NULL, NULL },
561         /*
562          * BPF
563          */
564         { "bpf global lock", &lock_class_mtx_sleep },
565         { "bpf interface lock", &lock_class_mtx_sleep },
566         { "bpf cdev lock", &lock_class_mtx_sleep },
567         { NULL, NULL },
568         /*
569          * NFS server
570          */
571         { "nfsd_mtx", &lock_class_mtx_sleep },
572         { "so_snd", &lock_class_mtx_sleep },
573         { NULL, NULL },
574
575         /*
576          * IEEE 802.11
577          */
578         { "802.11 com lock", &lock_class_mtx_sleep},
579         { NULL, NULL },
580         /*
581          * Network drivers
582          */
583         { "network driver", &lock_class_mtx_sleep},
584         { NULL, NULL },
585
586         /*
587          * Netgraph
588          */
589         { "ng_node", &lock_class_mtx_sleep },
590         { "ng_worklist", &lock_class_mtx_sleep },
591         { NULL, NULL },
592         /*
593          * CDEV
594          */
595         { "system map", &lock_class_mtx_sleep },
596         { "vm page queue mutex", &lock_class_mtx_sleep },
597         { "vnode interlock", &lock_class_mtx_sleep },
598         { "cdev", &lock_class_mtx_sleep },
599         { NULL, NULL },
600         /*
601          * VM
602          * 
603          */
604         { "vm object", &lock_class_mtx_sleep },
605         { "page lock", &lock_class_mtx_sleep },
606         { "vm page queue mutex", &lock_class_mtx_sleep },
607         { "pmap", &lock_class_mtx_sleep },
608         { NULL, NULL },
609         /*
610          * kqueue/VFS interaction
611          */
612         { "kqueue", &lock_class_mtx_sleep },
613         { "struct mount mtx", &lock_class_mtx_sleep },
614         { "vnode interlock", &lock_class_mtx_sleep },
615         { NULL, NULL },
616         /*
617          * ZFS locking
618          */
619         { "dn->dn_mtx", &lock_class_sx },
620         { "dr->dt.di.dr_mtx", &lock_class_sx },
621         { "db->db_mtx", &lock_class_sx },
622         { NULL, NULL },
623         /*
624          * spin locks
625          */
626 #ifdef SMP
627         { "ap boot", &lock_class_mtx_spin },
628 #endif
629         { "rm.mutex_mtx", &lock_class_mtx_spin },
630         { "sio", &lock_class_mtx_spin },
631         { "scrlock", &lock_class_mtx_spin },
632 #ifdef __i386__
633         { "cy", &lock_class_mtx_spin },
634 #endif
635 #ifdef __sparc64__
636         { "pcib_mtx", &lock_class_mtx_spin },
637         { "rtc_mtx", &lock_class_mtx_spin },
638 #endif
639         { "scc_hwmtx", &lock_class_mtx_spin },
640         { "uart_hwmtx", &lock_class_mtx_spin },
641         { "fast_taskqueue", &lock_class_mtx_spin },
642         { "intr table", &lock_class_mtx_spin },
643 #ifdef  HWPMC_HOOKS
644         { "pmc-per-proc", &lock_class_mtx_spin },
645 #endif
646         { "process slock", &lock_class_mtx_spin },
647         { "sleepq chain", &lock_class_mtx_spin },
648         { "umtx lock", &lock_class_mtx_spin },
649         { "rm_spinlock", &lock_class_mtx_spin },
650         { "turnstile chain", &lock_class_mtx_spin },
651         { "turnstile lock", &lock_class_mtx_spin },
652         { "sched lock", &lock_class_mtx_spin },
653         { "td_contested", &lock_class_mtx_spin },
654         { "callout", &lock_class_mtx_spin },
655         { "entropy harvest mutex", &lock_class_mtx_spin },
656         { "syscons video lock", &lock_class_mtx_spin },
657         { "time lock", &lock_class_mtx_spin },
658 #ifdef SMP
659         { "smp rendezvous", &lock_class_mtx_spin },
660 #endif
661 #ifdef __powerpc__
662         { "tlb0", &lock_class_mtx_spin },
663 #endif
664         /*
665          * leaf locks
666          */
667         { "intrcnt", &lock_class_mtx_spin },
668         { "icu", &lock_class_mtx_spin },
669 #if defined(SMP) && defined(__sparc64__)
670         { "ipi", &lock_class_mtx_spin },
671 #endif
672 #ifdef __i386__
673         { "allpmaps", &lock_class_mtx_spin },
674         { "descriptor tables", &lock_class_mtx_spin },
675 #endif
676         { "clk", &lock_class_mtx_spin },
677         { "cpuset", &lock_class_mtx_spin },
678         { "mprof lock", &lock_class_mtx_spin },
679         { "zombie lock", &lock_class_mtx_spin },
680         { "ALD Queue", &lock_class_mtx_spin },
681 #ifdef __ia64__
682         { "MCA spin lock", &lock_class_mtx_spin },
683 #endif
684 #if defined(__i386__) || defined(__amd64__)
685         { "pcicfg", &lock_class_mtx_spin },
686         { "NDIS thread lock", &lock_class_mtx_spin },
687 #endif
688         { "tw_osl_io_lock", &lock_class_mtx_spin },
689         { "tw_osl_q_lock", &lock_class_mtx_spin },
690         { "tw_cl_io_lock", &lock_class_mtx_spin },
691         { "tw_cl_intr_lock", &lock_class_mtx_spin },
692         { "tw_cl_gen_lock", &lock_class_mtx_spin },
693 #ifdef  HWPMC_HOOKS
694         { "pmc-leaf", &lock_class_mtx_spin },
695 #endif
696         { "blocked lock", &lock_class_mtx_spin },
697         { NULL, NULL },
698         { NULL, NULL }
699 };
700
701 #ifdef BLESSING
702 /*
703  * Pairs of locks which have been blessed
704  * Don't complain about order problems with blessed locks
705  */
706 static struct witness_blessed blessed_list[] = {
707 };
708 static int blessed_count =
709         sizeof(blessed_list) / sizeof(struct witness_blessed);
710 #endif
711
712 /*
713  * This global is set to 0 once it becomes safe to use the witness code.
714  */
715 static int witness_cold = 1;
716
717 /*
718  * This global is set to 1 once the static lock orders have been enrolled
719  * so that a warning can be issued for any spin locks enrolled later.
720  */
721 static int witness_spin_warn = 0;
722
723 /*
724  * The WITNESS-enabled diagnostic code.  Note that the witness code does
725  * assume that the early boot is single-threaded at least until after this
726  * routine is completed.
727  */
728 static void
729 witness_initialize(void *dummy __unused)
730 {
731         struct lock_object *lock;
732         struct witness_order_list_entry *order;
733         struct witness *w, *w1;
734         int i;
735
736         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
737             M_NOWAIT | M_ZERO);
738
739         /*
740          * We have to release Giant before initializing its witness
741          * structure so that WITNESS doesn't get confused.
742          */
743         mtx_unlock(&Giant);
744         mtx_assert(&Giant, MA_NOTOWNED);
745
746         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
747         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
748             MTX_NOWITNESS | MTX_NOPROFILE);
749         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
750                 w = &w_data[i];
751                 memset(w, 0, sizeof(*w));
752                 w_data[i].w_index = i;  /* Witness index never changes. */
753                 witness_free(w);
754         }
755         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
756             ("%s: Invalid list of free witness objects", __func__));
757
758         /* Witness with index 0 is not used to aid in debugging. */
759         STAILQ_REMOVE_HEAD(&w_free, w_list);
760         w_free_cnt--;
761
762         memset(w_rmatrix, 0,
763             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
764
765         for (i = 0; i < LOCK_CHILDCOUNT; i++)
766                 witness_lock_list_free(&w_locklistdata[i]);
767         witness_init_hash_tables();
768
769         /* First add in all the specified order lists. */
770         for (order = order_lists; order->w_name != NULL; order++) {
771                 w = enroll(order->w_name, order->w_class);
772                 if (w == NULL)
773                         continue;
774                 w->w_file = "order list";
775                 for (order++; order->w_name != NULL; order++) {
776                         w1 = enroll(order->w_name, order->w_class);
777                         if (w1 == NULL)
778                                 continue;
779                         w1->w_file = "order list";
780                         itismychild(w, w1);
781                         w = w1;
782                 }
783         }
784         witness_spin_warn = 1;
785
786         /* Iterate through all locks and add them to witness. */
787         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
788                 lock = pending_locks[i].wh_lock;
789                 KASSERT(lock->lo_flags & LO_WITNESS,
790                     ("%s: lock %s is on pending list but not LO_WITNESS",
791                     __func__, lock->lo_name));
792                 lock->lo_witness = enroll(pending_locks[i].wh_type,
793                     LOCK_CLASS(lock));
794         }
795
796         /* Mark the witness code as being ready for use. */
797         witness_cold = 0;
798
799         mtx_lock(&Giant);
800 }
801 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
802     NULL);
803
804 void
805 witness_init(struct lock_object *lock, const char *type)
806 {
807         struct lock_class *class;
808
809         /* Various sanity checks. */
810         class = LOCK_CLASS(lock);
811         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
812             (class->lc_flags & LC_RECURSABLE) == 0)
813                 panic("%s: lock (%s) %s can not be recursable", __func__,
814                     class->lc_name, lock->lo_name);
815         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
816             (class->lc_flags & LC_SLEEPABLE) == 0)
817                 panic("%s: lock (%s) %s can not be sleepable", __func__,
818                     class->lc_name, lock->lo_name);
819         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
820             (class->lc_flags & LC_UPGRADABLE) == 0)
821                 panic("%s: lock (%s) %s can not be upgradable", __func__,
822                     class->lc_name, lock->lo_name);
823
824         /*
825          * If we shouldn't watch this lock, then just clear lo_witness.
