]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
MFV r247580:
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        768
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define FULLGRAPH_SBUF_SIZE     512
158
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define WITNESS_RELATED_MASK                                            \
171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173                                           * observed. */
174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178 /* Descendant to ancestor flags */
179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
180
181 /* Ancestor to descendant flags */
182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
183
184 #define WITNESS_INDEX_ASSERT(i)                                         \
185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196         struct lock_object      *li_lock;
197         const char              *li_file;
198         int                     li_line;
199         u_int                   li_flags;
200 };
201
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213         struct lock_list_entry  *ll_next;
214         struct lock_instance    ll_children[LOCK_NCHILDREN];
215         u_int                   ll_count;
216 };
217
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223         char                    w_name[MAX_W_NAME];
224         uint32_t                w_index;  /* Index in the relationship matrix */
225         struct lock_class       *w_class;
226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
229         const char              *w_file; /* File where last acquired */
230         uint32_t                w_line; /* Line where last acquired */
231         uint32_t                w_refcount;
232         uint16_t                w_num_ancestors; /* direct/indirect
233                                                   * ancestor count */
234         uint16_t                w_num_descendants; /* direct/indirect
235                                                     * descendant count */
236         int16_t                 w_ddb_level;
237         unsigned                w_displayed:1;
238         unsigned                w_reversed:1;
239 };
240
241 STAILQ_HEAD(witness_list, witness);
242
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248         struct witness  *wh_array[WITNESS_HASH_SIZE];
249         uint32_t        wh_size;
250         uint32_t        wh_count;
251 };
252
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257         uint16_t        from;
258         uint16_t        to;
259 };
260
261 struct witness_lock_order_data {
262         struct stack                    wlod_stack;
263         struct witness_lock_order_key   wlod_key;
264         struct witness_lock_order_data  *wlod_next;
265 };
266
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data). 
271  */
272 struct witness_lock_order_hash {
273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
274         u_int   wloh_size;
275         u_int   wloh_count;
276 };
277
278 #ifdef BLESSING
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283 #endif
284
285 struct witness_pendhelp {
286         const char              *wh_type;
287         struct lock_object      *wh_lock;
288 };
289
290 struct witness_order_list_entry {
291         const char              *w_name;
292         struct lock_class       *w_class;
293 };
294
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302
303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306
307 static __inline int
308 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309 {
310
311         return (key->from == 0 && key->to == 0);
312 }
313
314 static __inline int
315 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316     const struct witness_lock_order_key *b)
317 {
318
319         return (a->from == b->from && a->to == b->to);
320 }
321
322 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
323                     const char *fname);
324 #ifdef KDB
325 static void     _witness_debugger(int cond, const char *msg);
326 #endif
327 static void     adopt(struct witness *parent, struct witness *child);
328 #ifdef BLESSING
329 static int      blessed(struct witness *, struct witness *);
330 #endif
331 static void     depart(struct witness *w);
332 static struct witness   *enroll(const char *description,
333                             struct lock_class *lock_class);
334 static struct lock_instance     *find_instance(struct lock_list_entry *list,
335                                     const struct lock_object *lock);
336 static int      isitmychild(struct witness *parent, struct witness *child);
337 static int      isitmydescendant(struct witness *parent, struct witness *child);
338 static void     itismychild(struct witness *parent, struct witness *child);
339 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343 #ifdef DDB
344 static void     witness_ddb_compute_levels(void);
345 static void     witness_ddb_display(int(*)(const char *fmt, ...));
346 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
347                     struct witness *, int indent);
348 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
349                     struct witness_list *list);
350 static void     witness_ddb_level_descendants(struct witness *parent, int l);
351 static void     witness_ddb_list(struct thread *td);
352 #endif
353 static void     witness_free(struct witness *m);
354 static struct witness   *witness_get(void);
355 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
356 static struct witness   *witness_hash_get(const char *key);
357 static void     witness_hash_put(struct witness *w);
358 static void     witness_init_hash_tables(void);
359 static void     witness_increment_graph_generation(void);
360 static void     witness_lock_list_free(struct lock_list_entry *lle);
361 static struct lock_list_entry   *witness_lock_list_get(void);
362 static int      witness_lock_order_add(struct witness *parent,
363                     struct witness *child);
364 static int      witness_lock_order_check(struct witness *parent,
365                     struct witness *child);
366 static struct witness_lock_order_data   *witness_lock_order_get(
367                                             struct witness *parent,
368                                             struct witness *child);
369 static void     witness_list_lock(struct lock_instance *instance,
370                     int (*prnt)(const char *fmt, ...));
371 static void     witness_setflag(struct lock_object *lock, int flag, int set);
372
373 #ifdef KDB
374 #define witness_debugger(c)     _witness_debugger(c, __func__)
375 #else
376 #define witness_debugger(c)
377 #endif
378
379 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
380     "Witness Locking");
381
382 /*
383  * If set to 0, lock order checking is disabled.  If set to -1,
384  * witness is completely disabled.  Otherwise witness performs full
385  * lock order checking for all locks.  At runtime, lock order checking
386  * may be toggled.  However, witness cannot be reenabled once it is
387  * completely disabled.
388  */
389 static int witness_watch = 1;
390 TUNABLE_INT("debug.witness.watch", &witness_watch);
391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393
394 #ifdef KDB
395 /*
396  * When KDB is enabled and witness_kdb is 1, it will cause the system
397  * to drop into kdebug() when:
398  *      - a lock hierarchy violation occurs
399  *      - locks are held when going to sleep.
400  */
401 #ifdef WITNESS_KDB
402 int     witness_kdb = 1;
403 #else
404 int     witness_kdb = 0;
405 #endif
406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408
409 /*
410  * When KDB is enabled and witness_trace is 1, it will cause the system
411  * to print a stack trace:
412  *      - a lock hierarchy violation occurs
413  *      - locks are held when going to sleep.
414  */
415 int     witness_trace = 1;
416 TUNABLE_INT("debug.witness.trace", &witness_trace);
417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418 #endif /* KDB */
419
420 #ifdef WITNESS_SKIPSPIN
421 int     witness_skipspin = 1;
422 #else
423 int     witness_skipspin = 0;
424 #endif
425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427     0, "");
428
429 /*
430  * Call this to print out the relations between locks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434
435 /*
436  * Call this to print out the witness faulty stacks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440
441 static struct mtx w_mtx;
442
443 /* w_list */
444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446
447 /* w_typelist */
448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450
451 /* lock list */
452 static struct lock_list_entry *w_lock_list_free = NULL;
453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454 static u_int pending_cnt;
455
456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460     "");
461
462 static struct witness *w_data;
463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465 static struct witness_hash w_hash;      /* The witness hash table. */
466
467 /* The lock order data hash */
468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469 static struct witness_lock_order_data *w_lofree = NULL;
470 static struct witness_lock_order_hash w_lohash;
471 static int w_max_used_index = 0;
472 static unsigned int w_generation = 0;
473 static const char w_notrunning[] = "Witness not running\n";
474 static const char w_stillcold[] = "Witness is still cold\n";
475
476
477 static struct witness_order_list_entry order_lists[] = {
478         /*
479          * sx locks
480          */
481         { "proctree", &lock_class_sx },
482         { "allproc", &lock_class_sx },
483         { "allprison", &lock_class_sx },
484         { NULL, NULL },
485         /*
486          * Various mutexes
487          */
488         { "Giant", &lock_class_mtx_sleep },
489         { "pipe mutex", &lock_class_mtx_sleep },
490         { "sigio lock", &lock_class_mtx_sleep },
491         { "process group", &lock_class_mtx_sleep },
492         { "process lock", &lock_class_mtx_sleep },
493         { "session", &lock_class_mtx_sleep },
494         { "uidinfo hash", &lock_class_rw },
495 #ifdef  HWPMC_HOOKS
496         { "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498         { "time lock", &lock_class_mtx_sleep },
499         { NULL, NULL },
500         /*
501          * Sockets
502          */
503         { "accept", &lock_class_mtx_sleep },
504         { "so_snd", &lock_class_mtx_sleep },
505         { "so_rcv", &lock_class_mtx_sleep },
506         { "sellck", &lock_class_mtx_sleep },
507         { NULL, NULL },
508         /*
509          * Routing
510          */
511         { "so_rcv", &lock_class_mtx_sleep },
512         { "radix node head", &lock_class_rw },
513         { "rtentry", &lock_class_mtx_sleep },
514         { "ifaddr", &lock_class_mtx_sleep },
515         { NULL, NULL },
516         /*
517          * IPv4 multicast:
518          * protocol locks before interface locks, after UDP locks.
