]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
Update lldb to release_39 branch r276489 and resolve immediate conflicts.
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/syslog.h>
110 #include <sys/systm.h>
111
112 #ifdef DDB
113 #include <ddb/ddb.h>
114 #endif
115
116 #include <machine/stdarg.h>
117
118 #if !defined(DDB) && !defined(STACK)
119 #error "DDB or STACK options are required for WITNESS"
120 #endif
121
122 /* Note that these traces do not work with KTR_ALQ. */
123 #if 0
124 #define KTR_WITNESS     KTR_SUBSYS
125 #else
126 #define KTR_WITNESS     0
127 #endif
128
129 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
130 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
131 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
132
133 /* Define this to check for blessed mutexes */
134 #undef BLESSING
135
136 #ifndef WITNESS_COUNT
137 #define WITNESS_COUNT           1536
138 #endif
139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
140 #define WITNESS_PENDLIST        (1024 + MAXCPU)
141
142 /* Allocate 256 KB of stack data space */
143 #define WITNESS_LO_DATA_COUNT   2048
144
145 /* Prime, gives load factor of ~2 at full load */
146 #define WITNESS_LO_HASH_SIZE    1021
147
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define LOCK_NCHILDREN  5
154 #define LOCK_CHILDCOUNT 2048
155
156 #define MAX_W_NAME      64
157
158 #define FULLGRAPH_SBUF_SIZE     512
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 #ifdef BLESSING
280 struct witness_blessed {
281         const char      *b_lock1;
282         const char      *b_lock2;
283 };
284 #endif
285
286 struct witness_pendhelp {
287         const char              *wh_type;
288         struct lock_object      *wh_lock;
289 };
290
291 struct witness_order_list_entry {
292         const char              *w_name;
293         struct lock_class       *w_class;
294 };
295
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303
304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307
308 static __inline int
309 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
310     const struct witness_lock_order_key *b)
311 {
312
313         return (a->from == b->from && a->to == b->to);
314 }
315
316 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
317                     const char *fname);
318 static void     adopt(struct witness *parent, struct witness *child);
319 #ifdef BLESSING
320 static int      blessed(struct witness *, struct witness *);
321 #endif
322 static void     depart(struct witness *w);
323 static struct witness   *enroll(const char *description,
324                             struct lock_class *lock_class);
325 static struct lock_instance     *find_instance(struct lock_list_entry *list,
326                                     const struct lock_object *lock);
327 static int      isitmychild(struct witness *parent, struct witness *child);
328 static int      isitmydescendant(struct witness *parent, struct witness *child);
329 static void     itismychild(struct witness *parent, struct witness *child);
330 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
331 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
332 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
333 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
334 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
335 #ifdef DDB
336 static void     witness_ddb_compute_levels(void);
337 static void     witness_ddb_display(int(*)(const char *fmt, ...));
338 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
339                     struct witness *, int indent);
340 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
341                     struct witness_list *list);
342 static void     witness_ddb_level_descendants(struct witness *parent, int l);
343 static void     witness_ddb_list(struct thread *td);
344 #endif
345 static void     witness_debugger(int cond, const char *msg);
346 static void     witness_free(struct witness *m);
347 static struct witness   *witness_get(void);
348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness   *witness_hash_get(const char *key);
350 static void     witness_hash_put(struct witness *w);
351 static void     witness_init_hash_tables(void);
352 static void     witness_increment_graph_generation(void);
353 static void     witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry   *witness_lock_list_get(void);
355 static int      witness_lock_order_add(struct witness *parent,
356                     struct witness *child);
357 static int      witness_lock_order_check(struct witness *parent,
358                     struct witness *child);
359 static struct witness_lock_order_data   *witness_lock_order_get(
360                                             struct witness *parent,
361                                             struct witness *child);
362 static void     witness_list_lock(struct lock_instance *instance,
363                     int (*prnt)(const char *fmt, ...));
364 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
365 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
366 static void     witness_setflag(struct lock_object *lock, int flag, int set);
367
368 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
369     "Witness Locking");
370
371 /*
372  * If set to 0, lock order checking is disabled.  If set to -1,
373  * witness is completely disabled.  Otherwise witness performs full
374  * lock order checking for all locks.  At runtime, lock order checking
375  * may be toggled.  However, witness cannot be reenabled once it is
376  * completely disabled.
377  */
378 static int witness_watch = 1;
379 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
380     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
381
382 #ifdef KDB
383 /*
384  * When KDB is enabled and witness_kdb is 1, it will cause the system
385  * to drop into kdebug() when:
386  *      - a lock hierarchy violation occurs
387  *      - locks are held when going to sleep.
388  */
389 #ifdef WITNESS_KDB
390 int     witness_kdb = 1;
391 #else
392 int     witness_kdb = 0;
393 #endif
394 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
395 #endif /* KDB */
396
397 #if defined(DDB) || defined(KDB)
398 /*
399  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
400  * to print a stack trace:
401  *      - a lock hierarchy violation occurs
402  *      - locks are held when going to sleep.
403  */
404 int     witness_trace = 1;
405 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
406 #endif /* DDB || KDB */
407
408 #ifdef WITNESS_SKIPSPIN
409 int     witness_skipspin = 1;
410 #else
411 int     witness_skipspin = 0;
412 #endif
413 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
414
415 int badstack_sbuf_size;
416
417 int witness_count = WITNESS_COUNT;
418 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
419     &witness_count, 0, "");
420
421 /*
422  * Output channel for witness messages.  By default we print to the console.
423  */
424 enum witness_channel {
425         WITNESS_CONSOLE,
426         WITNESS_LOG,
427         WITNESS_NONE,
428 };
429
430 static enum witness_channel witness_channel = WITNESS_CONSOLE;
431 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
432     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
433     "Output channel for warnings");
434
435 /*
436  * Call this to print out the relations between locks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
440
441 /*
442  * Call this to print out the witness faulty stacks.
443  */
444 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
445     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
446
447 static struct mtx w_mtx;
448
449 /* w_list */
450 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
451 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
452
453 /* w_typelist */
454 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
455 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
456
457 /* lock list */
458 static struct lock_list_entry *w_lock_list_free = NULL;
459 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
460 static u_int pending_cnt;
461
462 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
463 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
464 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
465 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
466     "");
467
468 static struct witness *w_data;
469 static uint8_t **w_rmatrix;
470 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
471 static struct witness_hash w_hash;      /* The witness hash table. */
472
473 /* The lock order data hash */
474 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
475 static struct witness_lock_order_data *w_lofree = NULL;
476 static struct witness_lock_order_hash w_lohash;
477 static int w_max_used_index = 0;
478 static unsigned int w_generation = 0;
479 static const char w_notrunning[] = "Witness not running\n";
480 static const char w_stillcold[] = "Witness is still cold\n";
481
482
483 static struct witness_order_list_entry order_lists[] = {
484         /*
485          * sx locks
486          */
487         { "proctree", &lock_class_sx },
488         { "allproc", &lock_class_sx },
489         { "allprison", &lock_class_sx },
490         { NULL, NULL },
491         /*
492          * Various mutexes
493          */
494         { "Giant", &lock_class_mtx_sleep },
495         { "pipe mutex", &lock_class_mtx_sleep },
496         { "sigio lock", &lock_class_mtx_sleep },
497         { "process group", &lock_class_mtx_sleep },
498         { "process lock", &lock_class_mtx_sleep },
499         { "session", &lock_class_mtx_sleep },
500         { "uidinfo hash", &lock_class_rw },
501 #ifdef  HWPMC_HOOKS
502         { "pmc-sleep", &lock_class_mtx_sleep },
503 #endif
504         { "time lock", &lock_class_mtx_sleep },
505         { NULL, NULL },
506         /*
507          * umtx
508          */
509         { "umtx lock", &lock_class_mtx_sleep },
510         { NULL, NULL },
511         /*
512          * Sockets
513          */
514         { "accept", &lock_class_mtx_sleep },
515         { "so_snd", &lock_class_mtx_sleep },
516         { "so_rcv", &lock_class_mtx_sleep },
517         { "sellck", &lock_class_mtx_sleep },
518         { NULL, NULL },
519         /*
520          * Routing
521          */
522         { "so_rcv", &lock_class_mtx_sleep },
523         { "radix node head", &lock_class_rw },
524         { "rtentry", &lock_class_mtx_sleep },
525         { "ifaddr", &lock_class_mtx_sleep },
526         { NULL, NULL },
527         /*
528          * IPv4 multicast:
529          * protocol locks before interface locks, after UDP locks.
530          */
531         { "udpinp", &lock_class_rw },
532         { "in_multi_mtx", &lock_class_mtx_sleep },
533         { "igmp_mtx", &lock_class_mtx_sleep },
534         { "if_addr_lock", &lock_class_rw },
535         { NULL, NULL },
536         /*
537          * IPv6 multicast:
538          * protocol locks before interface locks, after UDP locks.