826          * Otherwise, if witness_cold is set, then it is too early to
827          * enroll this lock, so defer it to witness_initialize() by adding
828          * it to the pending_locks list.  If it is not too early, then enroll
829          * the lock now.
830          */
831         if (witness_watch < 1 || panicstr != NULL ||
832             (lock->lo_flags & LO_WITNESS) == 0)
833                 lock->lo_witness = NULL;
834         else if (witness_cold) {
835                 pending_locks[pending_cnt].wh_lock = lock;
836                 pending_locks[pending_cnt++].wh_type = type;
837                 if (pending_cnt > WITNESS_PENDLIST)
838                         panic("%s: pending locks list is too small, bump it\n",
839                             __func__);
840         } else
841                 lock->lo_witness = enroll(type, class);
842 }
843
844 void
845 witness_destroy(struct lock_object *lock)
846 {
847         struct lock_class *class;
848         struct witness *w;
849
850         class = LOCK_CLASS(lock);
851
852         if (witness_cold)
853                 panic("lock (%s) %s destroyed while witness_cold",
854                     class->lc_name, lock->lo_name);
855
856         /* XXX: need to verify that no one holds the lock */
857         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
858                 return;
859         w = lock->lo_witness;
860
861         mtx_lock_spin(&w_mtx);
862         MPASS(w->w_refcount > 0);
863         w->w_refcount--;
864
865         if (w->w_refcount == 0)
866                 depart(w);
867         mtx_unlock_spin(&w_mtx);
868 }
869
870 #ifdef DDB
871 static void
872 witness_ddb_compute_levels(void)
873 {
874         struct witness *w;
875
876         /*
877          * First clear all levels.
878          */
879         STAILQ_FOREACH(w, &w_all, w_list)
880                 w->w_ddb_level = -1;
881
882         /*
883          * Look for locks with no parents and level all their descendants.
884          */
885         STAILQ_FOREACH(w, &w_all, w_list) {
886
887                 /* If the witness has ancestors (is not a root), skip it. */
888                 if (w->w_num_ancestors > 0)
889                         continue;
890                 witness_ddb_level_descendants(w, 0);
891         }
892 }
893
894 static void
895 witness_ddb_level_descendants(struct witness *w, int l)
896 {
897         int i;
898
899         if (w->w_ddb_level >= l)
900                 return;
901
902         w->w_ddb_level = l;
903         l++;
904
905         for (i = 1; i <= w_max_used_index; i++) {
906                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
907                         witness_ddb_level_descendants(&w_data[i], l);
908         }
909 }
910
911 static void
912 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
913     struct witness *w, int indent)
914 {
915         int i;
916
917         for (i = 0; i < indent; i++)
918                 prnt(" ");
919         prnt("%s (type: %s, depth: %d, active refs: %d)",
920              w->w_name, w->w_class->lc_name,
921              w->w_ddb_level, w->w_refcount);
922         if (w->w_displayed) {
923                 prnt(" -- (already displayed)\n");
924                 return;
925         }
926         w->w_displayed = 1;
927         if (w->w_file != NULL && w->w_line != 0)
928                 prnt(" -- last acquired @ %s:%d\n", w->w_file,
929                     w->w_line);
930         else
931                 prnt(" -- never acquired\n");
932         indent++;
933         WITNESS_INDEX_ASSERT(w->w_index);
934         for (i = 1; i <= w_max_used_index; i++) {
935                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
936                         witness_ddb_display_descendants(prnt, &w_data[i],
937                             indent);
938         }
939 }
940
941 static void
942 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
943     struct witness_list *list)
944 {
945         struct witness *w;
946
947         STAILQ_FOREACH(w, list, w_typelist) {
948                 if (w->w_file == NULL || w->w_ddb_level > 0)
949                         continue;
950
951                 /* This lock has no anscestors - display its descendants. */
952                 witness_ddb_display_descendants(prnt, w, 0);
953         }
954 }
955         
956 static void
957 witness_ddb_display(int(*prnt)(const char *fmt, ...))
958 {
959         struct witness *w;
960
961         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
962         witness_ddb_compute_levels();
963
964         /* Clear all the displayed flags. */
965         STAILQ_FOREACH(w, &w_all, w_list)
966                 w->w_displayed = 0;
967
968         /*
969          * First, handle sleep locks which have been acquired at least
970          * once.
971          */
972         prnt("Sleep locks:\n");
973         witness_ddb_display_list(prnt, &w_sleep);
974         
975         /*
976          * Now do spin locks which have been acquired at least once.
977          */
978         prnt("\nSpin locks:\n");
979         witness_ddb_display_list(prnt, &w_spin);
980         
981         /*
982          * Finally, any locks which have not been acquired yet.
983          */
984         prnt("\nLocks which were never acquired:\n");
985         STAILQ_FOREACH(w, &w_all, w_list) {
986                 if (w->w_file != NULL || w->w_refcount == 0)
987                         continue;
988                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
989                     w->w_class->lc_name, w->w_ddb_level);
990         }
991 }
992 #endif /* DDB */
993
994 /* Trim useless garbage from filenames. */
995 static const char *
996 fixup_filename(const char *file)
997 {
998
999         if (file == NULL)
1000                 return (NULL);
1001         while (strncmp(file, "../", 3) == 0)
1002                 file += 3;
1003         return (file);
1004 }
1005
1006 int
1007 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1008 {
1009
1010         if (witness_watch == -1 || panicstr != NULL)
1011                 return (0);
1012
1013         /* Require locks that witness knows about. */
1014         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1015             lock2->lo_witness == NULL)
1016                 return (EINVAL);
1017
1018         mtx_assert(&w_mtx, MA_NOTOWNED);
1019         mtx_lock_spin(&w_mtx);
1020
1021         /*
1022          * If we already have either an explicit or implied lock order that
1023          * is the other way around, then return an error.
1024          */
1025         if (witness_watch &&
1026             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1027                 mtx_unlock_spin(&w_mtx);
1028                 return (EDOOFUS);
1029         }
1030         
1031         /* Try to add the new order. */
1032         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1033             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1034         itismychild(lock1->lo_witness, lock2->lo_witness);
1035         mtx_unlock_spin(&w_mtx);
1036         return (0);
1037 }
1038
1039 void
1040 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1041     int line, struct lock_object *interlock)
1042 {
1043         struct lock_list_entry *lock_list, *lle;
1044         struct lock_instance *lock1, *lock2, *plock;
1045         struct lock_class *class;
1046         struct witness *w, *w1;
1047         struct thread *td;
1048         int i, j;
1049
1050         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1051             panicstr != NULL)
1052                 return;
1053
1054         w = lock->lo_witness;
1055         class = LOCK_CLASS(lock);
1056         td = curthread;
1057         file = fixup_filename(file);
1058
1059         if (class->lc_flags & LC_SLEEPLOCK) {
1060
1061                 /*
1062                  * Since spin locks include a critical section, this check
1063                  * implicitly enforces a lock order of all sleep locks before
1064                  * all spin locks.
1065                  */
1066                 if (td->td_critnest != 0 && !kdb_active)
1067                         panic("blockable sleep lock (%s) %s @ %s:%d",
1068                             class->lc_name, lock->lo_name, file, line);
1069
1070                 /*
1071                  * If this is the first lock acquired then just return as
1072                  * no order checking is needed.
1073                  */
1074                 lock_list = td->td_sleeplocks;
1075                 if (lock_list == NULL || lock_list->ll_count == 0)
1076                         return;
1077         } else {
1078
1079                 /*
1080                  * If this is the first lock, just return as no order
1081                  * checking is needed.  Avoid problems with thread
1082                  * migration pinning the thread while checking if
1083                  * spinlocks are held.  If at least one spinlock is held
1084                  * the thread is in a safe path and it is allowed to
1085                  * unpin it.