519          */
520         { "udpinp", &lock_class_rw },
521         { "in_multi_mtx", &lock_class_mtx_sleep },
522         { "igmp_mtx", &lock_class_mtx_sleep },
523         { "if_addr_lock", &lock_class_rw },
524         { NULL, NULL },
525         /*
526          * IPv6 multicast:
527          * protocol locks before interface locks, after UDP locks.
528          */
529         { "udpinp", &lock_class_rw },
530         { "in6_multi_mtx", &lock_class_mtx_sleep },
531         { "mld_mtx", &lock_class_mtx_sleep },
532         { "if_addr_lock", &lock_class_rw },
533         { NULL, NULL },
534         /*
535          * UNIX Domain Sockets
536          */
537         { "unp_global_rwlock", &lock_class_rw },
538         { "unp_list_lock", &lock_class_mtx_sleep },
539         { "unp", &lock_class_mtx_sleep },
540         { "so_snd", &lock_class_mtx_sleep },
541         { NULL, NULL },
542         /*
543          * UDP/IP
544          */
545         { "udp", &lock_class_rw },
546         { "udpinp", &lock_class_rw },
547         { "so_snd", &lock_class_mtx_sleep },
548         { NULL, NULL },
549         /*
550          * TCP/IP
551          */
552         { "tcp", &lock_class_rw },
553         { "tcpinp", &lock_class_rw },
554         { "so_snd", &lock_class_mtx_sleep },
555         { NULL, NULL },
556         /*
557          * netatalk
558          */
559         { "ddp_list_mtx", &lock_class_mtx_sleep },
560         { "ddp_mtx", &lock_class_mtx_sleep },
561         { NULL, NULL },
562         /*
563          * BPF
564          */
565         { "bpf global lock", &lock_class_mtx_sleep },
566         { "bpf interface lock", &lock_class_rw },
567         { "bpf cdev lock", &lock_class_mtx_sleep },
568         { NULL, NULL },
569         /*
570          * NFS server
571          */
572         { "nfsd_mtx", &lock_class_mtx_sleep },
573         { "so_snd", &lock_class_mtx_sleep },
574         { NULL, NULL },
575
576         /*
577          * IEEE 802.11
578          */
579         { "802.11 com lock", &lock_class_mtx_sleep},
580         { NULL, NULL },
581         /*
582          * Network drivers
583          */
584         { "network driver", &lock_class_mtx_sleep},
585         { NULL, NULL },
586
587         /*
588          * Netgraph
589          */
590         { "ng_node", &lock_class_mtx_sleep },
591         { "ng_worklist", &lock_class_mtx_sleep },
592         { NULL, NULL },
593         /*
594          * CDEV
595          */
596         { "vm map (system)", &lock_class_mtx_sleep },
597         { "vm page queue", &lock_class_mtx_sleep },
598         { "vnode interlock", &lock_class_mtx_sleep },
599         { "cdev", &lock_class_mtx_sleep },
600         { NULL, NULL },
601         /*
602          * VM
603          */
604         { "vm map (user)", &lock_class_sx },
605         { "vm object", &lock_class_rw },
606         { "vm page", &lock_class_mtx_sleep },
607         { "vm page queue", &lock_class_mtx_sleep },
608         { "pmap pv global", &lock_class_rw },
609         { "pmap", &lock_class_mtx_sleep },
610         { "pmap pv list", &lock_class_rw },
611         { "vm page free queue", &lock_class_mtx_sleep },
612         { NULL, NULL },
613         /*
614          * kqueue/VFS interaction
615          */
616         { "kqueue", &lock_class_mtx_sleep },
617         { "struct mount mtx", &lock_class_mtx_sleep },
618         { "vnode interlock", &lock_class_mtx_sleep },
619         { NULL, NULL },
620         /*
621          * ZFS locking
622          */
623         { "dn->dn_mtx", &lock_class_sx },
624         { "dr->dt.di.dr_mtx", &lock_class_sx },
625         { "db->db_mtx", &lock_class_sx },
626         { NULL, NULL },
627         /*
628          * spin locks
629          */
630 #ifdef SMP
631         { "ap boot", &lock_class_mtx_spin },
632 #endif
633         { "rm.mutex_mtx", &lock_class_mtx_spin },
634         { "sio", &lock_class_mtx_spin },
635         { "scrlock", &lock_class_mtx_spin },
636 #ifdef __i386__
637         { "cy", &lock_class_mtx_spin },
638 #endif
639 #ifdef __sparc64__
640         { "pcib_mtx", &lock_class_mtx_spin },
641         { "rtc_mtx", &lock_class_mtx_spin },
642 #endif
643         { "scc_hwmtx", &lock_class_mtx_spin },
644         { "uart_hwmtx", &lock_class_mtx_spin },
645         { "fast_taskqueue", &lock_class_mtx_spin },
646         { "intr table", &lock_class_mtx_spin },
647 #ifdef  HWPMC_HOOKS
648         { "pmc-per-proc", &lock_class_mtx_spin },
649 #endif
650         { "process slock", &lock_class_mtx_spin },
651         { "sleepq chain", &lock_class_mtx_spin },
652         { "umtx lock", &lock_class_mtx_spin },
653         { "rm_spinlock", &lock_class_mtx_spin },
654         { "turnstile chain", &lock_class_mtx_spin },
655         { "turnstile lock", &lock_class_mtx_spin },
656         { "sched lock", &lock_class_mtx_spin },
657         { "td_contested", &lock_class_mtx_spin },
658         { "callout", &lock_class_mtx_spin },
659         { "entropy harvest mutex", &lock_class_mtx_spin },
660         { "syscons video lock", &lock_class_mtx_spin },
661 #ifdef SMP
662         { "smp rendezvous", &lock_class_mtx_spin },
663 #endif
664 #ifdef __powerpc__
665         { "tlb0", &lock_class_mtx_spin },
666 #endif
667         /*
668          * leaf locks
669          */
670         { "intrcnt", &lock_class_mtx_spin },
671         { "icu", &lock_class_mtx_spin },
672 #ifdef __i386__
673         { "allpmaps", &lock_class_mtx_spin },
674         { "descriptor tables", &lock_class_mtx_spin },
675 #endif
676         { "clk", &lock_class_mtx_spin },
677         { "cpuset", &lock_class_mtx_spin },
678         { "mprof lock", &lock_class_mtx_spin },
679         { "zombie lock", &lock_class_mtx_spin },
680         { "ALD Queue", &lock_class_mtx_spin },
681 #ifdef __ia64__
682         { "MCA spin lock", &lock_class_mtx_spin },
683 #endif
684 #if defined(__i386__) || defined(__amd64__)
685         { "pcicfg", &lock_class_mtx_spin },
686         { "NDIS thread lock", &lock_class_mtx_spin },
687 #endif
688         { "tw_osl_io_lock", &lock_class_mtx_spin },
689         { "tw_osl_q_lock", &lock_class_mtx_spin },
690         { "tw_cl_io_lock", &lock_class_mtx_spin },
691         { "tw_cl_intr_lock", &lock_class_mtx_spin },
692         { "tw_cl_gen_lock", &lock_class_mtx_spin },
693 #ifdef  HWPMC_HOOKS
694         { "pmc-leaf", &lock_class_mtx_spin },
695 #endif
696         { "blocked lock", &lock_class_mtx_spin },
697         { NULL, NULL },
698         { NULL, NULL }
699 };
700
701 #ifdef BLESSING
702 /*
703  * Pairs of locks which have been blessed
704  * Don't complain about order problems with blessed locks
705  */
706 static struct witness_blessed blessed_list[] = {
707 };
708 static int blessed_count =
709         sizeof(blessed_list) / sizeof(struct witness_blessed);
710 #endif
711
712 /*
713  * This global is set to 0 once it becomes safe to use the witness code.
714  */
715 static int witness_cold = 1;
716
717 /*
718  * This global is set to 1 once the static lock orders have been enrolled
719  * so that a warning can be issued for any spin locks enrolled later.