539          */
540         { "udpinp", &lock_class_rw },
541         { "in6_multi_mtx", &lock_class_mtx_sleep },
542         { "mld_mtx", &lock_class_mtx_sleep },
543         { "if_addr_lock", &lock_class_rw },
544         { NULL, NULL },
545         /*
546          * UNIX Domain Sockets
547          */
548         { "unp_link_rwlock", &lock_class_rw },
549         { "unp_list_lock", &lock_class_mtx_sleep },
550         { "unp", &lock_class_mtx_sleep },
551         { "so_snd", &lock_class_mtx_sleep },
552         { NULL, NULL },
553         /*
554          * UDP/IP
555          */
556         { "udp", &lock_class_rw },
557         { "udpinp", &lock_class_rw },
558         { "so_snd", &lock_class_mtx_sleep },
559         { NULL, NULL },
560         /*
561          * TCP/IP
562          */
563         { "tcp", &lock_class_rw },
564         { "tcpinp", &lock_class_rw },
565         { "so_snd", &lock_class_mtx_sleep },
566         { NULL, NULL },
567         /*
568          * BPF
569          */
570         { "bpf global lock", &lock_class_mtx_sleep },
571         { "bpf interface lock", &lock_class_rw },
572         { "bpf cdev lock", &lock_class_mtx_sleep },
573         { NULL, NULL },
574         /*
575          * NFS server
576          */
577         { "nfsd_mtx", &lock_class_mtx_sleep },
578         { "so_snd", &lock_class_mtx_sleep },
579         { NULL, NULL },
580
581         /*
582          * IEEE 802.11
583          */
584         { "802.11 com lock", &lock_class_mtx_sleep},
585         { NULL, NULL },
586         /*
587          * Network drivers
588          */
589         { "network driver", &lock_class_mtx_sleep},
590         { NULL, NULL },
591
592         /*
593          * Netgraph
594          */
595         { "ng_node", &lock_class_mtx_sleep },
596         { "ng_worklist", &lock_class_mtx_sleep },
597         { NULL, NULL },
598         /*
599          * CDEV
600          */
601         { "vm map (system)", &lock_class_mtx_sleep },
602         { "vm page queue", &lock_class_mtx_sleep },
603         { "vnode interlock", &lock_class_mtx_sleep },
604         { "cdev", &lock_class_mtx_sleep },
605         { NULL, NULL },
606         /*
607          * VM
608          */
609         { "vm map (user)", &lock_class_sx },
610         { "vm object", &lock_class_rw },
611         { "vm page", &lock_class_mtx_sleep },
612         { "vm page queue", &lock_class_mtx_sleep },
613         { "pmap pv global", &lock_class_rw },
614         { "pmap", &lock_class_mtx_sleep },
615         { "pmap pv list", &lock_class_rw },
616         { "vm page free queue", &lock_class_mtx_sleep },
617         { NULL, NULL },
618         /*
619          * kqueue/VFS interaction
620          */
621         { "kqueue", &lock_class_mtx_sleep },
622         { "struct mount mtx", &lock_class_mtx_sleep },
623         { "vnode interlock", &lock_class_mtx_sleep },
624         { NULL, NULL },
625         /*
626          * ZFS locking
627          */
628         { "dn->dn_mtx", &lock_class_sx },
629         { "dr->dt.di.dr_mtx", &lock_class_sx },
630         { "db->db_mtx", &lock_class_sx },
631         { NULL, NULL },
632         /*
633          * spin locks
634          */
635 #ifdef SMP
636         { "ap boot", &lock_class_mtx_spin },
637 #endif
638         { "rm.mutex_mtx", &lock_class_mtx_spin },
639         { "sio", &lock_class_mtx_spin },
640         { "scrlock", &lock_class_mtx_spin },
641 #ifdef __i386__
642         { "cy", &lock_class_mtx_spin },
643 #endif
644 #ifdef __sparc64__
645         { "pcib_mtx", &lock_class_mtx_spin },
646         { "rtc_mtx", &lock_class_mtx_spin },
647 #endif
648         { "scc_hwmtx", &lock_class_mtx_spin },
649         { "uart_hwmtx", &lock_class_mtx_spin },
650         { "fast_taskqueue", &lock_class_mtx_spin },
651         { "intr table", &lock_class_mtx_spin },
652 #ifdef  HWPMC_HOOKS
653         { "pmc-per-proc", &lock_class_mtx_spin },
654 #endif
655         { "process slock", &lock_class_mtx_spin },
656         { "sleepq chain", &lock_class_mtx_spin },
657         { "rm_spinlock", &lock_class_mtx_spin },
658         { "turnstile chain", &lock_class_mtx_spin },
659         { "turnstile lock", &lock_class_mtx_spin },
660         { "sched lock", &lock_class_mtx_spin },
661         { "td_contested", &lock_class_mtx_spin },
662         { "callout", &lock_class_mtx_spin },
663         { "entropy harvest mutex", &lock_class_mtx_spin },
664         { "syscons video lock", &lock_class_mtx_spin },
665 #ifdef SMP
666         { "smp rendezvous", &lock_class_mtx_spin },
667 #endif
668 #ifdef __powerpc__
669         { "tlb0", &lock_class_mtx_spin },
670 #endif
671         /*
672          * leaf locks
673          */
674         { "intrcnt", &lock_class_mtx_spin },
675         { "icu", &lock_class_mtx_spin },
676 #if defined(SMP) && defined(__sparc64__)
677         { "ipi", &lock_class_mtx_spin },
678 #endif
679 #ifdef __i386__
680         { "allpmaps", &lock_class_mtx_spin },
681         { "descriptor tables", &lock_class_mtx_spin },
682 #endif
683         { "clk", &lock_class_mtx_spin },
684         { "cpuset", &lock_class_mtx_spin },
685         { "mprof lock", &lock_class_mtx_spin },
686         { "zombie lock", &lock_class_mtx_spin },
687         { "ALD Queue", &lock_class_mtx_spin },
688 #if defined(__i386__) || defined(__amd64__)
689         { "pcicfg", &lock_class_mtx_spin },
690         { "NDIS thread lock", &lock_class_mtx_spin },
691 #endif
692         { "tw_osl_io_lock", &lock_class_mtx_spin },
693         { "tw_osl_q_lock", &lock_class_mtx_spin },
694         { "tw_cl_io_lock", &lock_class_mtx_spin },
695         { "tw_cl_intr_lock", &lock_class_mtx_spin },
696         { "tw_cl_gen_lock", &lock_class_mtx_spin },
697 #ifdef  HWPMC_HOOKS
698         { "pmc-leaf", &lock_class_mtx_spin },
699 #endif
700         { "blocked lock", &lock_class_mtx_spin },
701         { NULL, NULL },
702         { NULL, NULL }
703 };
704
705 #ifdef BLESSING
706 /*
707  * Pairs of locks which have been blessed
708  * Don't complain about order problems with blessed locks
709  */
710 static struct witness_blessed blessed_list[] = {
711 };
712 #endif
713
714 /*
715  * This global is set to 0 once it becomes safe to use the witness code.
716  */
717 static int witness_cold = 1;
718
719 /*
720  * This global is set to 1 once the static lock orders have been enrolled
721  * so that a warning can be issued for any spin locks enrolled later.
722  */
723 static int witness_spin_warn = 0;
724
725 /* Trim useless garbage from filenames. */
726 static const char *
727 fixup_filename(const char *file)
728 {
729
730         if (file == NULL)
731                 return (NULL);
732         while (strncmp(file, "../", 3) == 0)
733                 file += 3;
734         return (file);
735 }
736
737 /*
738  * The WITNESS-enabled diagnostic code.  Note that the witness code does
739  * assume that the early boot is single-threaded at least until after this
740  * routine is completed.
741  */
742 static void
743 witness_initialize(void *dummy __unused)
744 {
745         struct lock_object *lock;
746         struct witness_order_list_entry *order;
747         struct witness *w, *w1;
748         int i;
749
750         w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS,
751             M_WAITOK | M_ZERO);
752
753         w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1),
754             M_WITNESS, M_WAITOK | M_ZERO);
755
756         for (i = 0; i < witness_count + 1; i++) {
757                 w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) *
758                     (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO);
759         }
760         badstack_sbuf_size = witness_count * 256;
761
762         /*
763          * We have to release Giant before initializing its witness
764          * structure so that WITNESS doesn't get confused.
765          */
766         mtx_unlock(&Giant);
767         mtx_assert(&Giant, MA_NOTOWNED);
768
769         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
770         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
771             MTX_NOWITNESS | MTX_NOPROFILE);
772         for (i = witness_count - 1; i >= 0; i--) {
773                 w = &w_data[i];
774                 memset(w, 0, sizeof(*w));
775                 w_data[i].w_index = i;  /* Witness index never changes. */
776                 witness_free(w);
777         }
778         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
779             ("%s: Invalid list of free witness objects", __func__));
780
781         /* Witness with index 0 is not used to aid in debugging. */
782         STAILQ_REMOVE_HEAD(&w_free, w_list);
783         w_free_cnt--;
784
785         for (i = 0; i < witness_count; i++) {
786                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
787                     (witness_count + 1));
788         }
789
790         for (i = 0; i < LOCK_CHILDCOUNT; i++)
791                 witness_lock_list_free(&w_locklistdata[i]);
792         witness_init_hash_tables();
793
794         /* First add in all the specified order lists. */
795         for (order = order_lists; order->w_name != NULL; order++) {
796                 w = enroll(order->w_name, order->w_class);
797                 if (w == NULL)
798                         continue;
799                 w->w_file = "order list";
800                 for (order++; order->w_name != NULL; order++) {
801                         w1 = enroll(order->w_name, order->w_class);
802                         if (w1 == NULL)
803                                 continue;
804                         w1->w_file = "order list";
805                         itismychild(w, w1);
806                         w = w1;
807                 }
808         }
809         witness_spin_warn = 1;
810
811         /* Iterate through all locks and add them to witness. */
812         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
813                 lock = pending_locks[i].wh_lock;
814                 KASSERT(lock->lo_flags & LO_WITNESS,
815                     ("%s: lock %s is on pending list but not LO_WITNESS",
816                     __func__, lock->lo_name));
817                 lock->lo_witness = enroll(pending_locks[i].wh_type,
818                     LOCK_CLASS(lock));
819         }
820
821         /* Mark the witness code as being ready for use. */
822         witness_cold = 0;
823
824         mtx_lock(&Giant);
825 }
826 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
827     NULL);
828
829 void
830 witness_init(struct lock_object *lock, const char *type)
831 {
832         struct lock_class *class;
833
834         /* Various sanity checks. */
835         class = LOCK_CLASS(lock);
836         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
837             (class->lc_flags & LC_RECURSABLE) == 0)
838                 kassert_panic("%s: lock (%s) %s can not be recursable",
839                     __func__, class->lc_name, lock->lo_name);
840         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
841             (class->lc_flags & LC_SLEEPABLE) == 0)
842                 kassert_panic("%s: lock (%s) %s can not be sleepable",
843                     __func__, class->lc_name, lock->lo_name);
844         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
845             (class->lc_flags & LC_UPGRADABLE) == 0)
846                 kassert_panic("%s: lock (%s) %s can not be upgradable",
847                     __func__, class->lc_name, lock->lo_name);
848
849         /*
850          * If we shouldn't watch this lock, then just clear lo_witness.
851          * Otherwise, if witness_cold is set, then it is too early to
852          * enroll this lock, so defer it to witness_initialize() by adding
853          * it to the pending_locks list.  If it is not too early, then enroll
854          * the lock now.
855          */
856         if (witness_watch < 1 || panicstr != NULL ||
857             (lock->lo_flags & LO_WITNESS) == 0)
858                 lock->lo_witness = NULL;
859         else if (witness_cold) {
860                 pending_locks[pending_cnt].wh_lock = lock;
861                 pending_locks[pending_cnt++].wh_type = type;
862                 if (pending_cnt > WITNESS_PENDLIST)
863                         panic("%s: pending locks list is too small, "
864                             "increase WITNESS_PENDLIST\n",
865                             __func__);
866         } else
867                 lock->lo_witness = enroll(type, class);
868 }
869
870 void
871 witness_destroy(struct lock_object *lock)
872 {
873         struct lock_class *class;
874         struct witness *w;
875
876         class = LOCK_CLASS(lock);
877
878         if (witness_cold)
879                 panic("lock (%s) %s destroyed while witness_cold",
880                     class->lc_name, lock->lo_name);
881
882         /* XXX: need to verify that no one holds the lock */
883         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
884                 return;
885         w = lock->lo_witness;
886
887         mtx_lock_spin(&w_mtx);
888         MPASS(w->w_refcount > 0);
889         w->w_refcount--;
890
891         if (w->w_refcount == 0)
892                 depart(w);
893         mtx_unlock_spin(&w_mtx);
894 }
895
896 #ifdef DDB
897 static void
898 witness_ddb_compute_levels(void)
899 {
900         struct witness *w;
901
902         /*
903          * First clear all levels.