1086                  */
1087                 sched_pin();
1088                 lock_list = PCPU_GET(spinlocks);
1089                 if (lock_list == NULL || lock_list->ll_count == 0) {
1090                         sched_unpin();
1091                         return;
1092                 }
1093                 sched_unpin();
1094         }
1095
1096         /*
1097          * Check to see if we are recursing on a lock we already own.  If
1098          * so, make sure that we don't mismatch exclusive and shared lock
1099          * acquires.
1100          */
1101         lock1 = find_instance(lock_list, lock);
1102         if (lock1 != NULL) {
1103                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1104                     (flags & LOP_EXCLUSIVE) == 0) {
1105                         printf("shared lock of (%s) %s @ %s:%d\n",
1106                             class->lc_name, lock->lo_name, file, line);
1107                         printf("while exclusively locked from %s:%d\n",
1108                             lock1->li_file, lock1->li_line);
1109                         panic("share->excl");
1110                 }
1111                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1112                     (flags & LOP_EXCLUSIVE) != 0) {
1113                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1114                             class->lc_name, lock->lo_name, file, line);
1115                         printf("while share locked from %s:%d\n",
1116                             lock1->li_file, lock1->li_line);
1117                         panic("excl->share");
1118                 }
1119                 return;
1120         }
1121
1122         /*
1123          * Find the previously acquired lock, but ignore interlocks.
1124          */
1125         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1126         if (interlock != NULL && plock->li_lock == interlock) {
1127                 if (lock_list->ll_count > 1)
1128                         plock =
1129                             &lock_list->ll_children[lock_list->ll_count - 2];
1130                 else {
1131                         lle = lock_list->ll_next;
1132
1133                         /*
1134                          * The interlock is the only lock we hold, so
1135                          * simply return.
1136                          */
1137                         if (lle == NULL)
1138                                 return;
1139                         plock = &lle->ll_children[lle->ll_count - 1];
1140                 }
1141         }
1142         
1143         /*
1144          * Try to perform most checks without a lock.  If this succeeds we
1145          * can skip acquiring the lock and return success.
1146          */
1147         w1 = plock->li_lock->lo_witness;
1148         if (witness_lock_order_check(w1, w))
1149                 return;
1150
1151         /*
1152          * Check for duplicate locks of the same type.  Note that we only
1153          * have to check for this on the last lock we just acquired.  Any
1154          * other cases will be caught as lock order violations.
1155          */
1156         mtx_lock_spin(&w_mtx);
1157         witness_lock_order_add(w1, w);
1158         if (w1 == w) {
1159                 i = w->w_index;
1160                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1161                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1162                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1163                         w->w_reversed = 1;
1164                         mtx_unlock_spin(&w_mtx);
1165                         printf(
1166                             "acquiring duplicate lock of same type: \"%s\"\n", 
1167                             w->w_name);
1168                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1169                                plock->li_file, plock->li_line);
1170                         printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1171                         witness_debugger(1);
1172                     } else
1173                             mtx_unlock_spin(&w_mtx);
1174                 return;
1175         }
1176         mtx_assert(&w_mtx, MA_OWNED);
1177
1178         /*
1179          * If we know that the the lock we are acquiring comes after
1180          * the lock we most recently acquired in the lock order tree,
1181          * then there is no need for any further checks.
1182          */
1183         if (isitmychild(w1, w))
1184                 goto out;
1185
1186         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1187                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1188
1189                         MPASS(j < WITNESS_COUNT);
1190                         lock1 = &lle->ll_children[i];
1191
1192                         /*
1193                          * Ignore the interlock the first time we see it.
1194                          */
1195                         if (interlock != NULL && interlock == lock1->li_lock) {
1196                                 interlock = NULL;
1197                                 continue;
1198                         }
1199
1200                         /*
1201                          * If this lock doesn't undergo witness checking,
1202                          * then skip it.
1203                          */
1204                         w1 = lock1->li_lock->lo_witness;
1205                         if (w1 == NULL) {
1206                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1207                                     ("lock missing witness structure"));
1208                                 continue;
1209                         }
1210
1211                         /*
1212                          * If we are locking Giant and this is a sleepable
1213                          * lock, then skip it.
1214                          */
1215                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1216                             lock == &Giant.lock_object)
1217                                 continue;
1218
1219                         /*
1220                          * If we are locking a sleepable lock and this lock
1221                          * is Giant, then skip it.
1222                          */
1223                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1224                             lock1->li_lock == &Giant.lock_object)
1225                                 continue;
1226
1227                         /*
1228                          * If we are locking a sleepable lock and this lock
1229                          * isn't sleepable, we want to treat it as a lock
1230                          * order violation to enfore a general lock order of
1231                          * sleepable locks before non-sleepable locks.
1232                          */
1233                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1234                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1235                                 goto reversal;
1236
1237                         /*
1238                          * If we are locking Giant and this is a non-sleepable
1239                          * lock, then treat it as a reversal.
1240                          */
1241                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1242                             lock == &Giant.lock_object)
1243                                 goto reversal;
1244
1245                         /*
1246                          * Check the lock order hierarchy for a reveresal.
1247                          */
1248                         if (!isitmydescendant(w, w1))
1249                                 continue;
1250                 reversal:
1251
1252                         /*
1253                          * We have a lock order violation, check to see if it
1254                          * is allowed or has already been yelled about.
1255                          */
1256 #ifdef BLESSING
1257
1258                         /*
1259                          * If the lock order is blessed, just bail.  We don't
1260                          * look for other lock order violations though, which
1261                          * may be a bug.
1262                          */
1263                         if (blessed(w, w1))
1264                                 goto out;
1265 #endif
1266
1267                         /* Bail if this violation is known */
1268                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1269                                 goto out;
1270
1271                         /* Record this as a violation */
1272                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1273                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1274                         w->w_reversed = w1->w_reversed = 1;
1275                         witness_increment_graph_generation();
1276                         mtx_unlock_spin(&w_mtx);
1277                         
1278                         /*
1279                          * Ok, yell about it.
1280                          */
1281                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1282                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1283                                 printf(
1284                 "lock order reversal: (sleepable after non-sleepable)\n");
1285                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1286                             && lock == &Giant.lock_object)
1287                                 printf(
1288                 "lock order reversal: (Giant after non-sleepable)\n");
1289                         else
1290                                 printf("lock order reversal:\n");
1291
1292                         /*
1293                          * Try to locate an earlier lock with
1294                          * witness w in our list.
1295                          */
1296                         do {
1297                                 lock2 = &lle->ll_children[i];
1298                                 MPASS(lock2->li_lock != NULL);
1299                                 if (lock2->li_lock->lo_witness == w)
1300                                         break;
1301                                 if (i == 0 && lle->ll_next != NULL) {
1302                                         lle = lle->ll_next;
1303                                         i = lle->ll_count - 1;
1304                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1305                                 } else
1306                                         i--;
1307                         } while (i >= 0);
1308                         if (i < 0) {
1309                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1310                                     lock1->li_lock, lock1->li_lock->lo_name,
1311                                     w1->w_name, lock1->li_file, lock1->li_line);
1312                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1313                                     lock->lo_name, w->w_name, file, line);
1314                         } else {
1315                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1316                                     lock2->li_lock, lock2->li_lock->lo_name,
1317                                     lock2->li_lock->lo_witness->w_name,
1318                                     lock2->li_file, lock2->li_line);
1319                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1320                                     lock1->li_lock, lock1->li_lock->lo_name,
1321                                     w1->w_name, lock1->li_file, lock1->li_line);
1322                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1323                                     lock->lo_name, w->w_name, file, line);
1324                         }
1325                         witness_debugger(1);
1326                         return;
1327                 }
1328         }
1329
1330         /*
1331          * If requested, build a new lock order.  However, don't build a new
1332          * relationship between a sleepable lock and Giant if it is in the
1333          * wrong direction.  The correct lock order is that sleepable locks
1334          * always come before Giant.