720  */
721 static int witness_spin_warn = 0;
722
723 /* Trim useless garbage from filenames. */
724 static const char *
725 fixup_filename(const char *file)
726 {
727
728         if (file == NULL)
729                 return (NULL);
730         while (strncmp(file, "../", 3) == 0)
731                 file += 3;
732         return (file);
733 }
734
735 /*
736  * The WITNESS-enabled diagnostic code.  Note that the witness code does
737  * assume that the early boot is single-threaded at least until after this
738  * routine is completed.
739  */
740 static void
741 witness_initialize(void *dummy __unused)
742 {
743         struct lock_object *lock;
744         struct witness_order_list_entry *order;
745         struct witness *w, *w1;
746         int i;
747
748         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
749             M_NOWAIT | M_ZERO);
750
751         /*
752          * We have to release Giant before initializing its witness
753          * structure so that WITNESS doesn't get confused.
754          */
755         mtx_unlock(&Giant);
756         mtx_assert(&Giant, MA_NOTOWNED);
757
758         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
759         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
760             MTX_NOWITNESS | MTX_NOPROFILE);
761         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
762                 w = &w_data[i];
763                 memset(w, 0, sizeof(*w));
764                 w_data[i].w_index = i;  /* Witness index never changes. */
765                 witness_free(w);
766         }
767         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
768             ("%s: Invalid list of free witness objects", __func__));
769
770         /* Witness with index 0 is not used to aid in debugging. */
771         STAILQ_REMOVE_HEAD(&w_free, w_list);
772         w_free_cnt--;
773
774         memset(w_rmatrix, 0,
775             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
776
777         for (i = 0; i < LOCK_CHILDCOUNT; i++)
778                 witness_lock_list_free(&w_locklistdata[i]);
779         witness_init_hash_tables();
780
781         /* First add in all the specified order lists. */
782         for (order = order_lists; order->w_name != NULL; order++) {
783                 w = enroll(order->w_name, order->w_class);
784                 if (w == NULL)
785                         continue;
786                 w->w_file = "order list";
787                 for (order++; order->w_name != NULL; order++) {
788                         w1 = enroll(order->w_name, order->w_class);
789                         if (w1 == NULL)
790                                 continue;
791                         w1->w_file = "order list";
792                         itismychild(w, w1);
793                         w = w1;
794                 }
795         }
796         witness_spin_warn = 1;
797
798         /* Iterate through all locks and add them to witness. */
799         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
800                 lock = pending_locks[i].wh_lock;
801                 KASSERT(lock->lo_flags & LO_WITNESS,
802                     ("%s: lock %s is on pending list but not LO_WITNESS",
803                     __func__, lock->lo_name));
804                 lock->lo_witness = enroll(pending_locks[i].wh_type,
805                     LOCK_CLASS(lock));
806         }
807
808         /* Mark the witness code as being ready for use. */
809         witness_cold = 0;
810
811         mtx_lock(&Giant);
812 }
813 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
814     NULL);
815
816 void
817 witness_init(struct lock_object *lock, const char *type)
818 {
819         struct lock_class *class;
820
821         /* Various sanity checks. */
822         class = LOCK_CLASS(lock);
823         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
824             (class->lc_flags & LC_RECURSABLE) == 0)
825                 kassert_panic("%s: lock (%s) %s can not be recursable",
826                     __func__, class->lc_name, lock->lo_name);
827         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
828             (class->lc_flags & LC_SLEEPABLE) == 0)
829                 kassert_panic("%s: lock (%s) %s can not be sleepable",
830                     __func__, class->lc_name, lock->lo_name);
831         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
832             (class->lc_flags & LC_UPGRADABLE) == 0)
833                 kassert_panic("%s: lock (%s) %s can not be upgradable",
834                     __func__, class->lc_name, lock->lo_name);
835
836         /*
837          * If we shouldn't watch this lock, then just clear lo_witness.
838          * Otherwise, if witness_cold is set, then it is too early to
839          * enroll this lock, so defer it to witness_initialize() by adding
840          * it to the pending_locks list.  If it is not too early, then enroll
841          * the lock now.
842          */
843         if (witness_watch < 1 || panicstr != NULL ||
844             (lock->lo_flags & LO_WITNESS) == 0)
845                 lock->lo_witness = NULL;
846         else if (witness_cold) {
847                 pending_locks[pending_cnt].wh_lock = lock;
848                 pending_locks[pending_cnt++].wh_type = type;
849                 if (pending_cnt > WITNESS_PENDLIST)
850                         panic("%s: pending locks list is too small, "
851                             "increase WITNESS_PENDLIST\n",
852                             __func__);
853         } else
854                 lock->lo_witness = enroll(type, class);
855 }
856
857 void
858 witness_destroy(struct lock_object *lock)
859 {
860         struct lock_class *class;
861         struct witness *w;
862
863         class = LOCK_CLASS(lock);
864
865         if (witness_cold)
866                 panic("lock (%s) %s destroyed while witness_cold",
867                     class->lc_name, lock->lo_name);
868
869         /* XXX: need to verify that no one holds the lock */
870         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
871                 return;
872         w = lock->lo_witness;
873
874         mtx_lock_spin(&w_mtx);
875         MPASS(w->w_refcount > 0);
876         w->w_refcount--;
877
878         if (w->w_refcount == 0)
879                 depart(w);
880         mtx_unlock_spin(&w_mtx);
881 }
882
883 #ifdef DDB
884 static void
885 witness_ddb_compute_levels(void)
886 {
887         struct witness *w;
888
889         /*
890          * First clear all levels.
891          */
892         STAILQ_FOREACH(w, &w_all, w_list)
893                 w->w_ddb_level = -1;
894
895         /*
896          * Look for locks with no parents and level all their descendants.
897          */
898         STAILQ_FOREACH(w, &w_all, w_list) {
899
900                 /* If the witness has ancestors (is not a root), skip it. */
901                 if (w->w_num_ancestors > 0)
902                         continue;
903                 witness_ddb_level_descendants(w, 0);
904         }
905 }
906
907 static void
908 witness_ddb_level_descendants(struct witness *w, int l)
909 {
910         int i;
911
912         if (w->w_ddb_level >= l)
913                 return;
914
915         w->w_ddb_level = l;
916         l++;
917
918         for (i = 1; i <= w_max_used_index; i++) {
919                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
920                         witness_ddb_level_descendants(&w_data[i], l);
921         }
922 }
923
924 static void
925 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
926     struct witness *w, int indent)
927 {
928         int i;
929
930         for (i = 0; i < indent; i++)
931                 prnt(" ");
932         prnt("%s (type: %s, depth: %d, active refs: %d)",
933              w->w_name, w->w_class->lc_name,
934              w->w_ddb_level, w->w_refcount);
935         if (w->w_displayed) {
936                 prnt(" -- (already displayed)\n");
937                 return;
938         }
939         w->w_displayed = 1;
940         if (w->w_file != NULL && w->w_line != 0)
941                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
942                     w->w_line);
943         else
944                 prnt(" -- never acquired\n");
945         indent++;
946         WITNESS_INDEX_ASSERT(w->w_index);
947         for (i = 1; i <= w_max_used_index; i++) {
948                 if (db_pager_quit)
949                         return;
950                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
951                         witness_ddb_display_descendants(prnt, &w_data[i],
952                             indent);
953         }
954 }
955
956 static void
957 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
958     struct witness_list *list)
959 {
960         struct witness *w;
961
962         STAILQ_FOREACH(w, list, w_typelist) {
963                 if (w->w_file == NULL || w->w_ddb_level > 0)
964                         continue;
965
966                 /* This lock has no anscestors - display its descendants. */
967                 witness_ddb_display_descendants(prnt, w, 0);
968                 if (db_pager_quit)
969                         return;
970         }
971 }
972         
973 static void
974 witness_ddb_display(int(*prnt)(const char *fmt, ...))
975 {
976         struct witness *w;
977
978         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
979         witness_ddb_compute_levels();
980
981         /* Clear all the displayed flags. */
982         STAILQ_FOREACH(w, &w_all, w_list)
983                 w->w_displayed = 0;
984
985         /*
986          * First, handle sleep locks which have been acquired at least
987          * once.
988          */
989         prnt("Sleep locks:\n");
990         witness_ddb_display_list(prnt, &w_sleep);
991         if (db_pager_quit)
992                 return;
993         
994         /*
995          * Now do spin locks which have been acquired at least once.