904          */
905         STAILQ_FOREACH(w, &w_all, w_list)
906                 w->w_ddb_level = -1;
907
908         /*
909          * Look for locks with no parents and level all their descendants.
910          */
911         STAILQ_FOREACH(w, &w_all, w_list) {
912
913                 /* If the witness has ancestors (is not a root), skip it. */
914                 if (w->w_num_ancestors > 0)
915                         continue;
916                 witness_ddb_level_descendants(w, 0);
917         }
918 }
919
920 static void
921 witness_ddb_level_descendants(struct witness *w, int l)
922 {
923         int i;
924
925         if (w->w_ddb_level >= l)
926                 return;
927
928         w->w_ddb_level = l;
929         l++;
930
931         for (i = 1; i <= w_max_used_index; i++) {
932                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
933                         witness_ddb_level_descendants(&w_data[i], l);
934         }
935 }
936
937 static void
938 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
939     struct witness *w, int indent)
940 {
941         int i;
942
943         for (i = 0; i < indent; i++)
944                 prnt(" ");
945         prnt("%s (type: %s, depth: %d, active refs: %d)",
946              w->w_name, w->w_class->lc_name,
947              w->w_ddb_level, w->w_refcount);
948         if (w->w_displayed) {
949                 prnt(" -- (already displayed)\n");
950                 return;
951         }
952         w->w_displayed = 1;
953         if (w->w_file != NULL && w->w_line != 0)
954                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
955                     w->w_line);
956         else
957                 prnt(" -- never acquired\n");
958         indent++;
959         WITNESS_INDEX_ASSERT(w->w_index);
960         for (i = 1; i <= w_max_used_index; i++) {
961                 if (db_pager_quit)
962                         return;
963                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
964                         witness_ddb_display_descendants(prnt, &w_data[i],
965                             indent);
966         }
967 }
968
969 static void
970 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
971     struct witness_list *list)
972 {
973         struct witness *w;
974
975         STAILQ_FOREACH(w, list, w_typelist) {
976                 if (w->w_file == NULL || w->w_ddb_level > 0)
977                         continue;
978
979                 /* This lock has no anscestors - display its descendants. */
980                 witness_ddb_display_descendants(prnt, w, 0);
981                 if (db_pager_quit)
982                         return;
983         }
984 }
985         
986 static void
987 witness_ddb_display(int(*prnt)(const char *fmt, ...))
988 {
989         struct witness *w;
990
991         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
992         witness_ddb_compute_levels();
993
994         /* Clear all the displayed flags. */
995         STAILQ_FOREACH(w, &w_all, w_list)
996                 w->w_displayed = 0;
997
998         /*
999          * First, handle sleep locks which have been acquired at least
1000          * once.
1001          */
1002         prnt("Sleep locks:\n");
1003         witness_ddb_display_list(prnt, &w_sleep);
1004         if (db_pager_quit)
1005                 return;
1006         
1007         /*
1008          * Now do spin locks which have been acquired at least once.
1009          */
1010         prnt("\nSpin locks:\n");
1011         witness_ddb_display_list(prnt, &w_spin);
1012         if (db_pager_quit)
1013                 return;
1014         
1015         /*
1016          * Finally, any locks which have not been acquired yet.
1017          */
1018         prnt("\nLocks which were never acquired:\n");
1019         STAILQ_FOREACH(w, &w_all, w_list) {
1020                 if (w->w_file != NULL || w->w_refcount == 0)
1021                         continue;
1022                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1023                     w->w_class->lc_name, w->w_ddb_level);
1024                 if (db_pager_quit)
1025                         return;
1026         }
1027 }
1028 #endif /* DDB */
1029
1030 int
1031 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1032 {
1033
1034         if (witness_watch == -1 || panicstr != NULL)
1035                 return (0);
1036
1037         /* Require locks that witness knows about. */
1038         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1039             lock2->lo_witness == NULL)
1040                 return (EINVAL);
1041
1042         mtx_assert(&w_mtx, MA_NOTOWNED);
1043         mtx_lock_spin(&w_mtx);
1044
1045         /*
1046          * If we already have either an explicit or implied lock order that
1047          * is the other way around, then return an error.
1048          */
1049         if (witness_watch &&
1050             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1051                 mtx_unlock_spin(&w_mtx);
1052                 return (EDOOFUS);
1053         }
1054         
1055         /* Try to add the new order. */
1056         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1057             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1058         itismychild(lock1->lo_witness, lock2->lo_witness);
1059         mtx_unlock_spin(&w_mtx);
1060         return (0);
1061 }
1062
1063 void
1064 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1065     int line, struct lock_object *interlock)
1066 {
1067         struct lock_list_entry *lock_list, *lle;
1068         struct lock_instance *lock1, *lock2, *plock;
1069         struct lock_class *class, *iclass;
1070         struct witness *w, *w1;
1071         struct thread *td;
1072         int i, j;
1073
1074         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1075             panicstr != NULL)
1076                 return;
1077
1078         w = lock->lo_witness;
1079         class = LOCK_CLASS(lock);
1080         td = curthread;
1081
1082         if (class->lc_flags & LC_SLEEPLOCK) {
1083
1084                 /*
1085                  * Since spin locks include a critical section, this check
1086                  * implicitly enforces a lock order of all sleep locks before
1087                  * all spin locks.
1088                  */
1089                 if (td->td_critnest != 0 && !kdb_active)
1090                         kassert_panic("acquiring blockable sleep lock with "
1091                             "spinlock or critical section held (%s) %s @ %s:%d",
1092                             class->lc_name, lock->lo_name,
1093                             fixup_filename(file), line);
1094
1095                 /*
1096                  * If this is the first lock acquired then just return as
1097                  * no order checking is needed.
1098                  */
1099                 lock_list = td->td_sleeplocks;
1100                 if (lock_list == NULL || lock_list->ll_count == 0)
1101                         return;
1102         } else {
1103
1104                 /*
1105                  * If this is the first lock, just return as no order
1106                  * checking is needed.  Avoid problems with thread
1107                  * migration pinning the thread while checking if
1108                  * spinlocks are held.  If at least one spinlock is held
1109                  * the thread is in a safe path and it is allowed to
1110                  * unpin it.
1111                  */
1112                 sched_pin();
1113                 lock_list = PCPU_GET(spinlocks);
1114                 if (lock_list == NULL || lock_list->ll_count == 0) {
1115                         sched_unpin();
1116                         return;
1117                 }
1118                 sched_unpin();
1119         }
1120
1121         /*
1122          * Check to see if we are recursing on a lock we already own.  If
1123          * so, make sure that we don't mismatch exclusive and shared lock
1124          * acquires.
1125          */
1126         lock1 = find_instance(lock_list, lock);
1127         if (lock1 != NULL) {
1128                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1129                     (flags & LOP_EXCLUSIVE) == 0) {
1130                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1131                             class->lc_name, lock->lo_name,
1132                             fixup_filename(file), line);
1133                         witness_output("while exclusively locked from %s:%d\n",
1134                             fixup_filename(lock1->li_file), lock1->li_line);
1135                         kassert_panic("excl->share");
1136                 }
1137                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1138                     (flags & LOP_EXCLUSIVE) != 0) {
1139                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1140                             class->lc_name, lock->lo_name,
1141                             fixup_filename(file), line);
1142                         witness_output("while share locked from %s:%d\n",
1143                             fixup_filename(lock1->li_file), lock1->li_line);
1144                         kassert_panic("share->excl");
1145                 }
1146                 return;
1147         }
1148
1149         /* Warn if the interlock is not locked exactly once. */
1150         if (interlock != NULL) {
1151                 iclass = LOCK_CLASS(interlock);
1152                 lock1 = find_instance(lock_list, interlock);
1153                 if (lock1 == NULL)
1154                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1155                             iclass->lc_name, interlock->lo_name,
1156                             fixup_filename(file), line);
1157                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1158                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1159                             iclass->lc_name, interlock->lo_name,
1160                             fixup_filename(file), line);
1161         }
1162
1163         /*
1164          * Find the previously acquired lock, but ignore interlocks.
1165          */
1166         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1167         if (interlock != NULL && plock->li_lock == interlock) {
1168                 if (lock_list->ll_count > 1)
1169                         plock =
1170                             &lock_list->ll_children[lock_list->ll_count - 2];
1171                 else {
1172                         lle = lock_list->ll_next;
1173
1174                         /*
1175                          * The interlock is the only lock we hold, so
1176                          * simply return.
1177                          */
1178                         if (lle == NULL)
1179                                 return;
1180                         plock = &lle->ll_children[lle->ll_count - 1];
1181                 }
1182         }
1183         
1184         /*
1185          * Try to perform most checks without a lock.  If this succeeds we
1186          * can skip acquiring the lock and return success.  Otherwise we redo
1187          * the check with the lock held to handle races with concurrent updates.
1188          */
1189         w1 = plock->li_lock->lo_witness;
1190         if (witness_lock_order_check(w1, w))
1191                 return;
1192
1193         mtx_lock_spin(&w_mtx);
1194         if (witness_lock_order_check(w1, w)) {
1195                 mtx_unlock_spin(&w_mtx);
1196                 return;
1197         }
1198         witness_lock_order_add(w1, w);
1199
1200         /*
1201          * Check for duplicate locks of the same type.  Note that we only
1202          * have to check for this on the last lock we just acquired.  Any
1203          * other cases will be caught as lock order violations.
1204          */
1205         if (w1 == w) {
1206                 i = w->w_index;
1207                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1208                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1209                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1210                         w->w_reversed = 1;
1211                         mtx_unlock_spin(&w_mtx);
1212                         witness_output(
1213                             "acquiring duplicate lock of same type: \"%s\"\n", 
1214                             w->w_name);
1215                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1216                             fixup_filename(plock->li_file), plock->li_line);
1217                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1218                             fixup_filename(file), line);
1219                         witness_debugger(1, __func__);
1220                 } else
1221                         mtx_unlock_spin(&w_mtx);
1222                 return;
1223         }
1224         mtx_assert(&w_mtx, MA_OWNED);
1225
1226         /*
1227          * If we know that the lock we are acquiring comes after
1228          * the lock we most recently acquired in the lock order tree,
1229          * then there is no need for any further checks.