1335          */
1336         if (flags & LOP_NEWORDER &&
1337             !(plock->li_lock == &Giant.lock_object &&
1338             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1339                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1340                     w->w_name, plock->li_lock->lo_witness->w_name);
1341                 itismychild(plock->li_lock->lo_witness, w);
1342         }
1343 out:
1344         mtx_unlock_spin(&w_mtx);
1345 }
1346
1347 void
1348 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1349 {
1350         struct lock_list_entry **lock_list, *lle;
1351         struct lock_instance *instance;
1352         struct witness *w;
1353         struct thread *td;
1354
1355         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1356             panicstr != NULL)
1357                 return;
1358         w = lock->lo_witness;
1359         td = curthread;
1360         file = fixup_filename(file);
1361
1362         /* Determine lock list for this lock. */
1363         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1364                 lock_list = &td->td_sleeplocks;
1365         else
1366                 lock_list = PCPU_PTR(spinlocks);
1367
1368         /* Check to see if we are recursing on a lock we already own. */
1369         instance = find_instance(*lock_list, lock);
1370         if (instance != NULL) {
1371                 instance->li_flags++;
1372                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1373                     td->td_proc->p_pid, lock->lo_name,
1374                     instance->li_flags & LI_RECURSEMASK);
1375                 instance->li_file = file;
1376                 instance->li_line = line;
1377                 return;
1378         }
1379
1380         /* Update per-witness last file and line acquire. */
1381         w->w_file = file;
1382         w->w_line = line;
1383
1384         /* Find the next open lock instance in the list and fill it. */
1385         lle = *lock_list;
1386         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1387                 lle = witness_lock_list_get();
1388                 if (lle == NULL)
1389                         return;
1390                 lle->ll_next = *lock_list;
1391                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1392                     td->td_proc->p_pid, lle);
1393                 *lock_list = lle;
1394         }
1395         instance = &lle->ll_children[lle->ll_count++];
1396         instance->li_lock = lock;
1397         instance->li_line = line;
1398         instance->li_file = file;
1399         if ((flags & LOP_EXCLUSIVE) != 0)
1400                 instance->li_flags = LI_EXCLUSIVE;
1401         else
1402                 instance->li_flags = 0;
1403         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1404             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1405 }
1406
1407 void
1408 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1409 {
1410         struct lock_instance *instance;
1411         struct lock_class *class;
1412
1413         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1414         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1415                 return;
1416         class = LOCK_CLASS(lock);
1417         file = fixup_filename(file);
1418         if (witness_watch) {
1419                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1420                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1421                             class->lc_name, lock->lo_name, file, line);
1422                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1423                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1424                             class->lc_name, lock->lo_name, file, line);
1425         }
1426         instance = find_instance(curthread->td_sleeplocks, lock);
1427         if (instance == NULL)
1428                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1429                     class->lc_name, lock->lo_name, file, line);
1430         if (witness_watch) {
1431                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1432                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1433                             class->lc_name, lock->lo_name, file, line);
1434                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1435                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1436                             class->lc_name, lock->lo_name,
1437                             instance->li_flags & LI_RECURSEMASK, file, line);
1438         }
1439         instance->li_flags |= LI_EXCLUSIVE;
1440 }
1441
1442 void
1443 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1444     int line)
1445 {
1446         struct lock_instance *instance;
1447         struct lock_class *class;
1448
1449         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1450         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1451                 return;
1452         class = LOCK_CLASS(lock);
1453         file = fixup_filename(file);
1454         if (witness_watch) {
1455                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1456                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1457                             class->lc_name, lock->lo_name, file, line);
1458                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1459                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1460                             class->lc_name, lock->lo_name, file, line);
1461         }
1462         instance = find_instance(curthread->td_sleeplocks, lock);
1463         if (instance == NULL)
1464                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1465                     class->lc_name, lock->lo_name, file, line);
1466         if (witness_watch) {
1467                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1468                         panic("downgrade of shared lock (%s) %s @ %s:%d",
1469                             class->lc_name, lock->lo_name, file, line);
1470                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1471                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1472                             class->lc_name, lock->lo_name,
1473                             instance->li_flags & LI_RECURSEMASK, file, line);
1474         }
1475         instance->li_flags &= ~LI_EXCLUSIVE;
1476 }
1477
1478 void
1479 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1480 {
1481         struct lock_list_entry **lock_list, *lle;
1482         struct lock_instance *instance;
1483         struct lock_class *class;
1484         struct thread *td;
1485         register_t s;
1486         int i, j;
1487
1488         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1489                 return;
1490         td = curthread;
1491         class = LOCK_CLASS(lock);
1492         file = fixup_filename(file);
1493
1494         /* Find lock instance associated with this lock. */
1495         if (class->lc_flags & LC_SLEEPLOCK)
1496                 lock_list = &td->td_sleeplocks;
1497         else
1498                 lock_list = PCPU_PTR(spinlocks);
1499         lle = *lock_list;
1500         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1501                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1502                         instance = &(*lock_list)->ll_children[i];
1503                         if (instance->li_lock == lock)
1504                                 goto found;
1505                 }
1506
1507         /*
1508          * When disabling WITNESS through witness_watch we could end up in
1509          * having registered locks in the td_sleeplocks queue.
1510          * We have to make sure we flush these queues, so just search for
1511          * eventual register locks and remove them.
1512          */
1513         if (witness_watch > 0)
1514                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1515                     lock->lo_name, file, line);
1516         else
1517                 return;
1518 found:
1519
1520         /* First, check for shared/exclusive mismatches. */
1521         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1522             (flags & LOP_EXCLUSIVE) == 0) {
1523                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1524                     lock->lo_name, file, line);
1525                 printf("while exclusively locked from %s:%d\n",
1526                     instance->li_file, instance->li_line);
1527                 panic("excl->ushare");
1528         }
1529         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1530             (flags & LOP_EXCLUSIVE) != 0) {
1531                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1532                     lock->lo_name, file, line);
1533                 printf("while share locked from %s:%d\n", instance->li_file,
1534                     instance->li_line);
1535                 panic("share->uexcl");
1536         }
1537         /* If we are recursed, unrecurse. */
1538         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1539                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1540                     td->td_proc->p_pid, instance->li_lock->lo_name,
1541                     instance->li_flags);
1542                 instance->li_flags--;
1543                 return;
1544         }
1545         /* The lock is now being dropped, check for NORELEASE flag */
1546         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1547                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1548                     lock->lo_name, file, line);
1549                 panic("lock marked norelease");
1550         }
1551
1552         /* Otherwise, remove this item from the list. */
1553         s = intr_disable();
1554         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1555             td->td_proc->p_pid, instance->li_lock->lo_name,
1556             (*lock_list)->ll_count - 1);
1557         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1558                 (*lock_list)->ll_children[j] =
1559                     (*lock_list)->ll_children[j + 1];
1560         (*lock_list)->ll_count--;
1561         intr_restore(s);
1562
1563         /*
1564          * In order to reduce contention on w_mtx, we want to keep always an
1565          * head object into lists so that frequent allocation from the 
1566          * free witness pool (and subsequent locking) is avoided.
1567          * In order to maintain the current code simple, when the head
1568          * object is totally unloaded it means also that we do not have
1569          * further objects in the list, so the list ownership needs to be
1570          * hand over to another object if the current head needs to be freed.
1571          */
1572         if ((*lock_list)->ll_count == 0) {
1573                 if (*lock_list == lle) {
1574                         if (lle->ll_next == NULL)
1575                                 return;
1576                 } else
1577                         lle = *lock_list;
1578                 *lock_list = lle->ll_next;
1579                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1580                     td->td_proc->p_pid, lle);
1581                 witness_lock_list_free(lle);
1582         }
1583 }
1584
1585 void
1586 witness_thread_exit(struct thread *td)
1587 {
1588         struct lock_list_entry *lle;
1589         int i, n;
1590
1591         lle = td->td_sleeplocks;
1592         if (lle == NULL || panicstr != NULL)
1593                 return;
1594         if (lle->ll_count != 0) {
1595                 for (n = 0; lle != NULL; lle = lle->ll_next)
1596                         for (i = lle->ll_count - 1; i >= 0; i--) {
1597                                 if (n == 0)
1598                 printf("Thread %p exiting with the following locks held:\n",
1599                                             td);
1600                                 n++;
1601                                 witness_list_lock(&lle->ll_children[i], printf);
1602                                 
1603                         }
1604                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
1605         }
1606         witness_lock_list_free(lle);
1607 }
1608
1609 /*
1610  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1611  * exempt Giant and sleepable locks from the checks as well.  If any
1612  * non-exempt locks are held, then a supplied message is printed to the
1613  * console along with a list of the offending locks.  If indicated in the
1614  * flags then a failure results in a panic as well.
1615  */
1616 int
1617 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1618 {
1619         struct lock_list_entry *lock_list, *lle;
1620         struct lock_instance *lock1;
1621         struct thread *td;
1622         va_list ap;
1623         int i, n;
1624
1625         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1626                 return (0);
1627         n = 0;
1628         td = curthread;
1629         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1630                 for (i = lle->ll_count - 1; i >= 0; i--) {
1631                         lock1 = &lle->ll_children[i];
1632                         if (lock1->li_lock == lock)
1633                                 continue;
1634                         if (flags & WARN_GIANTOK &&
1635                             lock1->li_lock == &Giant.lock_object)
1636                                 continue;
1637                         if (flags & WARN_SLEEPOK &&
1638                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1639                                 continue;
1640                         if (n == 0) {
1641                                 va_start(ap, fmt);
1642                                 vprintf(fmt, ap);
1643                                 va_end(ap);
1644                                 printf(" with the following");
1645                                 if (flags & WARN_SLEEPOK)
1646                                         printf(" non-sleepable");
1647                                 printf(" locks held:\n");
1648                         }
1649                         n++;
1650                         witness_list_lock(lock1, printf);
1651                 }
1652
1653         /*
1654          * Pin the thread in order to avoid problems with thread migration.