996          */
997         prnt("\nSpin locks:\n");
998         witness_ddb_display_list(prnt, &w_spin);
999         if (db_pager_quit)
1000                 return;
1001         
1002         /*
1003          * Finally, any locks which have not been acquired yet.
1004          */
1005         prnt("\nLocks which were never acquired:\n");
1006         STAILQ_FOREACH(w, &w_all, w_list) {
1007                 if (w->w_file != NULL || w->w_refcount == 0)
1008                         continue;
1009                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1010                     w->w_class->lc_name, w->w_ddb_level);
1011                 if (db_pager_quit)
1012                         return;
1013         }
1014 }
1015 #endif /* DDB */
1016
1017 int
1018 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1019 {
1020
1021         if (witness_watch == -1 || panicstr != NULL)
1022                 return (0);
1023
1024         /* Require locks that witness knows about. */
1025         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1026             lock2->lo_witness == NULL)
1027                 return (EINVAL);
1028
1029         mtx_assert(&w_mtx, MA_NOTOWNED);
1030         mtx_lock_spin(&w_mtx);
1031
1032         /*
1033          * If we already have either an explicit or implied lock order that
1034          * is the other way around, then return an error.
1035          */
1036         if (witness_watch &&
1037             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1038                 mtx_unlock_spin(&w_mtx);
1039                 return (EDOOFUS);
1040         }
1041         
1042         /* Try to add the new order. */
1043         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1044             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1045         itismychild(lock1->lo_witness, lock2->lo_witness);
1046         mtx_unlock_spin(&w_mtx);
1047         return (0);
1048 }
1049
1050 void
1051 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1052     int line, struct lock_object *interlock)
1053 {
1054         struct lock_list_entry *lock_list, *lle;
1055         struct lock_instance *lock1, *lock2, *plock;
1056         struct lock_class *class;
1057         struct witness *w, *w1;
1058         struct thread *td;
1059         int i, j;
1060
1061         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1062             panicstr != NULL)
1063                 return;
1064
1065         w = lock->lo_witness;
1066         class = LOCK_CLASS(lock);
1067         td = curthread;
1068
1069         if (class->lc_flags & LC_SLEEPLOCK) {
1070
1071                 /*
1072                  * Since spin locks include a critical section, this check
1073                  * implicitly enforces a lock order of all sleep locks before
1074                  * all spin locks.
1075                  */
1076                 if (td->td_critnest != 0 && !kdb_active)
1077                         kassert_panic("acquiring blockable sleep lock with "
1078                             "spinlock or critical section held (%s) %s @ %s:%d",
1079                             class->lc_name, lock->lo_name,
1080                             fixup_filename(file), line);
1081
1082                 /*
1083                  * If this is the first lock acquired then just return as
1084                  * no order checking is needed.
1085                  */
1086                 lock_list = td->td_sleeplocks;
1087                 if (lock_list == NULL || lock_list->ll_count == 0)
1088                         return;
1089         } else {
1090
1091                 /*
1092                  * If this is the first lock, just return as no order
1093                  * checking is needed.  Avoid problems with thread
1094                  * migration pinning the thread while checking if
1095                  * spinlocks are held.  If at least one spinlock is held
1096                  * the thread is in a safe path and it is allowed to
1097                  * unpin it.
1098                  */
1099                 sched_pin();
1100                 lock_list = PCPU_GET(spinlocks);
1101                 if (lock_list == NULL || lock_list->ll_count == 0) {
1102                         sched_unpin();
1103                         return;
1104                 }
1105                 sched_unpin();
1106         }
1107
1108         /*
1109          * Check to see if we are recursing on a lock we already own.  If
1110          * so, make sure that we don't mismatch exclusive and shared lock
1111          * acquires.
1112          */
1113         lock1 = find_instance(lock_list, lock);
1114         if (lock1 != NULL) {
1115                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1116                     (flags & LOP_EXCLUSIVE) == 0) {
1117                         printf("shared lock of (%s) %s @ %s:%d\n",
1118                             class->lc_name, lock->lo_name,
1119                             fixup_filename(file), line);
1120                         printf("while exclusively locked from %s:%d\n",
1121                             fixup_filename(lock1->li_file), lock1->li_line);
1122                         kassert_panic("share->excl");
1123                 }
1124                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1125                     (flags & LOP_EXCLUSIVE) != 0) {
1126                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1127                             class->lc_name, lock->lo_name,
1128                             fixup_filename(file), line);
1129                         printf("while share locked from %s:%d\n",
1130                             fixup_filename(lock1->li_file), lock1->li_line);
1131                         kassert_panic("excl->share");
1132                 }
1133                 return;
1134         }
1135
1136         /*
1137          * Find the previously acquired lock, but ignore interlocks.
1138          */
1139         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1140         if (interlock != NULL && plock->li_lock == interlock) {
1141                 if (lock_list->ll_count > 1)
1142                         plock =
1143                             &lock_list->ll_children[lock_list->ll_count - 2];
1144                 else {
1145                         lle = lock_list->ll_next;
1146
1147                         /*
1148                          * The interlock is the only lock we hold, so
1149                          * simply return.
1150                          */
1151                         if (lle == NULL)
1152                                 return;
1153                         plock = &lle->ll_children[lle->ll_count - 1];
1154                 }
1155         }
1156         
1157         /*
1158          * Try to perform most checks without a lock.  If this succeeds we
1159          * can skip acquiring the lock and return success.
1160          */
1161         w1 = plock->li_lock->lo_witness;
1162         if (witness_lock_order_check(w1, w))
1163                 return;
1164
1165         /*
1166          * Check for duplicate locks of the same type.  Note that we only
1167          * have to check for this on the last lock we just acquired.  Any
1168          * other cases will be caught as lock order violations.
1169          */
1170         mtx_lock_spin(&w_mtx);
1171         witness_lock_order_add(w1, w);
1172         if (w1 == w) {
1173                 i = w->w_index;
1174                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1175                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1176                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1177                         w->w_reversed = 1;
1178                         mtx_unlock_spin(&w_mtx);
1179                         printf(
1180                             "acquiring duplicate lock of same type: \"%s\"\n", 
1181                             w->w_name);
1182                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1183                             fixup_filename(plock->li_file), plock->li_line);
1184                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1185                             fixup_filename(file), line);
1186                         witness_debugger(1);
1187                 } else
1188                         mtx_unlock_spin(&w_mtx);
1189                 return;
1190         }
1191         mtx_assert(&w_mtx, MA_OWNED);
1192
1193         /*
1194          * If we know that the lock we are acquiring comes after
1195          * the lock we most recently acquired in the lock order tree,
1196          * then there is no need for any further checks.
1197          */
1198         if (isitmychild(w1, w))
1199                 goto out;
1200
1201         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1202                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1203
1204                         MPASS(j < WITNESS_COUNT);
1205                         lock1 = &lle->ll_children[i];
1206
1207                         /*
1208                          * Ignore the interlock the first time we see it.
1209                          */
1210                         if (interlock != NULL && interlock == lock1->li_lock) {
1211                                 interlock = NULL;
1212                                 continue;
1213                         }
1214
1215                         /*
1216                          * If this lock doesn't undergo witness checking,
1217                          * then skip it.
1218                          */
1219                         w1 = lock1->li_lock->lo_witness;
1220                         if (w1 == NULL) {
1221                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1222                                     ("lock missing witness structure"));
1223                                 continue;
1224                         }
1225
1226                         /*
1227                          * If we are locking Giant and this is a sleepable
1228                          * lock, then skip it.
1229                          */
1230                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1231                             lock == &Giant.lock_object)
1232                                 continue;
1233
1234                         /*
1235                          * If we are locking a sleepable lock and this lock
1236                          * is Giant, then skip it.
1237                          */
1238                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1239                             lock1->li_lock == &Giant.lock_object)
1240                                 continue;
1241
1242                         /*
1243                          * If we are locking a sleepable lock and this lock
1244                          * isn't sleepable, we want to treat it as a lock
1245                          * order violation to enfore a general lock order of
1246                          * sleepable locks before non-sleepable locks.
1247                          */
1248                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1249                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1250                                 goto reversal;
1251
1252                         /*
1253                          * If we are locking Giant and this is a non-sleepable
1254                          * lock, then treat it as a reversal.