1230          */
1231         if (isitmychild(w1, w))
1232                 goto out;
1233
1234         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1235                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1236
1237                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1238                         lock1 = &lle->ll_children[i];
1239
1240                         /*
1241                          * Ignore the interlock.
1242                          */
1243                         if (interlock == lock1->li_lock)
1244                                 continue;
1245
1246                         /*
1247                          * If this lock doesn't undergo witness checking,
1248                          * then skip it.
1249                          */
1250                         w1 = lock1->li_lock->lo_witness;
1251                         if (w1 == NULL) {
1252                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1253                                     ("lock missing witness structure"));
1254                                 continue;
1255                         }
1256
1257                         /*
1258                          * If we are locking Giant and this is a sleepable
1259                          * lock, then skip it.
1260                          */
1261                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1262                             lock == &Giant.lock_object)
1263                                 continue;
1264
1265                         /*
1266                          * If we are locking a sleepable lock and this lock
1267                          * is Giant, then skip it.
1268                          */
1269                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1270                             lock1->li_lock == &Giant.lock_object)
1271                                 continue;
1272
1273                         /*
1274                          * If we are locking a sleepable lock and this lock
1275                          * isn't sleepable, we want to treat it as a lock
1276                          * order violation to enfore a general lock order of
1277                          * sleepable locks before non-sleepable locks.
1278                          */
1279                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1280                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1281                                 goto reversal;
1282
1283                         /*
1284                          * If we are locking Giant and this is a non-sleepable
1285                          * lock, then treat it as a reversal.
1286                          */
1287                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1288                             lock == &Giant.lock_object)
1289                                 goto reversal;
1290
1291                         /*
1292                          * Check the lock order hierarchy for a reveresal.
1293                          */
1294                         if (!isitmydescendant(w, w1))
1295                                 continue;
1296                 reversal:
1297
1298                         /*
1299                          * We have a lock order violation, check to see if it
1300                          * is allowed or has already been yelled about.
1301                          */
1302 #ifdef BLESSING
1303
1304                         /*
1305                          * If the lock order is blessed, just bail.  We don't
1306                          * look for other lock order violations though, which
1307                          * may be a bug.
1308                          */
1309                         if (blessed(w, w1))
1310                                 goto out;
1311 #endif
1312
1313                         /* Bail if this violation is known */
1314                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1315                                 goto out;
1316
1317                         /* Record this as a violation */
1318                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1319                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1320                         w->w_reversed = w1->w_reversed = 1;
1321                         witness_increment_graph_generation();
1322                         mtx_unlock_spin(&w_mtx);
1323
1324 #ifdef WITNESS_NO_VNODE
1325                         /*
1326                          * There are known LORs between VNODE locks. They are
1327                          * not an indication of a bug. VNODE locks are flagged
1328                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1329                          * is between 2 VNODE locks.
1330                          */
1331                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1332                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1333                                 return;
1334 #endif
1335
1336                         /*
1337                          * Ok, yell about it.
1338                          */
1339                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1340                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1341                                 witness_output(
1342                 "lock order reversal: (sleepable after non-sleepable)\n");
1343                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1344                             && lock == &Giant.lock_object)
1345                                 witness_output(
1346                 "lock order reversal: (Giant after non-sleepable)\n");
1347                         else
1348                                 witness_output("lock order reversal:\n");
1349
1350                         /*
1351                          * Try to locate an earlier lock with
1352                          * witness w in our list.
1353                          */
1354                         do {
1355                                 lock2 = &lle->ll_children[i];
1356                                 MPASS(lock2->li_lock != NULL);
1357                                 if (lock2->li_lock->lo_witness == w)
1358                                         break;
1359                                 if (i == 0 && lle->ll_next != NULL) {
1360                                         lle = lle->ll_next;
1361                                         i = lle->ll_count - 1;
1362                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1363                                 } else
1364                                         i--;
1365                         } while (i >= 0);
1366                         if (i < 0) {
1367                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1368                                     lock1->li_lock, lock1->li_lock->lo_name,
1369                                     w1->w_name, fixup_filename(lock1->li_file),
1370                                     lock1->li_line);
1371                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1372                                     lock->lo_name, w->w_name,
1373                                     fixup_filename(file), line);
1374                         } else {
1375                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1376                                     lock2->li_lock, lock2->li_lock->lo_name,
1377                                     lock2->li_lock->lo_witness->w_name,
1378                                     fixup_filename(lock2->li_file),
1379                                     lock2->li_line);
1380                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1381                                     lock1->li_lock, lock1->li_lock->lo_name,
1382                                     w1->w_name, fixup_filename(lock1->li_file),
1383                                     lock1->li_line);
1384                                 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1385                                     lock->lo_name, w->w_name,
1386                                     fixup_filename(file), line);
1387                         }
1388                         witness_debugger(1, __func__);
1389                         return;
1390                 }
1391         }
1392
1393         /*
1394          * If requested, build a new lock order.  However, don't build a new
1395          * relationship between a sleepable lock and Giant if it is in the
1396          * wrong direction.  The correct lock order is that sleepable locks
1397          * always come before Giant.
1398          */
1399         if (flags & LOP_NEWORDER &&
1400             !(plock->li_lock == &Giant.lock_object &&
1401             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1402                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1403                     w->w_name, plock->li_lock->lo_witness->w_name);
1404                 itismychild(plock->li_lock->lo_witness, w);
1405         }
1406 out:
1407         mtx_unlock_spin(&w_mtx);
1408 }
1409
1410 void
1411 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1412 {
1413         struct lock_list_entry **lock_list, *lle;
1414         struct lock_instance *instance;
1415         struct witness *w;
1416         struct thread *td;
1417
1418         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1419             panicstr != NULL)
1420                 return;
1421         w = lock->lo_witness;
1422         td = curthread;
1423
1424         /* Determine lock list for this lock. */
1425         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1426                 lock_list = &td->td_sleeplocks;
1427         else
1428                 lock_list = PCPU_PTR(spinlocks);
1429
1430         /* Check to see if we are recursing on a lock we already own. */
1431         instance = find_instance(*lock_list, lock);
1432         if (instance != NULL) {
1433                 instance->li_flags++;
1434                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1435                     td->td_proc->p_pid, lock->lo_name,
1436                     instance->li_flags & LI_RECURSEMASK);
1437                 instance->li_file = file;
1438                 instance->li_line = line;
1439                 return;
1440         }
1441
1442         /* Update per-witness last file and line acquire. */
1443         w->w_file = file;
1444         w->w_line = line;
1445
1446         /* Find the next open lock instance in the list and fill it. */
1447         lle = *lock_list;
1448         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1449                 lle = witness_lock_list_get();
1450                 if (lle == NULL)
1451                         return;
1452                 lle->ll_next = *lock_list;
1453                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1454                     td->td_proc->p_pid, lle);
1455                 *lock_list = lle;
1456         }
1457         instance = &lle->ll_children[lle->ll_count++];
1458         instance->li_lock = lock;
1459         instance->li_line = line;
1460         instance->li_file = file;
1461         if ((flags & LOP_EXCLUSIVE) != 0)
1462                 instance->li_flags = LI_EXCLUSIVE;
1463         else
1464                 instance->li_flags = 0;
1465         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1466             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1467 }
1468
1469 void
1470 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1471 {
1472         struct lock_instance *instance;
1473         struct lock_class *class;
1474
1475         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1476         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1477                 return;
1478         class = LOCK_CLASS(lock);
1479         if (witness_watch) {
1480                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1481                         kassert_panic(
1482                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1483                             class->lc_name, lock->lo_name,
1484                             fixup_filename(file), line);
1485                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1486                         kassert_panic(
1487                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1488                             class->lc_name, lock->lo_name,
1489                             fixup_filename(file), line);
1490         }
1491         instance = find_instance(curthread->td_sleeplocks, lock);
1492         if (instance == NULL) {
1493                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1494                     class->lc_name, lock->lo_name,
1495                     fixup_filename(file), line);
1496                 return;
1497         }
1498         if (witness_watch) {
1499                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1500                         kassert_panic(
1501                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1502                             class->lc_name, lock->lo_name,
1503                             fixup_filename(file), line);
1504                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1505                         kassert_panic(
1506                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1507                             class->lc_name, lock->lo_name,
1508                             instance->li_flags & LI_RECURSEMASK,
1509                             fixup_filename(file), line);
1510         }
1511         instance->li_flags |= LI_EXCLUSIVE;
1512 }
1513
1514 void
1515 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1516     int line)
1517 {
1518         struct lock_instance *instance;
1519         struct lock_class *class;
1520
1521         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1522         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1523                 return;
1524         class = LOCK_CLASS(lock);
1525         if (witness_watch) {
1526                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1527                         kassert_panic(
1528                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1529                             class->lc_name, lock->lo_name,
1530                             fixup_filename(file), line);
1531                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1532                         kassert_panic(
1533                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1534                             class->lc_name, lock->lo_name,
1535                             fixup_filename(file), line);
1536         }
1537         instance = find_instance(curthread->td_sleeplocks, lock);
1538         if (instance == NULL) {
1539                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1540                     class->lc_name, lock->lo_name,
1541                     fixup_filename(file), line);
1542                 return;
1543         }
1544         if (witness_watch) {
1545                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1546                         kassert_panic(
1547                             "downgrade of shared lock (%s) %s @ %s:%d",
1548                             class->lc_name, lock->lo_name,
1549                             fixup_filename(file), line);
1550                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1551                         kassert_panic(
1552                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1553                             class->lc_name, lock->lo_name,
1554                             instance->li_flags & LI_RECURSEMASK,
1555                             fixup_filename(file), line);
1556         }
1557         instance->li_flags &= ~LI_EXCLUSIVE;
1558 }
1559
1560 void
1561 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1562 {
1563         struct lock_list_entry **lock_list, *lle;
1564         struct lock_instance *instance;
1565         struct lock_class *class;
1566         struct thread *td;
1567         register_t s;
1568         int i, j;
1569
1570         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1571                 return;
1572         td = curthread;
1573         class = LOCK_CLASS(lock);
1574
1575         /* Find lock instance associated with this lock. */
1576         if (class->lc_flags & LC_SLEEPLOCK)
1577                 lock_list = &td->td_sleeplocks;
1578         else
1579                 lock_list = PCPU_PTR(spinlocks);
1580         lle = *lock_list;
1581         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1582                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1583                         instance = &(*lock_list)->ll_children[i];
1584                         if (instance->li_lock == lock)
1585                                 goto found;
1586                 }
1587
1588         /*
1589          * When disabling WITNESS through witness_watch we could end up in
1590          * having registered locks in the td_sleeplocks queue.