1655          * Once that all verifies are passed about spinlocks ownership,
1656          * the thread is in a safe path and it can be unpinned.
1657          */
1658         sched_pin();
1659         lock_list = PCPU_GET(spinlocks);
1660         if (lock_list != NULL && lock_list->ll_count != 0) {
1661                 sched_unpin();
1662
1663                 /*
1664                  * We should only have one spinlock and as long as
1665                  * the flags cannot match for this locks class,
1666                  * check if the first spinlock is the one curthread
1667                  * should hold.
1668                  */
1669                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1670                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1671                     lock1->li_lock == lock && n == 0)
1672                         return (0);
1673
1674                 va_start(ap, fmt);
1675                 vprintf(fmt, ap);
1676                 va_end(ap);
1677                 printf(" with the following");
1678                 if (flags & WARN_SLEEPOK)
1679                         printf(" non-sleepable");
1680                 printf(" locks held:\n");
1681                 n += witness_list_locks(&lock_list, printf);
1682         } else
1683                 sched_unpin();
1684         if (flags & WARN_PANIC && n)
1685                 panic("%s", __func__);
1686         else
1687                 witness_debugger(n);
1688         return (n);
1689 }
1690
1691 const char *
1692 witness_file(struct lock_object *lock)
1693 {
1694         struct witness *w;
1695
1696         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1697                 return ("?");
1698         w = lock->lo_witness;
1699         return (w->w_file);
1700 }
1701
1702 int
1703 witness_line(struct lock_object *lock)
1704 {
1705         struct witness *w;
1706
1707         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1708                 return (0);
1709         w = lock->lo_witness;
1710         return (w->w_line);
1711 }
1712
1713 static struct witness *
1714 enroll(const char *description, struct lock_class *lock_class)
1715 {
1716         struct witness *w;
1717         struct witness_list *typelist;
1718
1719         MPASS(description != NULL);
1720
1721         if (witness_watch == -1 || panicstr != NULL)
1722                 return (NULL);
1723         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1724                 if (witness_skipspin)
1725                         return (NULL);
1726                 else
1727                         typelist = &w_spin;
1728         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1729                 typelist = &w_sleep;
1730         else
1731                 panic("lock class %s is not sleep or spin",
1732                     lock_class->lc_name);
1733
1734         mtx_lock_spin(&w_mtx);
1735         w = witness_hash_get(description);
1736         if (w)
1737                 goto found;
1738         if ((w = witness_get()) == NULL)
1739                 return (NULL);
1740         MPASS(strlen(description) < MAX_W_NAME);
1741         strcpy(w->w_name, description);
1742         w->w_class = lock_class;
1743         w->w_refcount = 1;
1744         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1745         if (lock_class->lc_flags & LC_SPINLOCK) {
1746                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1747                 w_spin_cnt++;
1748         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1749                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1750                 w_sleep_cnt++;
1751         }
1752
1753         /* Insert new witness into the hash */
1754         witness_hash_put(w);
1755         witness_increment_graph_generation();
1756         mtx_unlock_spin(&w_mtx);
1757         return (w);
1758 found:
1759         w->w_refcount++;
1760         mtx_unlock_spin(&w_mtx);
1761         if (lock_class != w->w_class)
1762                 panic(
1763                         "lock (%s) %s does not match earlier (%s) lock",
1764                         description, lock_class->lc_name,
1765                         w->w_class->lc_name);
1766         return (w);
1767 }
1768
1769 static void
1770 depart(struct witness *w)
1771 {
1772         struct witness_list *list;
1773
1774         MPASS(w->w_refcount == 0);
1775         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1776                 list = &w_sleep;
1777                 w_sleep_cnt--;
1778         } else {
1779                 list = &w_spin;
1780                 w_spin_cnt--;
1781         }
1782         /*
1783          * Set file to NULL as it may point into a loadable module.
1784          */
1785         w->w_file = NULL;
1786         w->w_line = 0;
1787         witness_increment_graph_generation();
1788 }
1789
1790
1791 static void
1792 adopt(struct witness *parent, struct witness *child)
1793 {
1794         int pi, ci, i, j;
1795
1796         if (witness_cold == 0)
1797                 mtx_assert(&w_mtx, MA_OWNED);
1798
1799         /* If the relationship is already known, there's no work to be done. */
1800         if (isitmychild(parent, child))
1801                 return;
1802
1803         /* When the structure of the graph changes, bump up the generation. */
1804         witness_increment_graph_generation();
1805
1806         /*
1807          * The hard part ... create the direct relationship, then propagate all
1808          * indirect relationships.
1809          */
1810         pi = parent->w_index;
1811         ci = child->w_index;
1812         WITNESS_INDEX_ASSERT(pi);
1813         WITNESS_INDEX_ASSERT(ci);
1814         MPASS(pi != ci);
1815         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1816         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1817
1818         /*
1819          * If parent was not already an ancestor of child,
1820          * then we increment the descendant and ancestor counters.
1821          */
1822         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1823                 parent->w_num_descendants++;
1824                 child->w_num_ancestors++;
1825         }
1826
1827         /* 
1828          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1829          * an ancestor of 'pi' during this loop.
1830          */
1831         for (i = 1; i <= w_max_used_index; i++) {
1832                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1833                     (i != pi))
1834                         continue;
1835
1836                 /* Find each descendant of 'i' and mark it as a descendant. */
1837                 for (j = 1; j <= w_max_used_index; j++) {
1838
1839                         /* 
1840                          * Skip children that are already marked as
1841                          * descendants of 'i'.
1842                          */
1843                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1844                                 continue;
1845
1846                         /*
1847                          * We are only interested in descendants of 'ci'. Note
1848                          * that 'ci' itself is counted as a descendant of 'ci'.
1849                          */
1850                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1851                             (j != ci))
1852                                 continue;
1853                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1854                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1855                         w_data[i].w_num_descendants++;
1856                         w_data[j].w_num_ancestors++;
1857
1858                         /* 
1859                          * Make sure we aren't marking a node as both an
1860                          * ancestor and descendant. We should have caught 
1861                          * this as a lock order reversal earlier.
1862                          */
1863                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1864                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1865                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1866                                     "both ancestor and descendant\n",
1867                                     i, j, w_rmatrix[i][j]); 
1868                                 kdb_backtrace();
1869                                 printf("Witness disabled.\n");
1870                                 witness_watch = -1;
1871                         }
1872                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1873                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1874                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1875                                     "both ancestor and descendant\n",
1876                                     j, i, w_rmatrix[j][i]); 
1877                                 kdb_backtrace();
1878                                 printf("Witness disabled.\n");
1879                                 witness_watch = -1;
1880                         }
1881                 }
1882         }
1883 }
1884
1885 static void
1886 itismychild(struct witness *parent, struct witness *child)
1887 {
1888
1889         MPASS(child != NULL && parent != NULL);
1890         if (witness_cold == 0)
1891                 mtx_assert(&w_mtx, MA_OWNED);
1892
1893         if (!witness_lock_type_equal(parent, child)) {
1894                 if (witness_cold == 0)
1895                         mtx_unlock_spin(&w_mtx);
1896                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1897                     "the same lock type", __func__, parent->w_name,
1898                     parent->w_class->lc_name, child->w_name,
1899                     child->w_class->lc_name);
1900         }
1901         adopt(parent, child);
1902 }
1903
1904 /*
1905  * Generic code for the isitmy*() functions. The rmask parameter is the
1906  * expected relationship of w1 to w2.
1907  */
1908 static int
1909 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1910 {
1911         unsigned char r1, r2;
1912         int i1, i2;
1913
1914         i1 = w1->w_index;
1915         i2 = w2->w_index;
1916         WITNESS_INDEX_ASSERT(i1);
1917         WITNESS_INDEX_ASSERT(i2);
1918         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1919         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1920
1921         /* The flags on one better be the inverse of the flags on the other */
1922         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1923                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1924                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1925                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1926                     "w_rmatrix[%d][%d] == %hhx\n",
1927                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1928                     i2, i1, r2);
1929                 kdb_backtrace();
1930                 printf("Witness disabled.\n");
1931                 witness_watch = -1;
1932         }
1933         return (r1 & rmask);
1934 }
1935
1936 /*
1937  * Checks if @child is a direct child of @parent.
1938  */
1939 static int
1940 isitmychild(struct witness *parent, struct witness *child)
1941 {
1942
1943         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1944 }
1945
1946 /*
1947  * Checks if @descendant is a direct or inderect descendant of @ancestor.