1255                          */
1256                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1257                             lock == &Giant.lock_object)
1258                                 goto reversal;
1259
1260                         /*
1261                          * Check the lock order hierarchy for a reveresal.
1262                          */
1263                         if (!isitmydescendant(w, w1))
1264                                 continue;
1265                 reversal:
1266
1267                         /*
1268                          * We have a lock order violation, check to see if it
1269                          * is allowed or has already been yelled about.
1270                          */
1271 #ifdef BLESSING
1272
1273                         /*
1274                          * If the lock order is blessed, just bail.  We don't
1275                          * look for other lock order violations though, which
1276                          * may be a bug.
1277                          */
1278                         if (blessed(w, w1))
1279                                 goto out;
1280 #endif
1281
1282                         /* Bail if this violation is known */
1283                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1284                                 goto out;
1285
1286                         /* Record this as a violation */
1287                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1288                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1289                         w->w_reversed = w1->w_reversed = 1;
1290                         witness_increment_graph_generation();
1291                         mtx_unlock_spin(&w_mtx);
1292                         
1293                         /*
1294                          * Ok, yell about it.
1295                          */
1296                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1297                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1298                                 printf(
1299                 "lock order reversal: (sleepable after non-sleepable)\n");
1300                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1301                             && lock == &Giant.lock_object)
1302                                 printf(
1303                 "lock order reversal: (Giant after non-sleepable)\n");
1304                         else
1305                                 printf("lock order reversal:\n");
1306
1307                         /*
1308                          * Try to locate an earlier lock with
1309                          * witness w in our list.
1310                          */
1311                         do {
1312                                 lock2 = &lle->ll_children[i];
1313                                 MPASS(lock2->li_lock != NULL);
1314                                 if (lock2->li_lock->lo_witness == w)
1315                                         break;
1316                                 if (i == 0 && lle->ll_next != NULL) {
1317                                         lle = lle->ll_next;
1318                                         i = lle->ll_count - 1;
1319                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1320                                 } else
1321                                         i--;
1322                         } while (i >= 0);
1323                         if (i < 0) {
1324                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1325                                     lock1->li_lock, lock1->li_lock->lo_name,
1326                                     w1->w_name, fixup_filename(lock1->li_file),
1327                                     lock1->li_line);
1328                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1329                                     lock->lo_name, w->w_name,
1330                                     fixup_filename(file), line);
1331                         } else {
1332                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1333                                     lock2->li_lock, lock2->li_lock->lo_name,
1334                                     lock2->li_lock->lo_witness->w_name,
1335                                     fixup_filename(lock2->li_file),
1336                                     lock2->li_line);
1337                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1338                                     lock1->li_lock, lock1->li_lock->lo_name,
1339                                     w1->w_name, fixup_filename(lock1->li_file),
1340                                     lock1->li_line);
1341                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1342                                     lock->lo_name, w->w_name,
1343                                     fixup_filename(file), line);
1344                         }
1345                         witness_debugger(1);
1346                         return;
1347                 }
1348         }
1349
1350         /*
1351          * If requested, build a new lock order.  However, don't build a new
1352          * relationship between a sleepable lock and Giant if it is in the
1353          * wrong direction.  The correct lock order is that sleepable locks
1354          * always come before Giant.
1355          */
1356         if (flags & LOP_NEWORDER &&
1357             !(plock->li_lock == &Giant.lock_object &&
1358             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1359                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1360                     w->w_name, plock->li_lock->lo_witness->w_name);
1361                 itismychild(plock->li_lock->lo_witness, w);
1362         }
1363 out:
1364         mtx_unlock_spin(&w_mtx);
1365 }
1366
1367 void
1368 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1369 {
1370         struct lock_list_entry **lock_list, *lle;
1371         struct lock_instance *instance;
1372         struct witness *w;
1373         struct thread *td;
1374
1375         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1376             panicstr != NULL)
1377                 return;
1378         w = lock->lo_witness;
1379         td = curthread;
1380
1381         /* Determine lock list for this lock. */
1382         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1383                 lock_list = &td->td_sleeplocks;
1384         else
1385                 lock_list = PCPU_PTR(spinlocks);
1386
1387         /* Check to see if we are recursing on a lock we already own. */
1388         instance = find_instance(*lock_list, lock);
1389         if (instance != NULL) {
1390                 instance->li_flags++;
1391                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1392                     td->td_proc->p_pid, lock->lo_name,
1393                     instance->li_flags & LI_RECURSEMASK);
1394                 instance->li_file = file;
1395                 instance->li_line = line;
1396                 return;
1397         }
1398
1399         /* Update per-witness last file and line acquire. */
1400         w->w_file = file;
1401         w->w_line = line;
1402
1403         /* Find the next open lock instance in the list and fill it. */
1404         lle = *lock_list;
1405         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1406                 lle = witness_lock_list_get();
1407                 if (lle == NULL)
1408                         return;
1409                 lle->ll_next = *lock_list;
1410                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1411                     td->td_proc->p_pid, lle);
1412                 *lock_list = lle;
1413         }
1414         instance = &lle->ll_children[lle->ll_count++];
1415         instance->li_lock = lock;
1416         instance->li_line = line;
1417         instance->li_file = file;
1418         if ((flags & LOP_EXCLUSIVE) != 0)
1419                 instance->li_flags = LI_EXCLUSIVE;
1420         else
1421                 instance->li_flags = 0;
1422         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1423             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1424 }
1425
1426 void
1427 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1428 {
1429         struct lock_instance *instance;
1430         struct lock_class *class;
1431
1432         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1433         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1434                 return;
1435         class = LOCK_CLASS(lock);
1436         if (witness_watch) {
1437                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1438                         kassert_panic(
1439                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1440                             class->lc_name, lock->lo_name,
1441                             fixup_filename(file), line);
1442                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1443                         kassert_panic(
1444                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1445                             class->lc_name, lock->lo_name,
1446                             fixup_filename(file), line);
1447         }
1448         instance = find_instance(curthread->td_sleeplocks, lock);
1449         if (instance == NULL) {
1450                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1451                     class->lc_name, lock->lo_name,
1452                     fixup_filename(file), line);
1453                 return;
1454         }
1455         if (witness_watch) {
1456                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1457                         kassert_panic(
1458                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1459                             class->lc_name, lock->lo_name,
1460                             fixup_filename(file), line);
1461                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1462                         kassert_panic(
1463                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1464                             class->lc_name, lock->lo_name,
1465                             instance->li_flags & LI_RECURSEMASK,
1466                             fixup_filename(file), line);
1467         }
1468         instance->li_flags |= LI_EXCLUSIVE;
1469 }
1470
1471 void
1472 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1473     int line)
1474 {
1475         struct lock_instance *instance;
1476         struct lock_class *class;
1477
1478         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1479         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1480                 return;
1481         class = LOCK_CLASS(lock);
1482         if (witness_watch) {
1483                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1484                         kassert_panic(
1485                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1486                             class->lc_name, lock->lo_name,
1487                             fixup_filename(file), line);
1488                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1489                         kassert_panic(
1490                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1491                             class->lc_name, lock->lo_name,
1492                             fixup_filename(file), line);
1493         }
1494         instance = find_instance(curthread->td_sleeplocks, lock);
1495         if (instance == NULL) {
1496                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1497                     class->lc_name, lock->lo_name,
1498                     fixup_filename(file), line);
1499                 return;
1500         }
1501         if (witness_watch) {
1502                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1503                         kassert_panic(
1504                             "downgrade of shared lock (%s) %s @ %s:%d",
1505                             class->lc_name, lock->lo_name,
1506                             fixup_filename(file), line);
1507                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1508                         kassert_panic(
1509                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1510                             class->lc_name, lock->lo_name,
1511                             instance->li_flags & LI_RECURSEMASK,
1512                             fixup_filename(file), line);
1513         }
1514         instance->li_flags &= ~LI_EXCLUSIVE;
1515 }
1516
1517 void
1518 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1519 {
1520         struct lock_list_entry **lock_list, *lle;
1521         struct lock_instance *instance;
1522         struct lock_class *class;
1523         struct thread *td;
1524         register_t s;
1525         int i, j;
1526
1527         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1528                 return;
1529         td = curthread;
1530         class = LOCK_CLASS(lock);
1531
1532         /* Find lock instance associated with this lock. */
1533         if (class->lc_flags & LC_SLEEPLOCK)
1534                 lock_list = &td->td_sleeplocks;
1535         else
1536                 lock_list = PCPU_PTR(spinlocks);
1537         lle = *lock_list;
1538         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1539                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1540                         instance = &(*lock_list)->ll_children[i];
1541                         if (instance->li_lock == lock)
1542                                 goto found;
1543                 }
1544
1545         /*
1546          * When disabling WITNESS through witness_watch we could end up in
1547          * having registered locks in the td_sleeplocks queue.