1591          * We have to make sure we flush these queues, so just search for
1592          * eventual register locks and remove them.
1593          */
1594         if (witness_watch > 0) {
1595                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1596                     lock->lo_name, fixup_filename(file), line);
1597                 return;
1598         } else {
1599                 return;
1600         }
1601 found:
1602
1603         /* First, check for shared/exclusive mismatches. */
1604         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1605             (flags & LOP_EXCLUSIVE) == 0) {
1606                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1607                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1608                 witness_output("while exclusively locked from %s:%d\n",
1609                     fixup_filename(instance->li_file), instance->li_line);
1610                 kassert_panic("excl->ushare");
1611         }
1612         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1613             (flags & LOP_EXCLUSIVE) != 0) {
1614                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1615                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1616                 witness_output("while share locked from %s:%d\n",
1617                     fixup_filename(instance->li_file),
1618                     instance->li_line);
1619                 kassert_panic("share->uexcl");
1620         }
1621         /* If we are recursed, unrecurse. */
1622         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1623                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1624                     td->td_proc->p_pid, instance->li_lock->lo_name,
1625                     instance->li_flags);
1626                 instance->li_flags--;
1627                 return;
1628         }
1629         /* The lock is now being dropped, check for NORELEASE flag */
1630         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1631                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1632                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1633                 kassert_panic("lock marked norelease");
1634         }
1635
1636         /* Otherwise, remove this item from the list. */
1637         s = intr_disable();
1638         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1639             td->td_proc->p_pid, instance->li_lock->lo_name,
1640             (*lock_list)->ll_count - 1);
1641         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1642                 (*lock_list)->ll_children[j] =
1643                     (*lock_list)->ll_children[j + 1];
1644         (*lock_list)->ll_count--;
1645         intr_restore(s);
1646
1647         /*
1648          * In order to reduce contention on w_mtx, we want to keep always an
1649          * head object into lists so that frequent allocation from the 
1650          * free witness pool (and subsequent locking) is avoided.
1651          * In order to maintain the current code simple, when the head
1652          * object is totally unloaded it means also that we do not have
1653          * further objects in the list, so the list ownership needs to be
1654          * hand over to another object if the current head needs to be freed.
1655          */
1656         if ((*lock_list)->ll_count == 0) {
1657                 if (*lock_list == lle) {
1658                         if (lle->ll_next == NULL)
1659                                 return;
1660                 } else
1661                         lle = *lock_list;
1662                 *lock_list = lle->ll_next;
1663                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1664                     td->td_proc->p_pid, lle);
1665                 witness_lock_list_free(lle);
1666         }
1667 }
1668
1669 void
1670 witness_thread_exit(struct thread *td)
1671 {
1672         struct lock_list_entry *lle;
1673         int i, n;
1674
1675         lle = td->td_sleeplocks;
1676         if (lle == NULL || panicstr != NULL)
1677                 return;
1678         if (lle->ll_count != 0) {
1679                 for (n = 0; lle != NULL; lle = lle->ll_next)
1680                         for (i = lle->ll_count - 1; i >= 0; i--) {
1681                                 if (n == 0)
1682                                         witness_output(
1683                     "Thread %p exiting with the following locks held:\n", td);
1684                                 n++;
1685                                 witness_list_lock(&lle->ll_children[i],
1686                                     witness_output);
1687                                 
1688                         }
1689                 kassert_panic(
1690                     "Thread %p cannot exit while holding sleeplocks\n", td);
1691         }
1692         witness_lock_list_free(lle);
1693 }
1694
1695 /*
1696  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1697  * exempt Giant and sleepable locks from the checks as well.  If any
1698  * non-exempt locks are held, then a supplied message is printed to the
1699  * output channel along with a list of the offending locks.  If indicated in the
1700  * flags then a failure results in a panic as well.
1701  */
1702 int
1703 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1704 {
1705         struct lock_list_entry *lock_list, *lle;
1706         struct lock_instance *lock1;
1707         struct thread *td;
1708         va_list ap;
1709         int i, n;
1710
1711         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1712                 return (0);
1713         n = 0;
1714         td = curthread;
1715         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1716                 for (i = lle->ll_count - 1; i >= 0; i--) {
1717                         lock1 = &lle->ll_children[i];
1718                         if (lock1->li_lock == lock)
1719                                 continue;
1720                         if (flags & WARN_GIANTOK &&
1721                             lock1->li_lock == &Giant.lock_object)
1722                                 continue;
1723                         if (flags & WARN_SLEEPOK &&
1724                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1725                                 continue;
1726                         if (n == 0) {
1727                                 va_start(ap, fmt);
1728                                 witness_voutput(fmt, ap);
1729                                 va_end(ap);
1730                                 witness_output(
1731                                     " with the following %slocks held:\n",
1732                                     (flags & WARN_SLEEPOK) != 0 ?
1733                                     "non-sleepable " : "");
1734                         }
1735                         n++;
1736                         witness_list_lock(lock1, witness_output);
1737                 }
1738
1739         /*
1740          * Pin the thread in order to avoid problems with thread migration.
1741          * Once that all verifies are passed about spinlocks ownership,
1742          * the thread is in a safe path and it can be unpinned.
1743          */
1744         sched_pin();
1745         lock_list = PCPU_GET(spinlocks);
1746         if (lock_list != NULL && lock_list->ll_count != 0) {
1747                 sched_unpin();
1748
1749                 /*
1750                  * We should only have one spinlock and as long as
1751                  * the flags cannot match for this locks class,
1752                  * check if the first spinlock is the one curthread
1753                  * should hold.
1754                  */
1755                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1756                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1757                     lock1->li_lock == lock && n == 0)
1758                         return (0);
1759
1760                 va_start(ap, fmt);
1761                 witness_voutput(fmt, ap);
1762                 va_end(ap);
1763                 witness_output(" with the following %slocks held:\n",
1764                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1765                 n += witness_list_locks(&lock_list, witness_output);
1766         } else
1767                 sched_unpin();
1768         if (flags & WARN_PANIC && n)
1769                 kassert_panic("%s", __func__);
1770         else
1771                 witness_debugger(n, __func__);
1772         return (n);
1773 }
1774
1775 const char *
1776 witness_file(struct lock_object *lock)
1777 {
1778         struct witness *w;
1779
1780         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1781                 return ("?");
1782         w = lock->lo_witness;
1783         return (w->w_file);
1784 }
1785
1786 int
1787 witness_line(struct lock_object *lock)
1788 {
1789         struct witness *w;
1790
1791         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1792                 return (0);
1793         w = lock->lo_witness;
1794         return (w->w_line);
1795 }
1796
1797 static struct witness *
1798 enroll(const char *description, struct lock_class *lock_class)
1799 {
1800         struct witness *w;
1801         struct witness_list *typelist;
1802
1803         MPASS(description != NULL);
1804
1805         if (witness_watch == -1 || panicstr != NULL)
1806                 return (NULL);
1807         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1808                 if (witness_skipspin)
1809                         return (NULL);
1810                 else
1811                         typelist = &w_spin;
1812         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1813                 typelist = &w_sleep;
1814         } else {
1815                 kassert_panic("lock class %s is not sleep or spin",
1816                     lock_class->lc_name);
1817                 return (NULL);
1818         }
1819
1820         mtx_lock_spin(&w_mtx);
1821         w = witness_hash_get(description);
1822         if (w)
1823                 goto found;
1824         if ((w = witness_get()) == NULL)
1825                 return (NULL);
1826         MPASS(strlen(description) < MAX_W_NAME);
1827         strcpy(w->w_name, description);
1828         w->w_class = lock_class;
1829         w->w_refcount = 1;
1830         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1831         if (lock_class->lc_flags & LC_SPINLOCK) {
1832                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1833                 w_spin_cnt++;
1834         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1835                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1836                 w_sleep_cnt++;
1837         }
1838
1839         /* Insert new witness into the hash */
1840         witness_hash_put(w);
1841         witness_increment_graph_generation();
1842         mtx_unlock_spin(&w_mtx);
1843         return (w);
1844 found:
1845         w->w_refcount++;
1846         mtx_unlock_spin(&w_mtx);
1847         if (lock_class != w->w_class)
1848                 kassert_panic(
1849                         "lock (%s) %s does not match earlier (%s) lock",
1850                         description, lock_class->lc_name,
1851                         w->w_class->lc_name);
1852         return (w);
1853 }
1854
1855 static void
1856 depart(struct witness *w)
1857 {
1858         struct witness_list *list;
1859
1860         MPASS(w->w_refcount == 0);
1861         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1862                 list = &w_sleep;
1863                 w_sleep_cnt--;
1864         } else {
1865                 list = &w_spin;
1866                 w_spin_cnt--;
1867         }
1868         /*
1869          * Set file to NULL as it may point into a loadable module.
1870          */
1871         w->w_file = NULL;
1872         w->w_line = 0;
1873         witness_increment_graph_generation();
1874 }
1875
1876
1877 static void
1878 adopt(struct witness *parent, struct witness *child)
1879 {
1880         int pi, ci, i, j;
1881
1882         if (witness_cold == 0)
1883                 mtx_assert(&w_mtx, MA_OWNED);
1884
1885         /* If the relationship is already known, there's no work to be done. */
1886         if (isitmychild(parent, child))
1887                 return;
1888
1889         /* When the structure of the graph changes, bump up the generation. */
1890         witness_increment_graph_generation();
1891
1892         /*
1893          * The hard part ... create the direct relationship, then propagate all
1894          * indirect relationships.
1895          */
1896         pi = parent->w_index;
1897         ci = child->w_index;
1898         WITNESS_INDEX_ASSERT(pi);
1899         WITNESS_INDEX_ASSERT(ci);
1900         MPASS(pi != ci);
1901         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1902         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1903
1904         /*
1905          * If parent was not already an ancestor of child,
1906          * then we increment the descendant and ancestor counters.
1907          */
1908         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1909                 parent->w_num_descendants++;
1910                 child->w_num_ancestors++;
1911         }
1912
1913         /* 
1914          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1915          * an ancestor of 'pi' during this loop.
1916          */
1917         for (i = 1; i <= w_max_used_index; i++) {
1918                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1919                     (i != pi))
1920                         continue;
1921
1922                 /* Find each descendant of 'i' and mark it as a descendant. */
1923                 for (j = 1; j <= w_max_used_index; j++) {
1924
1925                         /* 
1926                          * Skip children that are already marked as
1927                          * descendants of 'i'.
1928                          */
1929                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1930                                 continue;
1931
1932                         /*
1933                          * We are only interested in descendants of 'ci'. Note
1934                          * that 'ci' itself is counted as a descendant of 'ci'.