1948  */
1949 static int
1950 isitmydescendant(struct witness *ancestor, struct witness *descendant)
1951 {
1952
1953         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1954             __func__));
1955 }
1956
1957 #ifdef BLESSING
1958 static int
1959 blessed(struct witness *w1, struct witness *w2)
1960 {
1961         int i;
1962         struct witness_blessed *b;
1963
1964         for (i = 0; i < blessed_count; i++) {
1965                 b = &blessed_list[i];
1966                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1967                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1968                                 return (1);
1969                         continue;
1970                 }
1971                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1972                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1973                                 return (1);
1974         }
1975         return (0);
1976 }
1977 #endif
1978
1979 static struct witness *
1980 witness_get(void)
1981 {
1982         struct witness *w;
1983         int index;
1984
1985         if (witness_cold == 0)
1986                 mtx_assert(&w_mtx, MA_OWNED);
1987
1988         if (witness_watch == -1) {
1989                 mtx_unlock_spin(&w_mtx);
1990                 return (NULL);
1991         }
1992         if (STAILQ_EMPTY(&w_free)) {
1993                 witness_watch = -1;
1994                 mtx_unlock_spin(&w_mtx);
1995                 printf("WITNESS: unable to allocate a new witness object\n");
1996                 return (NULL);
1997         }
1998         w = STAILQ_FIRST(&w_free);
1999         STAILQ_REMOVE_HEAD(&w_free, w_list);
2000         w_free_cnt--;
2001         index = w->w_index;
2002         MPASS(index > 0 && index == w_max_used_index+1 &&
2003             index < WITNESS_COUNT);
2004         bzero(w, sizeof(*w));
2005         w->w_index = index;
2006         if (index > w_max_used_index)
2007                 w_max_used_index = index;
2008         return (w);
2009 }
2010
2011 static void
2012 witness_free(struct witness *w)
2013 {
2014
2015         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2016         w_free_cnt++;
2017 }
2018
2019 static struct lock_list_entry *
2020 witness_lock_list_get(void)
2021 {
2022         struct lock_list_entry *lle;
2023
2024         if (witness_watch == -1)
2025                 return (NULL);
2026         mtx_lock_spin(&w_mtx);
2027         lle = w_lock_list_free;
2028         if (lle == NULL) {
2029                 witness_watch = -1;
2030                 mtx_unlock_spin(&w_mtx);
2031                 printf("%s: witness exhausted\n", __func__);
2032                 return (NULL);
2033         }
2034         w_lock_list_free = lle->ll_next;
2035         mtx_unlock_spin(&w_mtx);
2036         bzero(lle, sizeof(*lle));
2037         return (lle);
2038 }
2039                 
2040 static void
2041 witness_lock_list_free(struct lock_list_entry *lle)
2042 {
2043
2044         mtx_lock_spin(&w_mtx);
2045         lle->ll_next = w_lock_list_free;
2046         w_lock_list_free = lle;
2047         mtx_unlock_spin(&w_mtx);
2048 }
2049
2050 static struct lock_instance *
2051 find_instance(struct lock_list_entry *list, struct lock_object *lock)
2052 {
2053         struct lock_list_entry *lle;
2054         struct lock_instance *instance;
2055         int i;
2056
2057         for (lle = list; lle != NULL; lle = lle->ll_next)
2058                 for (i = lle->ll_count - 1; i >= 0; i--) {
2059                         instance = &lle->ll_children[i];
2060                         if (instance->li_lock == lock)
2061                                 return (instance);
2062                 }
2063         return (NULL);
2064 }
2065
2066 static void
2067 witness_list_lock(struct lock_instance *instance,
2068     int (*prnt)(const char *fmt, ...))
2069 {
2070         struct lock_object *lock;
2071
2072         lock = instance->li_lock;
2073         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2074             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2075         if (lock->lo_witness->w_name != lock->lo_name)
2076                 prnt(" (%s)", lock->lo_witness->w_name);
2077         prnt(" r = %d (%p) locked @ %s:%d\n",
2078             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2079             instance->li_line);
2080 }
2081
2082 #ifdef DDB
2083 static int
2084 witness_thread_has_locks(struct thread *td)
2085 {
2086
2087         if (td->td_sleeplocks == NULL)
2088                 return (0);
2089         return (td->td_sleeplocks->ll_count != 0);
2090 }
2091
2092 static int
2093 witness_proc_has_locks(struct proc *p)
2094 {
2095         struct thread *td;
2096
2097         FOREACH_THREAD_IN_PROC(p, td) {
2098                 if (witness_thread_has_locks(td))
2099                         return (1);
2100         }
2101         return (0);
2102 }
2103 #endif
2104
2105 int
2106 witness_list_locks(struct lock_list_entry **lock_list,
2107     int (*prnt)(const char *fmt, ...))
2108 {
2109         struct lock_list_entry *lle;
2110         int i, nheld;
2111
2112         nheld = 0;
2113         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2114                 for (i = lle->ll_count - 1; i >= 0; i--) {
2115                         witness_list_lock(&lle->ll_children[i], prnt);
2116                         nheld++;
2117                 }
2118         return (nheld);
2119 }
2120
2121 /*
2122  * This is a bit risky at best.  We call this function when we have timed
2123  * out acquiring a spin lock, and we assume that the other CPU is stuck
2124  * with this lock held.  So, we go groveling around in the other CPU's
2125  * per-cpu data to try to find the lock instance for this spin lock to
2126  * see when it was last acquired.
2127  */
2128 void
2129 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2130     int (*prnt)(const char *fmt, ...))
2131 {
2132         struct lock_instance *instance;
2133         struct pcpu *pc;
2134
2135         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2136                 return;
2137         pc = pcpu_find(owner->td_oncpu);
2138         instance = find_instance(pc->pc_spinlocks, lock);
2139         if (instance != NULL)
2140                 witness_list_lock(instance, prnt);
2141 }
2142
2143 void
2144 witness_save(struct lock_object *lock, const char **filep, int *linep)
2145 {
2146         struct lock_list_entry *lock_list;
2147         struct lock_instance *instance;
2148         struct lock_class *class;
2149
2150         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2151         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2152                 return;
2153         class = LOCK_CLASS(lock);
2154         if (class->lc_flags & LC_SLEEPLOCK)
2155                 lock_list = curthread->td_sleeplocks;
2156         else {
2157                 if (witness_skipspin)
2158                         return;
2159                 lock_list = PCPU_GET(spinlocks);
2160         }
2161         instance = find_instance(lock_list, lock);
2162         if (instance == NULL)
2163                 panic("%s: lock (%s) %s not locked", __func__,
2164                     class->lc_name, lock->lo_name);
2165         *filep = instance->li_file;
2166         *linep = instance->li_line;
2167 }
2168
2169 void
2170 witness_restore(struct lock_object *lock, const char *file, int line)
2171 {
2172         struct lock_list_entry *lock_list;
2173         struct lock_instance *instance;
2174         struct lock_class *class;
2175
2176         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2177         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2178                 return;
2179         class = LOCK_CLASS(lock);
2180         if (class->lc_flags & LC_SLEEPLOCK)
2181                 lock_list = curthread->td_sleeplocks;
2182         else {
2183                 if (witness_skipspin)
2184                         return;
2185                 lock_list = PCPU_GET(spinlocks);
2186         }
2187         instance = find_instance(lock_list, lock);
2188         if (instance == NULL)
2189                 panic("%s: lock (%s) %s not locked", __func__,
2190                     class->lc_name, lock->lo_name);
2191         lock->lo_witness->w_file = file;
2192         lock->lo_witness->w_line = line;
2193         instance->li_file = file;
2194         instance->li_line = line;
2195 }
2196
2197 void
2198 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2199 {
2200 #ifdef INVARIANT_SUPPORT
2201         struct lock_instance *instance;
2202         struct lock_class *class;
2203
2204         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2205                 return;
2206         class = LOCK_CLASS(lock);
2207         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2208                 instance = find_instance(curthread->td_sleeplocks, lock);
2209         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2210                 instance = find_instance(PCPU_GET(spinlocks), lock);
2211         else {
2212                 panic("Lock (%s) %s is not sleep or spin!",
2213                     class->lc_name, lock->lo_name);
2214         }
2215         file = fixup_filename(file);
2216         switch (flags) {
2217         case LA_UNLOCKED:
2218                 if (instance != NULL)
2219                         panic("Lock (%s) %s locked @ %s:%d.",
2220                             class->lc_name, lock->lo_name, file, line);
2221                 break;
2222         case LA_LOCKED:
2223         case LA_LOCKED | LA_RECURSED:
2224         case LA_LOCKED | LA_NOTRECURSED:
2225         case LA_SLOCKED:
2226         case LA_SLOCKED | LA_RECURSED:
2227         case LA_SLOCKED | LA_NOTRECURSED:
2228         case LA_XLOCKED:
2229         case LA_XLOCKED | LA_RECURSED:
2230         case LA_XLOCKED | LA_NOTRECURSED:
2231                 if (instance == NULL) {
2232                         panic("Lock (%s) %s not locked @ %s:%d.",
2233                             class->lc_name, lock->lo_name, file, line);
2234                         break;
2235                 }
2236                 if ((flags & LA_XLOCKED) != 0 &&
2237                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2238                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2239                             class->lc_name, lock->lo_name, file, line);
2240                 if ((flags & LA_SLOCKED) != 0 &&
2241                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2242                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
2243                             class->lc_name, lock->lo_name, file, line);
2244                 if ((flags & LA_RECURSED) != 0 &&
2245                     (instance->li_flags & LI_RECURSEMASK) == 0)