1548          * We have to make sure we flush these queues, so just search for
1549          * eventual register locks and remove them.
1550          */
1551         if (witness_watch > 0) {
1552                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1553                     lock->lo_name, fixup_filename(file), line);
1554                 return;
1555         } else {
1556                 return;
1557         }
1558 found:
1559
1560         /* First, check for shared/exclusive mismatches. */
1561         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1562             (flags & LOP_EXCLUSIVE) == 0) {
1563                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1564                     lock->lo_name, fixup_filename(file), line);
1565                 printf("while exclusively locked from %s:%d\n",
1566                     fixup_filename(instance->li_file), instance->li_line);
1567                 kassert_panic("excl->ushare");
1568         }
1569         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1570             (flags & LOP_EXCLUSIVE) != 0) {
1571                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1572                     lock->lo_name, fixup_filename(file), line);
1573                 printf("while share locked from %s:%d\n",
1574                     fixup_filename(instance->li_file),
1575                     instance->li_line);
1576                 kassert_panic("share->uexcl");
1577         }
1578         /* If we are recursed, unrecurse. */
1579         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1580                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1581                     td->td_proc->p_pid, instance->li_lock->lo_name,
1582                     instance->li_flags);
1583                 instance->li_flags--;
1584                 return;
1585         }
1586         /* The lock is now being dropped, check for NORELEASE flag */
1587         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1588                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1589                     lock->lo_name, fixup_filename(file), line);
1590                 kassert_panic("lock marked norelease");
1591         }
1592
1593         /* Otherwise, remove this item from the list. */
1594         s = intr_disable();
1595         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1596             td->td_proc->p_pid, instance->li_lock->lo_name,
1597             (*lock_list)->ll_count - 1);
1598         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1599                 (*lock_list)->ll_children[j] =
1600                     (*lock_list)->ll_children[j + 1];
1601         (*lock_list)->ll_count--;
1602         intr_restore(s);
1603
1604         /*
1605          * In order to reduce contention on w_mtx, we want to keep always an
1606          * head object into lists so that frequent allocation from the 
1607          * free witness pool (and subsequent locking) is avoided.
1608          * In order to maintain the current code simple, when the head
1609          * object is totally unloaded it means also that we do not have
1610          * further objects in the list, so the list ownership needs to be
1611          * hand over to another object if the current head needs to be freed.
1612          */
1613         if ((*lock_list)->ll_count == 0) {
1614                 if (*lock_list == lle) {
1615                         if (lle->ll_next == NULL)
1616                                 return;
1617                 } else
1618                         lle = *lock_list;
1619                 *lock_list = lle->ll_next;
1620                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1621                     td->td_proc->p_pid, lle);
1622                 witness_lock_list_free(lle);
1623         }
1624 }
1625
1626 void
1627 witness_thread_exit(struct thread *td)
1628 {
1629         struct lock_list_entry *lle;
1630         int i, n;
1631
1632         lle = td->td_sleeplocks;
1633         if (lle == NULL || panicstr != NULL)
1634                 return;
1635         if (lle->ll_count != 0) {
1636                 for (n = 0; lle != NULL; lle = lle->ll_next)
1637                         for (i = lle->ll_count - 1; i >= 0; i--) {
1638                                 if (n == 0)
1639                 printf("Thread %p exiting with the following locks held:\n",
1640                                             td);
1641                                 n++;
1642                                 witness_list_lock(&lle->ll_children[i], printf);
1643                                 
1644                         }
1645                 kassert_panic(
1646                     "Thread %p cannot exit while holding sleeplocks\n", td);
1647         }
1648         witness_lock_list_free(lle);
1649 }
1650
1651 /*
1652  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1653  * exempt Giant and sleepable locks from the checks as well.  If any
1654  * non-exempt locks are held, then a supplied message is printed to the
1655  * console along with a list of the offending locks.  If indicated in the
1656  * flags then a failure results in a panic as well.
1657  */
1658 int
1659 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1660 {
1661         struct lock_list_entry *lock_list, *lle;
1662         struct lock_instance *lock1;
1663         struct thread *td;
1664         va_list ap;
1665         int i, n;
1666
1667         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1668                 return (0);
1669         n = 0;
1670         td = curthread;
1671         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1672                 for (i = lle->ll_count - 1; i >= 0; i--) {
1673                         lock1 = &lle->ll_children[i];
1674                         if (lock1->li_lock == lock)
1675                                 continue;
1676                         if (flags & WARN_GIANTOK &&
1677                             lock1->li_lock == &Giant.lock_object)
1678                                 continue;
1679                         if (flags & WARN_SLEEPOK &&
1680                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1681                                 continue;
1682                         if (n == 0) {
1683                                 va_start(ap, fmt);
1684                                 vprintf(fmt, ap);
1685                                 va_end(ap);
1686                                 printf(" with the following");
1687                                 if (flags & WARN_SLEEPOK)
1688                                         printf(" non-sleepable");
1689                                 printf(" locks held:\n");
1690                         }
1691                         n++;
1692                         witness_list_lock(lock1, printf);
1693                 }
1694
1695         /*
1696          * Pin the thread in order to avoid problems with thread migration.
1697          * Once that all verifies are passed about spinlocks ownership,
1698          * the thread is in a safe path and it can be unpinned.
1699          */
1700         sched_pin();
1701         lock_list = PCPU_GET(spinlocks);
1702         if (lock_list != NULL && lock_list->ll_count != 0) {
1703                 sched_unpin();
1704
1705                 /*
1706                  * We should only have one spinlock and as long as
1707                  * the flags cannot match for this locks class,
1708                  * check if the first spinlock is the one curthread
1709                  * should hold.
1710                  */
1711                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1712                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1713                     lock1->li_lock == lock && n == 0)
1714                         return (0);
1715
1716                 va_start(ap, fmt);
1717                 vprintf(fmt, ap);
1718                 va_end(ap);
1719                 printf(" with the following");
1720                 if (flags & WARN_SLEEPOK)
1721                         printf(" non-sleepable");
1722                 printf(" locks held:\n");
1723                 n += witness_list_locks(&lock_list, printf);
1724         } else
1725                 sched_unpin();
1726         if (flags & WARN_PANIC && n)
1727                 kassert_panic("%s", __func__);
1728         else
1729                 witness_debugger(n);
1730         return (n);
1731 }
1732
1733 const char *
1734 witness_file(struct lock_object *lock)
1735 {
1736         struct witness *w;
1737
1738         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1739                 return ("?");
1740         w = lock->lo_witness;
1741         return (w->w_file);
1742 }
1743
1744 int
1745 witness_line(struct lock_object *lock)
1746 {
1747         struct witness *w;
1748
1749         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1750                 return (0);
1751         w = lock->lo_witness;
1752         return (w->w_line);
1753 }
1754
1755 static struct witness *
1756 enroll(const char *description, struct lock_class *lock_class)
1757 {
1758         struct witness *w;
1759         struct witness_list *typelist;
1760
1761         MPASS(description != NULL);
1762
1763         if (witness_watch == -1 || panicstr != NULL)
1764                 return (NULL);
1765         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1766                 if (witness_skipspin)
1767                         return (NULL);
1768                 else
1769                         typelist = &w_spin;
1770         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1771                 typelist = &w_sleep;
1772         } else {
1773                 kassert_panic("lock class %s is not sleep or spin",
1774                     lock_class->lc_name);
1775                 return (NULL);
1776         }
1777
1778         mtx_lock_spin(&w_mtx);
1779         w = witness_hash_get(description);
1780         if (w)
1781                 goto found;
1782         if ((w = witness_get()) == NULL)
1783                 return (NULL);
1784         MPASS(strlen(description) < MAX_W_NAME);
1785         strcpy(w->w_name, description);
1786         w->w_class = lock_class;
1787         w->w_refcount = 1;
1788         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1789         if (lock_class->lc_flags & LC_SPINLOCK) {
1790                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1791                 w_spin_cnt++;
1792         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1793                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1794                 w_sleep_cnt++;
1795         }
1796
1797         /* Insert new witness into the hash */
1798         witness_hash_put(w);
1799         witness_increment_graph_generation();
1800         mtx_unlock_spin(&w_mtx);
1801         return (w);
1802 found:
1803         w->w_refcount++;
1804         mtx_unlock_spin(&w_mtx);
1805         if (lock_class != w->w_class)
1806                 kassert_panic(
1807                         "lock (%s) %s does not match earlier (%s) lock",
1808                         description, lock_class->lc_name,
1809                         w->w_class->lc_name);
1810         return (w);
1811 }
1812
1813 static void
1814 depart(struct witness *w)
1815 {
1816         struct witness_list *list;
1817
1818         MPASS(w->w_refcount == 0);
1819         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1820                 list = &w_sleep;
1821                 w_sleep_cnt--;
1822         } else {
1823                 list = &w_spin;
1824                 w_spin_cnt--;
1825         }
1826         /*
1827          * Set file to NULL as it may point into a loadable module.