1935                          */
1936                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1937                             (j != ci))
1938                                 continue;
1939                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1940                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1941                         w_data[i].w_num_descendants++;
1942                         w_data[j].w_num_ancestors++;
1943
1944                         /* 
1945                          * Make sure we aren't marking a node as both an
1946                          * ancestor and descendant. We should have caught 
1947                          * this as a lock order reversal earlier.
1948                          */
1949                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1950                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1951                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1952                                     "both ancestor and descendant\n",
1953                                     i, j, w_rmatrix[i][j]); 
1954                                 kdb_backtrace();
1955                                 printf("Witness disabled.\n");
1956                                 witness_watch = -1;
1957                         }
1958                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1959                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1960                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1961                                     "both ancestor and descendant\n",
1962                                     j, i, w_rmatrix[j][i]); 
1963                                 kdb_backtrace();
1964                                 printf("Witness disabled.\n");
1965                                 witness_watch = -1;
1966                         }
1967                 }
1968         }
1969 }
1970
1971 static void
1972 itismychild(struct witness *parent, struct witness *child)
1973 {
1974         int unlocked;
1975
1976         MPASS(child != NULL && parent != NULL);
1977         if (witness_cold == 0)
1978                 mtx_assert(&w_mtx, MA_OWNED);
1979
1980         if (!witness_lock_type_equal(parent, child)) {
1981                 if (witness_cold == 0) {
1982                         unlocked = 1;
1983                         mtx_unlock_spin(&w_mtx);
1984                 } else {
1985                         unlocked = 0;
1986                 }
1987                 kassert_panic(
1988                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1989                     "the same lock type", __func__, parent->w_name,
1990                     parent->w_class->lc_name, child->w_name,
1991                     child->w_class->lc_name);
1992                 if (unlocked)
1993                         mtx_lock_spin(&w_mtx);
1994         }
1995         adopt(parent, child);
1996 }
1997
1998 /*
1999  * Generic code for the isitmy*() functions. The rmask parameter is the
2000  * expected relationship of w1 to w2.
2001  */
2002 static int
2003 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2004 {
2005         unsigned char r1, r2;
2006         int i1, i2;
2007
2008         i1 = w1->w_index;
2009         i2 = w2->w_index;
2010         WITNESS_INDEX_ASSERT(i1);
2011         WITNESS_INDEX_ASSERT(i2);
2012         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2013         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2014
2015         /* The flags on one better be the inverse of the flags on the other */
2016         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2017             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2018                 /* Don't squawk if we're potentially racing with an update. */
2019                 if (!mtx_owned(&w_mtx))
2020                         return (0);
2021                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2022                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2023                     "w_rmatrix[%d][%d] == %hhx\n",
2024                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2025                     i2, i1, r2);
2026                 kdb_backtrace();
2027                 printf("Witness disabled.\n");
2028                 witness_watch = -1;
2029         }
2030         return (r1 & rmask);
2031 }
2032
2033 /*
2034  * Checks if @child is a direct child of @parent.
2035  */
2036 static int
2037 isitmychild(struct witness *parent, struct witness *child)
2038 {
2039
2040         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2041 }
2042
2043 /*
2044  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2045  */
2046 static int
2047 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2048 {
2049
2050         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2051             __func__));
2052 }
2053
2054 #ifdef BLESSING
2055 static int
2056 blessed(struct witness *w1, struct witness *w2)
2057 {
2058         int i;
2059         struct witness_blessed *b;
2060
2061         for (i = 0; i < nitems(blessed_list); i++) {
2062                 b = &blessed_list[i];
2063                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2064                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2065                                 return (1);
2066                         continue;
2067                 }
2068                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2069                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2070                                 return (1);
2071         }
2072         return (0);
2073 }
2074 #endif
2075
2076 static struct witness *
2077 witness_get(void)
2078 {
2079         struct witness *w;
2080         int index;
2081
2082         if (witness_cold == 0)
2083                 mtx_assert(&w_mtx, MA_OWNED);
2084
2085         if (witness_watch == -1) {
2086                 mtx_unlock_spin(&w_mtx);
2087                 return (NULL);
2088         }
2089         if (STAILQ_EMPTY(&w_free)) {
2090                 witness_watch = -1;
2091                 mtx_unlock_spin(&w_mtx);
2092                 printf("WITNESS: unable to allocate a new witness object\n");
2093                 return (NULL);
2094         }
2095         w = STAILQ_FIRST(&w_free);
2096         STAILQ_REMOVE_HEAD(&w_free, w_list);
2097         w_free_cnt--;
2098         index = w->w_index;
2099         MPASS(index > 0 && index == w_max_used_index+1 &&
2100             index < witness_count);
2101         bzero(w, sizeof(*w));
2102         w->w_index = index;
2103         if (index > w_max_used_index)
2104                 w_max_used_index = index;
2105         return (w);
2106 }
2107
2108 static void
2109 witness_free(struct witness *w)
2110 {
2111
2112         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2113         w_free_cnt++;
2114 }
2115
2116 static struct lock_list_entry *
2117 witness_lock_list_get(void)
2118 {
2119         struct lock_list_entry *lle;
2120
2121         if (witness_watch == -1)
2122                 return (NULL);
2123         mtx_lock_spin(&w_mtx);
2124         lle = w_lock_list_free;
2125         if (lle == NULL) {
2126                 witness_watch = -1;
2127                 mtx_unlock_spin(&w_mtx);
2128                 printf("%s: witness exhausted\n", __func__);
2129                 return (NULL);
2130         }
2131         w_lock_list_free = lle->ll_next;
2132         mtx_unlock_spin(&w_mtx);
2133         bzero(lle, sizeof(*lle));
2134         return (lle);
2135 }
2136                 
2137 static void
2138 witness_lock_list_free(struct lock_list_entry *lle)
2139 {
2140
2141         mtx_lock_spin(&w_mtx);
2142         lle->ll_next = w_lock_list_free;
2143         w_lock_list_free = lle;
2144         mtx_unlock_spin(&w_mtx);
2145 }
2146
2147 static struct lock_instance *
2148 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2149 {
2150         struct lock_list_entry *lle;
2151         struct lock_instance *instance;
2152         int i;
2153
2154         for (lle = list; lle != NULL; lle = lle->ll_next)
2155                 for (i = lle->ll_count - 1; i >= 0; i--) {
2156                         instance = &lle->ll_children[i];
2157                         if (instance->li_lock == lock)
2158                                 return (instance);
2159                 }
2160         return (NULL);
2161 }
2162
2163 static void
2164 witness_list_lock(struct lock_instance *instance,
2165     int (*prnt)(const char *fmt, ...))
2166 {
2167         struct lock_object *lock;
2168
2169         lock = instance->li_lock;
2170         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2171             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2172         if (lock->lo_witness->w_name != lock->lo_name)
2173                 prnt(" (%s)", lock->lo_witness->w_name);
2174         prnt(" r = %d (%p) locked @ %s:%d\n",
2175             instance->li_flags & LI_RECURSEMASK, lock,
2176             fixup_filename(instance->li_file), instance->li_line);
2177 }
2178
2179 static int
2180 witness_output(const char *fmt, ...)
2181 {
2182         va_list ap;
2183         int ret;
2184
2185         va_start(ap, fmt);
2186         ret = witness_voutput(fmt, ap);
2187         va_end(ap);
2188         return (ret);
2189 }
2190
2191 static int
2192 witness_voutput(const char *fmt, va_list ap)
2193 {
2194         int ret;
2195
2196         ret = 0;
2197         switch (witness_channel) {
2198         case WITNESS_CONSOLE:
2199                 ret = vprintf(fmt, ap);
2200                 break;
2201         case WITNESS_LOG:
2202                 vlog(LOG_NOTICE, fmt, ap);
2203                 break;
2204         case WITNESS_NONE:
2205                 break;
2206         }
2207         return (ret);
2208 }
2209
2210 #ifdef DDB
2211 static int
2212 witness_thread_has_locks(struct thread *td)
2213 {
2214
2215         if (td->td_sleeplocks == NULL)
2216                 return (0);
2217         return (td->td_sleeplocks->ll_count != 0);
2218 }
2219
2220 static int
2221 witness_proc_has_locks(struct proc *p)
2222 {
2223         struct thread *td;
2224
2225         FOREACH_THREAD_IN_PROC(p, td) {
2226                 if (witness_thread_has_locks(td))
2227                         return (1);
2228         }
2229         return (0);
2230 }
2231 #endif
2232
2233 int
2234 witness_list_locks(struct lock_list_entry **lock_list,
2235     int (*prnt)(const char *fmt, ...))
2236 {
2237         struct lock_list_entry *lle;
2238         int i, nheld;
2239
2240         nheld = 0;
2241         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2242                 for (i = lle->ll_count - 1; i >= 0; i--) {
2243                         witness_list_lock(&lle->ll_children[i], prnt);
2244                         nheld++;
2245                 }
2246         return (nheld);
2247 }
2248
2249 /*
2250  * This is a bit risky at best.  We call this function when we have timed
2251  * out acquiring a spin lock, and we assume that the other CPU is stuck
2252  * with this lock held.  So, we go groveling around in the other CPU's
2253  * per-cpu data to try to find the lock instance for this spin lock to
2254  * see when it was last acquired.
2255  */
2256 void
2257 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2258     int (*prnt)(const char *fmt, ...))
2259 {
2260         struct lock_instance *instance;
2261         struct pcpu *pc;
2262
2263         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2264                 return;
2265         pc = pcpu_find(owner->td_oncpu);
2266         instance = find_instance(pc->pc_spinlocks, lock);
2267         if (instance != NULL)
2268                 witness_list_lock(instance, prnt);
2269 }
2270
2271 void
2272 witness_save(struct lock_object *lock, const char **filep, int *linep)
2273 {
2274         struct lock_list_entry *lock_list;
2275         struct lock_instance *instance;
2276         struct lock_class *class;
2277
2278         /*
2279          * This function is used independently in locking code to deal with
2280          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2281          * is gone.
2282          */
2283         if (SCHEDULER_STOPPED())
2284                 return;
2285         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2286         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2287                 return;
2288         class = LOCK_CLASS(lock);
2289         if (class->lc_flags & LC_SLEEPLOCK)
2290                 lock_list = curthread->td_sleeplocks;
2291         else {
2292                 if (witness_skipspin)
2293                         return;
2294                 lock_list = PCPU_GET(spinlocks);
2295         }
2296         instance = find_instance(lock_list, lock);
2297         if (instance == NULL) {
2298                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2299                     class->lc_name, lock->lo_name);
2300                 return;
2301         }
2302         *filep = instance->li_file;
2303         *linep = instance->li_line;
2304 }
2305
2306 void
2307 witness_restore(struct lock_object *lock, const char *file, int line)
2308 {
2309         struct lock_list_entry *lock_list;
2310         struct lock_instance *instance;
2311         struct lock_class *class;
2312
2313         /*
2314          * This function is used independently in locking code to deal with
2315          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2316          * is gone.