2246                         panic("Lock (%s) %s not recursed @ %s:%d.",
2247                             class->lc_name, lock->lo_name, file, line);
2248                 if ((flags & LA_NOTRECURSED) != 0 &&
2249                     (instance->li_flags & LI_RECURSEMASK) != 0)
2250                         panic("Lock (%s) %s recursed @ %s:%d.",
2251                             class->lc_name, lock->lo_name, file, line);
2252                 break;
2253         default:
2254                 panic("Invalid lock assertion at %s:%d.", file, line);
2255
2256         }
2257 #endif  /* INVARIANT_SUPPORT */
2258 }
2259
2260 static void
2261 witness_setflag(struct lock_object *lock, int flag, int set)
2262 {
2263         struct lock_list_entry *lock_list;
2264         struct lock_instance *instance;
2265         struct lock_class *class;
2266
2267         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2268                 return;
2269         class = LOCK_CLASS(lock);
2270         if (class->lc_flags & LC_SLEEPLOCK)
2271                 lock_list = curthread->td_sleeplocks;
2272         else {
2273                 if (witness_skipspin)
2274                         return;
2275                 lock_list = PCPU_GET(spinlocks);
2276         }
2277         instance = find_instance(lock_list, lock);
2278         if (instance == NULL)
2279                 panic("%s: lock (%s) %s not locked", __func__,
2280                     class->lc_name, lock->lo_name);
2281
2282         if (set)
2283                 instance->li_flags |= flag;
2284         else
2285                 instance->li_flags &= ~flag;
2286 }
2287
2288 void
2289 witness_norelease(struct lock_object *lock)
2290 {
2291
2292         witness_setflag(lock, LI_NORELEASE, 1);
2293 }
2294
2295 void
2296 witness_releaseok(struct lock_object *lock)
2297 {
2298
2299         witness_setflag(lock, LI_NORELEASE, 0);
2300 }
2301
2302 #ifdef DDB
2303 static void
2304 witness_ddb_list(struct thread *td)
2305 {
2306
2307         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2308         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2309
2310         if (witness_watch < 1)
2311                 return;
2312
2313         witness_list_locks(&td->td_sleeplocks, db_printf);
2314
2315         /*
2316          * We only handle spinlocks if td == curthread.  This is somewhat broken
2317          * if td is currently executing on some other CPU and holds spin locks
2318          * as we won't display those locks.  If we had a MI way of getting
2319          * the per-cpu data for a given cpu then we could use
2320          * td->td_oncpu to get the list of spinlocks for this thread
2321          * and "fix" this.
2322          *
2323          * That still wouldn't really fix this unless we locked the scheduler
2324          * lock or stopped the other CPU to make sure it wasn't changing the
2325          * list out from under us.  It is probably best to just not try to
2326          * handle threads on other CPU's for now.
2327          */
2328         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2329                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2330 }
2331
2332 DB_SHOW_COMMAND(locks, db_witness_list)
2333 {
2334         struct thread *td;
2335
2336         if (have_addr)
2337                 td = db_lookup_thread(addr, TRUE);
2338         else
2339                 td = kdb_thread;
2340         witness_ddb_list(td);
2341 }
2342
2343 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2344 {
2345         struct thread *td;
2346         struct proc *p;
2347
2348         /*
2349          * It would be nice to list only threads and processes that actually
2350          * held sleep locks, but that information is currently not exported
2351          * by WITNESS.
2352          */
2353         FOREACH_PROC_IN_SYSTEM(p) {
2354                 if (!witness_proc_has_locks(p))
2355                         continue;
2356                 FOREACH_THREAD_IN_PROC(p, td) {
2357                         if (!witness_thread_has_locks(td))
2358                                 continue;
2359                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2360                             p->p_comm, td, td->td_tid);
2361                         witness_ddb_list(td);
2362                 }
2363         }
2364 }
2365 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2366
2367 DB_SHOW_COMMAND(witness, db_witness_display)
2368 {
2369
2370         witness_ddb_display(db_printf);
2371 }
2372 #endif
2373
2374 static int
2375 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2376 {
2377         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2378         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2379         struct sbuf *sb;
2380         u_int w_rmatrix1, w_rmatrix2;
2381         int error, generation, i, j;
2382
2383         tmp_data1 = NULL;
2384         tmp_data2 = NULL;
2385         tmp_w1 = NULL;
2386         tmp_w2 = NULL;
2387         if (witness_watch < 1) {
2388                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2389                 return (error);
2390         }
2391         if (witness_cold) {
2392                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2393                 return (error);
2394         }
2395         error = 0;
2396         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2397         if (sb == NULL)
2398                 return (ENOMEM);
2399
2400         /* Allocate and init temporary storage space. */
2401         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2402         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2403         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2404             M_WAITOK | M_ZERO);
2405         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2406             M_WAITOK | M_ZERO);
2407         stack_zero(&tmp_data1->wlod_stack);
2408         stack_zero(&tmp_data2->wlod_stack);
2409
2410 restart:
2411         mtx_lock_spin(&w_mtx);
2412         generation = w_generation;
2413         mtx_unlock_spin(&w_mtx);
2414         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2415             w_lohash.wloh_count);
2416         for (i = 1; i < w_max_used_index; i++) {
2417                 mtx_lock_spin(&w_mtx);
2418                 if (generation != w_generation) {
2419                         mtx_unlock_spin(&w_mtx);
2420
2421                         /* The graph has changed, try again. */
2422                         req->oldidx = 0;
2423                         sbuf_clear(sb);
2424                         goto restart;
2425                 }
2426
2427                 w1 = &w_data[i];
2428                 if (w1->w_reversed == 0) {
2429                         mtx_unlock_spin(&w_mtx);
2430                         continue;
2431                 }
2432
2433                 /* Copy w1 locally so we can release the spin lock. */
2434                 *tmp_w1 = *w1;
2435                 mtx_unlock_spin(&w_mtx);
2436
2437                 if (tmp_w1->w_reversed == 0)
2438                         continue;
2439                 for (j = 1; j < w_max_used_index; j++) {
2440                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2441                                 continue;
2442
2443                         mtx_lock_spin(&w_mtx);
2444                         if (generation != w_generation) {
2445                                 mtx_unlock_spin(&w_mtx);
2446
2447                                 /* The graph has changed, try again. */
2448                                 req->oldidx = 0;
2449                                 sbuf_clear(sb);
2450                                 goto restart;
2451                         }
2452
2453                         w2 = &w_data[j];
2454                         data1 = witness_lock_order_get(w1, w2);
2455                         data2 = witness_lock_order_get(w2, w1);
2456
2457                         /*
2458                          * Copy information locally so we can release the
2459                          * spin lock.
2460                          */
2461                         *tmp_w2 = *w2;
2462                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2463                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2464
2465                         if (data1) {
2466                                 stack_zero(&tmp_data1->wlod_stack);
2467                                 stack_copy(&data1->wlod_stack,
2468                                     &tmp_data1->wlod_stack);
2469                         }
2470                         if (data2 && data2 != data1) {
2471                                 stack_zero(&tmp_data2->wlod_stack);
2472                                 stack_copy(&data2->wlod_stack,
2473                                     &tmp_data2->wlod_stack);
2474                         }
2475                         mtx_unlock_spin(&w_mtx);
2476
2477                         sbuf_printf(sb,
2478             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2479                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2480                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2481 #if 0
2482                         sbuf_printf(sb,
2483                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2484                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2485                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2486 #endif
2487                         if (data1) {
2488                                 sbuf_printf(sb,
2489                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2490                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2491                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2492                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2493                                 sbuf_printf(sb, "\n");
2494                         }
2495                         if (data2 && data2 != data1) {
2496                                 sbuf_printf(sb,
2497                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2498                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2499                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2500                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2501                                 sbuf_printf(sb, "\n");
2502                         }
2503                 }
2504         }
2505         mtx_lock_spin(&w_mtx);
2506         if (generation != w_generation) {
2507                 mtx_unlock_spin(&w_mtx);
2508
2509                 /*
2510                  * The graph changed while we were printing stack data,
2511                  * try again.