1828          */
1829         w->w_file = NULL;
1830         w->w_line = 0;
1831         witness_increment_graph_generation();
1832 }
1833
1834
1835 static void
1836 adopt(struct witness *parent, struct witness *child)
1837 {
1838         int pi, ci, i, j;
1839
1840         if (witness_cold == 0)
1841                 mtx_assert(&w_mtx, MA_OWNED);
1842
1843         /* If the relationship is already known, there's no work to be done. */
1844         if (isitmychild(parent, child))
1845                 return;
1846
1847         /* When the structure of the graph changes, bump up the generation. */
1848         witness_increment_graph_generation();
1849
1850         /*
1851          * The hard part ... create the direct relationship, then propagate all
1852          * indirect relationships.
1853          */
1854         pi = parent->w_index;
1855         ci = child->w_index;
1856         WITNESS_INDEX_ASSERT(pi);
1857         WITNESS_INDEX_ASSERT(ci);
1858         MPASS(pi != ci);
1859         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1860         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1861
1862         /*
1863          * If parent was not already an ancestor of child,
1864          * then we increment the descendant and ancestor counters.
1865          */
1866         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1867                 parent->w_num_descendants++;
1868                 child->w_num_ancestors++;
1869         }
1870
1871         /* 
1872          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1873          * an ancestor of 'pi' during this loop.
1874          */
1875         for (i = 1; i <= w_max_used_index; i++) {
1876                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1877                     (i != pi))
1878                         continue;
1879
1880                 /* Find each descendant of 'i' and mark it as a descendant. */
1881                 for (j = 1; j <= w_max_used_index; j++) {
1882
1883                         /* 
1884                          * Skip children that are already marked as
1885                          * descendants of 'i'.
1886                          */
1887                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1888                                 continue;
1889
1890                         /*
1891                          * We are only interested in descendants of 'ci'. Note
1892                          * that 'ci' itself is counted as a descendant of 'ci'.
1893                          */
1894                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1895                             (j != ci))
1896                                 continue;
1897                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1898                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1899                         w_data[i].w_num_descendants++;
1900                         w_data[j].w_num_ancestors++;
1901
1902                         /* 
1903                          * Make sure we aren't marking a node as both an
1904                          * ancestor and descendant. We should have caught 
1905                          * this as a lock order reversal earlier.
1906                          */
1907                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1908                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1909                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1910                                     "both ancestor and descendant\n",
1911                                     i, j, w_rmatrix[i][j]); 
1912                                 kdb_backtrace();
1913                                 printf("Witness disabled.\n");
1914                                 witness_watch = -1;
1915                         }
1916                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1917                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1918                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1919                                     "both ancestor and descendant\n",
1920                                     j, i, w_rmatrix[j][i]); 
1921                                 kdb_backtrace();
1922                                 printf("Witness disabled.\n");
1923                                 witness_watch = -1;
1924                         }
1925                 }
1926         }
1927 }
1928
1929 static void
1930 itismychild(struct witness *parent, struct witness *child)
1931 {
1932         int unlocked;
1933
1934         MPASS(child != NULL && parent != NULL);
1935         if (witness_cold == 0)
1936                 mtx_assert(&w_mtx, MA_OWNED);
1937
1938         if (!witness_lock_type_equal(parent, child)) {
1939                 if (witness_cold == 0) {
1940                         unlocked = 1;
1941                         mtx_unlock_spin(&w_mtx);
1942                 } else {
1943                         unlocked = 0;
1944                 }
1945                 kassert_panic(
1946                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1947                     "the same lock type", __func__, parent->w_name,
1948                     parent->w_class->lc_name, child->w_name,
1949                     child->w_class->lc_name);
1950                 if (unlocked)
1951                         mtx_lock_spin(&w_mtx);
1952         }
1953         adopt(parent, child);
1954 }
1955
1956 /*
1957  * Generic code for the isitmy*() functions. The rmask parameter is the
1958  * expected relationship of w1 to w2.
1959  */
1960 static int
1961 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1962 {
1963         unsigned char r1, r2;
1964         int i1, i2;
1965
1966         i1 = w1->w_index;
1967         i2 = w2->w_index;
1968         WITNESS_INDEX_ASSERT(i1);
1969         WITNESS_INDEX_ASSERT(i2);
1970         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1971         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1972
1973         /* The flags on one better be the inverse of the flags on the other */
1974         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1975                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1976                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1977                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1978                     "w_rmatrix[%d][%d] == %hhx\n",
1979                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1980                     i2, i1, r2);
1981                 kdb_backtrace();
1982                 printf("Witness disabled.\n");
1983                 witness_watch = -1;
1984         }
1985         return (r1 & rmask);
1986 }
1987
1988 /*
1989  * Checks if @child is a direct child of @parent.
1990  */
1991 static int
1992 isitmychild(struct witness *parent, struct witness *child)
1993 {
1994
1995         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1996 }
1997
1998 /*
1999  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2000  */
2001 static int
2002 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2003 {
2004
2005         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2006             __func__));
2007 }
2008
2009 #ifdef BLESSING
2010 static int
2011 blessed(struct witness *w1, struct witness *w2)
2012 {
2013         int i;
2014         struct witness_blessed *b;
2015
2016         for (i = 0; i < blessed_count; i++) {
2017                 b = &blessed_list[i];
2018                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2019                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2020                                 return (1);
2021                         continue;
2022                 }
2023                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2024                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2025                                 return (1);
2026         }
2027         return (0);
2028 }
2029 #endif
2030
2031 static struct witness *
2032 witness_get(void)
2033 {
2034         struct witness *w;
2035         int index;
2036
2037         if (witness_cold == 0)
2038                 mtx_assert(&w_mtx, MA_OWNED);
2039
2040         if (witness_watch == -1) {
2041                 mtx_unlock_spin(&w_mtx);
2042                 return (NULL);
2043         }
2044         if (STAILQ_EMPTY(&w_free)) {
2045                 witness_watch = -1;
2046                 mtx_unlock_spin(&w_mtx);
2047                 printf("WITNESS: unable to allocate a new witness object\n");
2048                 return (NULL);
2049         }
2050         w = STAILQ_FIRST(&w_free);
2051         STAILQ_REMOVE_HEAD(&w_free, w_list);
2052         w_free_cnt--;
2053         index = w->w_index;
2054         MPASS(index > 0 && index == w_max_used_index+1 &&
2055             index < WITNESS_COUNT);
2056         bzero(w, sizeof(*w));
2057         w->w_index = index;
2058         if (index > w_max_used_index)
2059                 w_max_used_index = index;
2060         return (w);
2061 }
2062
2063 static void
2064 witness_free(struct witness *w)
2065 {
2066
2067         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2068         w_free_cnt++;
2069 }
2070
2071 static struct lock_list_entry *
2072 witness_lock_list_get(void)
2073 {
2074         struct lock_list_entry *lle;
2075
2076         if (witness_watch == -1)
2077                 return (NULL);
2078         mtx_lock_spin(&w_mtx);
2079         lle = w_lock_list_free;
2080         if (lle == NULL) {
2081                 witness_watch = -1;
2082                 mtx_unlock_spin(&w_mtx);
2083                 printf("%s: witness exhausted\n", __func__);
2084                 return (NULL);
2085         }
2086         w_lock_list_free = lle->ll_next;
2087         mtx_unlock_spin(&w_mtx);
2088         bzero(lle, sizeof(*lle));
2089         return (lle);
2090 }
2091                 
2092 static void
2093 witness_lock_list_free(struct lock_list_entry *lle)
2094 {
2095
2096         mtx_lock_spin(&w_mtx);
2097         lle->ll_next = w_lock_list_free;
2098         w_lock_list_free = lle;
2099         mtx_unlock_spin(&w_mtx);
2100 }
2101
2102 static struct lock_instance *
2103 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2104 {
2105         struct lock_list_entry *lle;
2106         struct lock_instance *instance;
2107         int i;
2108
2109         for (lle = list; lle != NULL; lle = lle->ll_next)
2110                 for (i = lle->ll_count - 1; i >= 0; i--) {
2111                         instance = &lle->ll_children[i];
2112                         if (instance->li_lock == lock)
2113                                 return (instance);
2114                 }
2115         return (NULL);
2116 }
2117
2118 static void
2119 witness_list_lock(struct lock_instance *instance,
2120     int (*prnt)(const char *fmt, ...))