2317          */
2318         if (SCHEDULER_STOPPED())
2319                 return;
2320         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2321         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2322                 return;
2323         class = LOCK_CLASS(lock);
2324         if (class->lc_flags & LC_SLEEPLOCK)
2325                 lock_list = curthread->td_sleeplocks;
2326         else {
2327                 if (witness_skipspin)
2328                         return;
2329                 lock_list = PCPU_GET(spinlocks);
2330         }
2331         instance = find_instance(lock_list, lock);
2332         if (instance == NULL)
2333                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2334                     class->lc_name, lock->lo_name);
2335         lock->lo_witness->w_file = file;
2336         lock->lo_witness->w_line = line;
2337         if (instance == NULL)
2338                 return;
2339         instance->li_file = file;
2340         instance->li_line = line;
2341 }
2342
2343 void
2344 witness_assert(const struct lock_object *lock, int flags, const char *file,
2345     int line)
2346 {
2347 #ifdef INVARIANT_SUPPORT
2348         struct lock_instance *instance;
2349         struct lock_class *class;
2350
2351         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2352                 return;
2353         class = LOCK_CLASS(lock);
2354         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2355                 instance = find_instance(curthread->td_sleeplocks, lock);
2356         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2357                 instance = find_instance(PCPU_GET(spinlocks), lock);
2358         else {
2359                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2360                     class->lc_name, lock->lo_name);
2361                 return;
2362         }
2363         switch (flags) {
2364         case LA_UNLOCKED:
2365                 if (instance != NULL)
2366                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2367                             class->lc_name, lock->lo_name,
2368                             fixup_filename(file), line);
2369                 break;
2370         case LA_LOCKED:
2371         case LA_LOCKED | LA_RECURSED:
2372         case LA_LOCKED | LA_NOTRECURSED:
2373         case LA_SLOCKED:
2374         case LA_SLOCKED | LA_RECURSED:
2375         case LA_SLOCKED | LA_NOTRECURSED:
2376         case LA_XLOCKED:
2377         case LA_XLOCKED | LA_RECURSED:
2378         case LA_XLOCKED | LA_NOTRECURSED:
2379                 if (instance == NULL) {
2380                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2381                             class->lc_name, lock->lo_name,
2382                             fixup_filename(file), line);
2383                         break;
2384                 }
2385                 if ((flags & LA_XLOCKED) != 0 &&
2386                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2387                         kassert_panic(
2388                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2389                             class->lc_name, lock->lo_name,
2390                             fixup_filename(file), line);
2391                 if ((flags & LA_SLOCKED) != 0 &&
2392                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2393                         kassert_panic(
2394                             "Lock (%s) %s exclusively locked @ %s:%d.",
2395                             class->lc_name, lock->lo_name,
2396                             fixup_filename(file), line);
2397                 if ((flags & LA_RECURSED) != 0 &&
2398                     (instance->li_flags & LI_RECURSEMASK) == 0)
2399                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2400                             class->lc_name, lock->lo_name,
2401                             fixup_filename(file), line);
2402                 if ((flags & LA_NOTRECURSED) != 0 &&
2403                     (instance->li_flags & LI_RECURSEMASK) != 0)
2404                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2405                             class->lc_name, lock->lo_name,
2406                             fixup_filename(file), line);
2407                 break;
2408         default:
2409                 kassert_panic("Invalid lock assertion at %s:%d.",
2410                     fixup_filename(file), line);
2411
2412         }
2413 #endif  /* INVARIANT_SUPPORT */
2414 }
2415
2416 static void
2417 witness_setflag(struct lock_object *lock, int flag, int set)
2418 {
2419         struct lock_list_entry *lock_list;
2420         struct lock_instance *instance;
2421         struct lock_class *class;
2422
2423         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2424                 return;
2425         class = LOCK_CLASS(lock);
2426         if (class->lc_flags & LC_SLEEPLOCK)
2427                 lock_list = curthread->td_sleeplocks;
2428         else {
2429                 if (witness_skipspin)
2430                         return;
2431                 lock_list = PCPU_GET(spinlocks);
2432         }
2433         instance = find_instance(lock_list, lock);
2434         if (instance == NULL) {
2435                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2436                     class->lc_name, lock->lo_name);
2437                 return;
2438         }
2439
2440         if (set)
2441                 instance->li_flags |= flag;
2442         else
2443                 instance->li_flags &= ~flag;
2444 }
2445
2446 void
2447 witness_norelease(struct lock_object *lock)
2448 {
2449
2450         witness_setflag(lock, LI_NORELEASE, 1);
2451 }
2452
2453 void
2454 witness_releaseok(struct lock_object *lock)
2455 {
2456
2457         witness_setflag(lock, LI_NORELEASE, 0);
2458 }
2459
2460 #ifdef DDB
2461 static void
2462 witness_ddb_list(struct thread *td)
2463 {
2464
2465         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2466         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2467
2468         if (witness_watch < 1)
2469                 return;
2470
2471         witness_list_locks(&td->td_sleeplocks, db_printf);
2472
2473         /*
2474          * We only handle spinlocks if td == curthread.  This is somewhat broken
2475          * if td is currently executing on some other CPU and holds spin locks
2476          * as we won't display those locks.  If we had a MI way of getting
2477          * the per-cpu data for a given cpu then we could use
2478          * td->td_oncpu to get the list of spinlocks for this thread
2479          * and "fix" this.
2480          *
2481          * That still wouldn't really fix this unless we locked the scheduler
2482          * lock or stopped the other CPU to make sure it wasn't changing the
2483          * list out from under us.  It is probably best to just not try to
2484          * handle threads on other CPU's for now.
2485          */
2486         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2487                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2488 }
2489
2490 DB_SHOW_COMMAND(locks, db_witness_list)
2491 {
2492         struct thread *td;
2493
2494         if (have_addr)
2495                 td = db_lookup_thread(addr, true);
2496         else
2497                 td = kdb_thread;
2498         witness_ddb_list(td);
2499 }
2500
2501 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2502 {
2503         struct thread *td;
2504         struct proc *p;
2505
2506         /*
2507          * It would be nice to list only threads and processes that actually
2508          * held sleep locks, but that information is currently not exported
2509          * by WITNESS.
2510          */
2511         FOREACH_PROC_IN_SYSTEM(p) {
2512                 if (!witness_proc_has_locks(p))
2513                         continue;
2514                 FOREACH_THREAD_IN_PROC(p, td) {
2515                         if (!witness_thread_has_locks(td))
2516                                 continue;
2517                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2518                             p->p_comm, td, td->td_tid);
2519                         witness_ddb_list(td);
2520                         if (db_pager_quit)
2521                                 return;
2522                 }
2523         }
2524 }
2525 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2526
2527 DB_SHOW_COMMAND(witness, db_witness_display)
2528 {
2529
2530         witness_ddb_display(db_printf);
2531 }
2532 #endif
2533
2534 static int
2535 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2536 {
2537         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2538         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2539         struct sbuf *sb;
2540         u_int w_rmatrix1, w_rmatrix2;
2541         int error, generation, i, j;
2542
2543         tmp_data1 = NULL;
2544         tmp_data2 = NULL;
2545         tmp_w1 = NULL;
2546         tmp_w2 = NULL;
2547         if (witness_watch < 1) {
2548                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2549                 return (error);
2550         }
2551         if (witness_cold) {
2552                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2553                 return (error);
2554         }
2555         error = 0;
2556         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2557         if (sb == NULL)
2558                 return (ENOMEM);
2559
2560         /* Allocate and init temporary storage space. */
2561         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2562         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2563         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2564             M_WAITOK | M_ZERO);
2565         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2566             M_WAITOK | M_ZERO);
2567         stack_zero(&tmp_data1->wlod_stack);
2568         stack_zero(&tmp_data2->wlod_stack);
2569
2570 restart:
2571         mtx_lock_spin(&w_mtx);
2572         generation = w_generation;
2573         mtx_unlock_spin(&w_mtx);
2574         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2575             w_lohash.wloh_count);
2576         for (i = 1; i < w_max_used_index; i++) {
2577                 mtx_lock_spin(&w_mtx);
2578                 if (generation != w_generation) {
2579                         mtx_unlock_spin(&w_mtx);
2580
2581                         /* The graph has changed, try again. */
2582                         req->oldidx = 0;
2583                         sbuf_clear(sb);
2584                         goto restart;
2585                 }
2586
2587                 w1 = &w_data[i];
2588                 if (w1->w_reversed == 0) {
2589                         mtx_unlock_spin(&w_mtx);
2590                         continue;
2591                 }
2592
2593                 /* Copy w1 locally so we can release the spin lock. */
2594                 *tmp_w1 = *w1;
2595                 mtx_unlock_spin(&w_mtx);
2596
2597                 if (tmp_w1->w_reversed == 0)
2598                         continue;
2599                 for (j = 1; j < w_max_used_index; j++) {
2600                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2601                                 continue;
2602
2603                         mtx_lock_spin(&w_mtx);
2604                         if (generation != w_generation) {
2605                                 mtx_unlock_spin(&w_mtx);
2606
2607                                 /* The graph has changed, try again. */
2608                                 req->oldidx = 0;
2609                                 sbuf_clear(sb);
2610                                 goto restart;
2611                         }
2612
2613                         w2 = &w_data[j];
2614                         data1 = witness_lock_order_get(w1, w2);
2615                         data2 = witness_lock_order_get(w2, w1);
2616
2617                         /*
2618                          * Copy information locally so we can release the
2619                          * spin lock.
2620                          */
2621                         *tmp_w2 = *w2;
2622                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2623                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2624
2625                         if (data1) {
2626                                 stack_zero(&tmp_data1->wlod_stack);
2627                                 stack_copy(&data1->wlod_stack,
2628                                     &tmp_data1->wlod_stack);
2629                         }
2630                         if (data2 && data2 != data1) {
2631                                 stack_zero(&tmp_data2->wlod_stack);
2632                                 stack_copy(&data2->wlod_stack,
2633                                     &tmp_data2->wlod_stack);
2634                         }
2635                         mtx_unlock_spin(&w_mtx);
2636
2637                         sbuf_printf(sb,
2638             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2639                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2640                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2641                         if (data1) {
2642                                 sbuf_printf(sb,
2643                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2644                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2645                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2646                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2647                                 sbuf_printf(sb, "\n");
2648                         }
2649                         if (data2 && data2 != data1) {
2650                                 sbuf_printf(sb,
2651                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2652                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2653                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2654                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2655                                 sbuf_printf(sb, "\n");
2656                         }
2657                 }
2658         }
2659         mtx_lock_spin(&w_mtx);
2660         if (generation != w_generation) {
2661                 mtx_unlock_spin(&w_mtx);
2662
2663                 /*
2664                  * The graph changed while we were printing stack data,
2665                  * try again.