2512                  */
2513                 req->oldidx = 0;
2514                 sbuf_clear(sb);
2515                 goto restart;
2516         }
2517         mtx_unlock_spin(&w_mtx);
2518
2519         /* Free temporary storage space. */
2520         free(tmp_data1, M_TEMP);
2521         free(tmp_data2, M_TEMP);
2522         free(tmp_w1, M_TEMP);
2523         free(tmp_w2, M_TEMP);
2524
2525         sbuf_finish(sb);
2526         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2527         sbuf_delete(sb);
2528
2529         return (error);
2530 }
2531
2532 static int
2533 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2534 {
2535         struct witness *w;
2536         struct sbuf *sb;
2537         int error;
2538
2539         if (witness_watch < 1) {
2540                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2541                 return (error);
2542         }
2543         if (witness_cold) {
2544                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2545                 return (error);
2546         }
2547         error = 0;
2548         sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2549         if (sb == NULL)
2550                 return (ENOMEM);
2551         sbuf_printf(sb, "\n");
2552
2553         mtx_lock_spin(&w_mtx);
2554         STAILQ_FOREACH(w, &w_all, w_list)
2555                 w->w_displayed = 0;
2556         STAILQ_FOREACH(w, &w_all, w_list)
2557                 witness_add_fullgraph(sb, w);
2558         mtx_unlock_spin(&w_mtx);
2559
2560         /*
2561          * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2562          */
2563         if (sbuf_overflowed(sb)) {
2564                 sbuf_delete(sb);
2565                 panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2566                     __func__);
2567         }
2568
2569         /*
2570          * Close the sbuf and return to userland.
2571          */
2572         sbuf_finish(sb);
2573         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2574         sbuf_delete(sb);
2575
2576         return (error);
2577 }
2578
2579 static int
2580 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2581 {
2582         int error, value;
2583
2584         value = witness_watch;
2585         error = sysctl_handle_int(oidp, &value, 0, req);
2586         if (error != 0 || req->newptr == NULL)
2587                 return (error);
2588         if (value > 1 || value < -1 ||
2589             (witness_watch == -1 && value != witness_watch))
2590                 return (EINVAL);
2591         witness_watch = value;
2592         return (0);
2593 }
2594
2595 static void
2596 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2597 {
2598         int i;
2599
2600         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2601                 return;
2602         w->w_displayed = 1;
2603
2604         WITNESS_INDEX_ASSERT(w->w_index);
2605         for (i = 1; i <= w_max_used_index; i++) {
2606                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2607                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2608                             w_data[i].w_name);
2609                         witness_add_fullgraph(sb, &w_data[i]);
2610                 }
2611         }
2612 }
2613
2614 /*
2615  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2616  * interprets the key as a string and reads until the null
2617  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2618  * hash value computed from the key.
2619  */
2620 static uint32_t
2621 witness_hash_djb2(const uint8_t *key, uint32_t size)
2622 {
2623         unsigned int hash = 5381;
2624         int i;
2625
2626         /* hash = hash * 33 + key[i] */
2627         if (size)
2628                 for (i = 0; i < size; i++)
2629                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2630         else
2631                 for (i = 0; key[i] != 0; i++)
2632                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2633
2634         return (hash);
2635 }
2636
2637
2638 /*
2639  * Initializes the two witness hash tables. Called exactly once from
2640  * witness_initialize().
2641  */
2642 static void
2643 witness_init_hash_tables(void)
2644 {
2645         int i;
2646
2647         MPASS(witness_cold);
2648
2649         /* Initialize the hash tables. */
2650         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2651                 w_hash.wh_array[i] = NULL;
2652
2653         w_hash.wh_size = WITNESS_HASH_SIZE;
2654         w_hash.wh_count = 0;
2655
2656         /* Initialize the lock order data hash. */
2657         w_lofree = NULL;
2658         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2659                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2660                 w_lodata[i].wlod_next = w_lofree;
2661                 w_lofree = &w_lodata[i];
2662         }
2663         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2664         w_lohash.wloh_count = 0;
2665         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2666                 w_lohash.wloh_array[i] = NULL;
2667 }
2668
2669 static struct witness *
2670 witness_hash_get(const char *key)
2671 {
2672         struct witness *w;
2673         uint32_t hash;
2674         
2675         MPASS(key != NULL);
2676         if (witness_cold == 0)
2677                 mtx_assert(&w_mtx, MA_OWNED);
2678         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2679         w = w_hash.wh_array[hash];
2680         while (w != NULL) {
2681                 if (strcmp(w->w_name, key) == 0)
2682                         goto out;
2683                 w = w->w_hash_next;
2684         }
2685
2686 out:
2687         return (w);
2688 }
2689
2690 static void
2691 witness_hash_put(struct witness *w)
2692 {
2693         uint32_t hash;
2694
2695         MPASS(w != NULL);
2696         MPASS(w->w_name != NULL);
2697         if (witness_cold == 0)
2698                 mtx_assert(&w_mtx, MA_OWNED);
2699         KASSERT(witness_hash_get(w->w_name) == NULL,
2700             ("%s: trying to add a hash entry that already exists!", __func__));
2701         KASSERT(w->w_hash_next == NULL,
2702             ("%s: w->w_hash_next != NULL", __func__));
2703
2704         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2705         w->w_hash_next = w_hash.wh_array[hash];
2706         w_hash.wh_array[hash] = w;
2707         w_hash.wh_count++;
2708 }
2709
2710
2711 static struct witness_lock_order_data *
2712 witness_lock_order_get(struct witness *parent, struct witness *child)
2713 {
2714         struct witness_lock_order_data *data = NULL;
2715         struct witness_lock_order_key key;
2716         unsigned int hash;
2717
2718         MPASS(parent != NULL && child != NULL);
2719         key.from = parent->w_index;
2720         key.to = child->w_index;
2721         WITNESS_INDEX_ASSERT(key.from);
2722         WITNESS_INDEX_ASSERT(key.to);
2723         if ((w_rmatrix[parent->w_index][child->w_index]
2724             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2725                 goto out;
2726
2727         hash = witness_hash_djb2((const char*)&key,
2728             sizeof(key)) % w_lohash.wloh_size;
2729         data = w_lohash.wloh_array[hash];
2730         while (data != NULL) {
2731                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2732                         break;
2733                 data = data->wlod_next;
2734         }
2735
2736 out:
2737         return (data);
2738 }
2739
2740 /*
2741  * Verify that parent and child have a known relationship, are not the same,
2742  * and child is actually a child of parent.  This is done without w_mtx
2743  * to avoid contention in the common case.
2744  */
2745 static int
2746 witness_lock_order_check(struct witness *parent, struct witness *child)
2747 {
2748
2749         if (parent != child &&
2750             w_rmatrix[parent->w_index][child->w_index]
2751             & WITNESS_LOCK_ORDER_KNOWN &&
2752             isitmychild(parent, child))
2753                 return (1);
2754
2755         return (0);
2756 }
2757
2758 static int
2759 witness_lock_order_add(struct witness *parent, struct witness *child)
2760 {
2761         struct witness_lock_order_data *data = NULL;
2762         struct witness_lock_order_key key;
2763         unsigned int hash;
2764         
2765         MPASS(parent != NULL && child != NULL);
2766         key.from = parent->w_index;
2767         key.to = child->w_index;
2768         WITNESS_INDEX_ASSERT(key.from);
2769         WITNESS_INDEX_ASSERT(key.to);
2770         if (w_rmatrix[parent->w_index][child->w_index]
2771             & WITNESS_LOCK_ORDER_KNOWN)
2772                 return (1);
2773
2774         hash = witness_hash_djb2((const char*)&key,
2775             sizeof(key)) % w_lohash.wloh_size;
2776         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2777         data = w_lofree;
2778         if (data == NULL)
2779                 return (0);
2780         w_lofree = data->wlod_next;
2781         data->wlod_next = w_lohash.wloh_array[hash];
2782         data->wlod_key = key;
2783         w_lohash.wloh_array[hash] = data;
2784         w_lohash.wloh_count++;
2785         stack_zero(&data->wlod_stack);
2786         stack_save(&data->wlod_stack);
2787         return (1);
2788 }
2789
2790 /* Call this whenver the structure of the witness graph changes. */
2791 static void
2792 witness_increment_graph_generation(void)
2793 {
2794
2795         if (witness_cold == 0)
2796                 mtx_assert(&w_mtx, MA_OWNED);
2797         w_generation++;
2798 }
2799
2800 #ifdef KDB
2801 static void
2802 _witness_debugger(int cond, const char *msg)
2803 {
2804
2805         if (witness_trace && cond)
2806                 kdb_backtrace();
2807         if (witness_kdb && cond)
2808                 kdb_enter(KDB_WHY_WITNESS, msg);
2809 }
2810 #endif