2666                  */
2667                 req->oldidx = 0;
2668                 sbuf_clear(sb);
2669                 goto restart;
2670         }
2671         mtx_unlock_spin(&w_mtx);
2672
2673         /* Free temporary storage space. */
2674         free(tmp_data1, M_TEMP);
2675         free(tmp_data2, M_TEMP);
2676         free(tmp_w1, M_TEMP);
2677         free(tmp_w2, M_TEMP);
2678
2679         sbuf_finish(sb);
2680         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2681         sbuf_delete(sb);
2682
2683         return (error);
2684 }
2685
2686 static int
2687 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2688 {
2689         static const struct {
2690                 enum witness_channel channel;
2691                 const char *name;
2692         } channels[] = {
2693                 { WITNESS_CONSOLE, "console" },
2694                 { WITNESS_LOG, "log" },
2695                 { WITNESS_NONE, "none" },
2696         };
2697         char buf[16];
2698         u_int i;
2699         int error;
2700
2701         buf[0] = '\0';
2702         for (i = 0; i < nitems(channels); i++)
2703                 if (witness_channel == channels[i].channel) {
2704                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2705                         break;
2706                 }
2707
2708         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2709         if (error != 0 || req->newptr == NULL)
2710                 return (error);
2711
2712         error = EINVAL;
2713         for (i = 0; i < nitems(channels); i++)
2714                 if (strcmp(channels[i].name, buf) == 0) {
2715                         witness_channel = channels[i].channel;
2716                         error = 0;
2717                         break;
2718                 }
2719         return (error);
2720 }
2721
2722 static int
2723 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2724 {
2725         struct witness *w;
2726         struct sbuf *sb;
2727         int error;
2728
2729         if (witness_watch < 1) {
2730                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2731                 return (error);
2732         }
2733         if (witness_cold) {
2734                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2735                 return (error);
2736         }
2737         error = 0;
2738
2739         error = sysctl_wire_old_buffer(req, 0);
2740         if (error != 0)
2741                 return (error);
2742         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2743         if (sb == NULL)
2744                 return (ENOMEM);
2745         sbuf_printf(sb, "\n");
2746
2747         mtx_lock_spin(&w_mtx);
2748         STAILQ_FOREACH(w, &w_all, w_list)
2749                 w->w_displayed = 0;
2750         STAILQ_FOREACH(w, &w_all, w_list)
2751                 witness_add_fullgraph(sb, w);
2752         mtx_unlock_spin(&w_mtx);
2753
2754         /*
2755          * Close the sbuf and return to userland.
2756          */
2757         error = sbuf_finish(sb);
2758         sbuf_delete(sb);
2759
2760         return (error);
2761 }
2762
2763 static int
2764 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2765 {
2766         int error, value;
2767
2768         value = witness_watch;
2769         error = sysctl_handle_int(oidp, &value, 0, req);
2770         if (error != 0 || req->newptr == NULL)
2771                 return (error);
2772         if (value > 1 || value < -1 ||
2773             (witness_watch == -1 && value != witness_watch))
2774                 return (EINVAL);
2775         witness_watch = value;
2776         return (0);
2777 }
2778
2779 static void
2780 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2781 {
2782         int i;
2783
2784         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2785                 return;
2786         w->w_displayed = 1;
2787
2788         WITNESS_INDEX_ASSERT(w->w_index);
2789         for (i = 1; i <= w_max_used_index; i++) {
2790                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2791                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2792                             w_data[i].w_name);
2793                         witness_add_fullgraph(sb, &w_data[i]);
2794                 }
2795         }
2796 }
2797
2798 /*
2799  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2800  * interprets the key as a string and reads until the null
2801  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2802  * hash value computed from the key.
2803  */
2804 static uint32_t
2805 witness_hash_djb2(const uint8_t *key, uint32_t size)
2806 {
2807         unsigned int hash = 5381;
2808         int i;
2809
2810         /* hash = hash * 33 + key[i] */
2811         if (size)
2812                 for (i = 0; i < size; i++)
2813                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2814         else
2815                 for (i = 0; key[i] != 0; i++)
2816                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2817
2818         return (hash);
2819 }
2820
2821
2822 /*
2823  * Initializes the two witness hash tables. Called exactly once from
2824  * witness_initialize().
2825  */
2826 static void
2827 witness_init_hash_tables(void)
2828 {
2829         int i;
2830
2831         MPASS(witness_cold);
2832
2833         /* Initialize the hash tables. */
2834         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2835                 w_hash.wh_array[i] = NULL;
2836
2837         w_hash.wh_size = WITNESS_HASH_SIZE;
2838         w_hash.wh_count = 0;
2839
2840         /* Initialize the lock order data hash. */
2841         w_lofree = NULL;
2842         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2843                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2844                 w_lodata[i].wlod_next = w_lofree;
2845                 w_lofree = &w_lodata[i];
2846         }
2847         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2848         w_lohash.wloh_count = 0;
2849         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2850                 w_lohash.wloh_array[i] = NULL;
2851 }
2852
2853 static struct witness *
2854 witness_hash_get(const char *key)
2855 {
2856         struct witness *w;
2857         uint32_t hash;
2858         
2859         MPASS(key != NULL);
2860         if (witness_cold == 0)
2861                 mtx_assert(&w_mtx, MA_OWNED);
2862         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2863         w = w_hash.wh_array[hash];
2864         while (w != NULL) {
2865                 if (strcmp(w->w_name, key) == 0)
2866                         goto out;
2867                 w = w->w_hash_next;
2868         }
2869
2870 out:
2871         return (w);
2872 }
2873
2874 static void
2875 witness_hash_put(struct witness *w)
2876 {
2877         uint32_t hash;
2878
2879         MPASS(w != NULL);
2880         MPASS(w->w_name != NULL);
2881         if (witness_cold == 0)
2882                 mtx_assert(&w_mtx, MA_OWNED);
2883         KASSERT(witness_hash_get(w->w_name) == NULL,
2884             ("%s: trying to add a hash entry that already exists!", __func__));
2885         KASSERT(w->w_hash_next == NULL,
2886             ("%s: w->w_hash_next != NULL", __func__));
2887
2888         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2889         w->w_hash_next = w_hash.wh_array[hash];
2890         w_hash.wh_array[hash] = w;
2891         w_hash.wh_count++;
2892 }
2893
2894
2895 static struct witness_lock_order_data *
2896 witness_lock_order_get(struct witness *parent, struct witness *child)
2897 {
2898         struct witness_lock_order_data *data = NULL;
2899         struct witness_lock_order_key key;
2900         unsigned int hash;
2901
2902         MPASS(parent != NULL && child != NULL);
2903         key.from = parent->w_index;
2904         key.to = child->w_index;
2905         WITNESS_INDEX_ASSERT(key.from);
2906         WITNESS_INDEX_ASSERT(key.to);
2907         if ((w_rmatrix[parent->w_index][child->w_index]
2908             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2909                 goto out;
2910
2911         hash = witness_hash_djb2((const char*)&key,
2912             sizeof(key)) % w_lohash.wloh_size;
2913         data = w_lohash.wloh_array[hash];
2914         while (data != NULL) {
2915                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2916                         break;
2917                 data = data->wlod_next;
2918         }
2919
2920 out:
2921         return (data);
2922 }
2923
2924 /*
2925  * Verify that parent and child have a known relationship, are not the same,
2926  * and child is actually a child of parent.  This is done without w_mtx
2927  * to avoid contention in the common case.
2928  */
2929 static int
2930 witness_lock_order_check(struct witness *parent, struct witness *child)
2931 {
2932
2933         if (parent != child &&
2934             w_rmatrix[parent->w_index][child->w_index]
2935             & WITNESS_LOCK_ORDER_KNOWN &&
2936             isitmychild(parent, child))
2937                 return (1);
2938
2939         return (0);
2940 }
2941
2942 static int
2943 witness_lock_order_add(struct witness *parent, struct witness *child)
2944 {
2945         struct witness_lock_order_data *data = NULL;
2946         struct witness_lock_order_key key;
2947         unsigned int hash;
2948         
2949         MPASS(parent != NULL && child != NULL);
2950         key.from = parent->w_index;
2951         key.to = child->w_index;
2952         WITNESS_INDEX_ASSERT(key.from);
2953         WITNESS_INDEX_ASSERT(key.to);
2954         if (w_rmatrix[parent->w_index][child->w_index]
2955             & WITNESS_LOCK_ORDER_KNOWN)
2956                 return (1);
2957
2958         hash = witness_hash_djb2((const char*)&key,
2959             sizeof(key)) % w_lohash.wloh_size;
2960         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2961         data = w_lofree;
2962         if (data == NULL)
2963                 return (0);
2964         w_lofree = data->wlod_next;
2965         data->wlod_next = w_lohash.wloh_array[hash];
2966         data->wlod_key = key;
2967         w_lohash.wloh_array[hash] = data;
2968         w_lohash.wloh_count++;
2969         stack_zero(&data->wlod_stack);
2970         stack_save(&data->wlod_stack);
2971         return (1);
2972 }
2973
2974 /* Call this whenever the structure of the witness graph changes. */
2975 static void
2976 witness_increment_graph_generation(void)
2977 {
2978
2979         if (witness_cold == 0)
2980                 mtx_assert(&w_mtx, MA_OWNED);
2981         w_generation++;
2982 }
2983
2984 static int
2985 witness_output_drain(void *arg __unused, const char *data, int len)
2986 {
2987
2988         witness_output("%.*s", len, data);
2989         return (len);
2990 }
2991
2992 static void
2993 witness_debugger(int cond, const char *msg)
2994 {
2995         char buf[32];
2996         struct sbuf sb;
2997         struct stack st;
2998
2999         if (!cond)
3000                 return;
3001
3002         if (witness_trace) {
3003                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3004                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3005
3006                 stack_zero(&st);
3007                 stack_save(&st);
3008                 witness_output("stack backtrace:\n");
3009                 stack_sbuf_print_ddb(&sb, &st);
3010
3011                 sbuf_finish(&sb);
3012         }
3013
3014 #ifdef KDB
3015         if (witness_kdb)
3016                 kdb_enter(KDB_WHY_WITNESS, msg);
3017 #endif
3018 }