2121 {
2122         struct lock_object *lock;
2123
2124         lock = instance->li_lock;
2125         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2126             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2127         if (lock->lo_witness->w_name != lock->lo_name)
2128                 prnt(" (%s)", lock->lo_witness->w_name);
2129         prnt(" r = %d (%p) locked @ %s:%d\n",
2130             instance->li_flags & LI_RECURSEMASK, lock,
2131             fixup_filename(instance->li_file), instance->li_line);
2132 }
2133
2134 #ifdef DDB
2135 static int
2136 witness_thread_has_locks(struct thread *td)
2137 {
2138
2139         if (td->td_sleeplocks == NULL)
2140                 return (0);
2141         return (td->td_sleeplocks->ll_count != 0);
2142 }
2143
2144 static int
2145 witness_proc_has_locks(struct proc *p)
2146 {
2147         struct thread *td;
2148
2149         FOREACH_THREAD_IN_PROC(p, td) {
2150                 if (witness_thread_has_locks(td))
2151                         return (1);
2152         }
2153         return (0);
2154 }
2155 #endif
2156
2157 int
2158 witness_list_locks(struct lock_list_entry **lock_list,
2159     int (*prnt)(const char *fmt, ...))
2160 {
2161         struct lock_list_entry *lle;
2162         int i, nheld;
2163
2164         nheld = 0;
2165         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2166                 for (i = lle->ll_count - 1; i >= 0; i--) {
2167                         witness_list_lock(&lle->ll_children[i], prnt);
2168                         nheld++;
2169                 }
2170         return (nheld);
2171 }
2172
2173 /*
2174  * This is a bit risky at best.  We call this function when we have timed
2175  * out acquiring a spin lock, and we assume that the other CPU is stuck
2176  * with this lock held.  So, we go groveling around in the other CPU's
2177  * per-cpu data to try to find the lock instance for this spin lock to
2178  * see when it was last acquired.
2179  */
2180 void
2181 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2182     int (*prnt)(const char *fmt, ...))
2183 {
2184         struct lock_instance *instance;
2185         struct pcpu *pc;
2186
2187         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2188                 return;
2189         pc = pcpu_find(owner->td_oncpu);
2190         instance = find_instance(pc->pc_spinlocks, lock);
2191         if (instance != NULL)
2192                 witness_list_lock(instance, prnt);
2193 }
2194
2195 void
2196 witness_save(struct lock_object *lock, const char **filep, int *linep)
2197 {
2198         struct lock_list_entry *lock_list;
2199         struct lock_instance *instance;
2200         struct lock_class *class;
2201
2202         /*
2203          * This function is used independently in locking code to deal with
2204          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2205          * is gone.
2206          */
2207         if (SCHEDULER_STOPPED())
2208                 return;
2209         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2210         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2211                 return;
2212         class = LOCK_CLASS(lock);
2213         if (class->lc_flags & LC_SLEEPLOCK)
2214                 lock_list = curthread->td_sleeplocks;
2215         else {
2216                 if (witness_skipspin)
2217                         return;
2218                 lock_list = PCPU_GET(spinlocks);
2219         }
2220         instance = find_instance(lock_list, lock);
2221         if (instance == NULL) {
2222                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2223                     class->lc_name, lock->lo_name);
2224                 return;
2225         }
2226         *filep = instance->li_file;
2227         *linep = instance->li_line;
2228 }
2229
2230 void
2231 witness_restore(struct lock_object *lock, const char *file, int line)
2232 {
2233         struct lock_list_entry *lock_list;
2234         struct lock_instance *instance;
2235         struct lock_class *class;
2236
2237         /*
2238          * This function is used independently in locking code to deal with
2239          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2240          * is gone.
2241          */
2242         if (SCHEDULER_STOPPED())
2243                 return;
2244         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2245         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2246                 return;
2247         class = LOCK_CLASS(lock);
2248         if (class->lc_flags & LC_SLEEPLOCK)
2249                 lock_list = curthread->td_sleeplocks;
2250         else {
2251                 if (witness_skipspin)
2252                         return;
2253                 lock_list = PCPU_GET(spinlocks);
2254         }
2255         instance = find_instance(lock_list, lock);
2256         if (instance == NULL)
2257                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2258                     class->lc_name, lock->lo_name);
2259         lock->lo_witness->w_file = file;
2260         lock->lo_witness->w_line = line;
2261         if (instance == NULL)
2262                 return;
2263         instance->li_file = file;
2264         instance->li_line = line;
2265 }
2266
2267 void
2268 witness_assert(const struct lock_object *lock, int flags, const char *file,
2269     int line)
2270 {
2271 #ifdef INVARIANT_SUPPORT
2272         struct lock_instance *instance;
2273         struct lock_class *class;
2274
2275         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2276                 return;
2277         class = LOCK_CLASS(lock);
2278         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2279                 instance = find_instance(curthread->td_sleeplocks, lock);
2280         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2281                 instance = find_instance(PCPU_GET(spinlocks), lock);
2282         else {
2283                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2284                     class->lc_name, lock->lo_name);
2285                 return;
2286         }
2287         switch (flags) {
2288         case LA_UNLOCKED:
2289                 if (instance != NULL)
2290                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2291                             class->lc_name, lock->lo_name,
2292                             fixup_filename(file), line);
2293                 break;
2294         case LA_LOCKED:
2295         case LA_LOCKED | LA_RECURSED:
2296         case LA_LOCKED | LA_NOTRECURSED:
2297         case LA_SLOCKED:
2298         case LA_SLOCKED | LA_RECURSED:
2299         case LA_SLOCKED | LA_NOTRECURSED:
2300         case LA_XLOCKED:
2301         case LA_XLOCKED | LA_RECURSED:
2302         case LA_XLOCKED | LA_NOTRECURSED:
2303                 if (instance == NULL) {
2304                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2305                             class->lc_name, lock->lo_name,
2306                             fixup_filename(file), line);
2307                         break;
2308                 }
2309                 if ((flags & LA_XLOCKED) != 0 &&
2310                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2311                         kassert_panic(
2312                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2313                             class->lc_name, lock->lo_name,
2314                             fixup_filename(file), line);
2315                 if ((flags & LA_SLOCKED) != 0 &&
2316                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2317                         kassert_panic(
2318                             "Lock (%s) %s exclusively locked @ %s:%d.",
2319                             class->lc_name, lock->lo_name,
2320                             fixup_filename(file), line);
2321                 if ((flags & LA_RECURSED) != 0 &&
2322                     (instance->li_flags & LI_RECURSEMASK) == 0)
2323                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2324                             class->lc_name, lock->lo_name,
2325                             fixup_filename(file), line);
2326                 if ((flags & LA_NOTRECURSED) != 0 &&
2327                     (instance->li_flags & LI_RECURSEMASK) != 0)
2328                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2329                             class->lc_name, lock->lo_name,
2330                             fixup_filename(file), line);
2331                 break;
2332         default:
2333                 kassert_panic("Invalid lock assertion at %s:%d.",
2334                     fixup_filename(file), line);
2335
2336         }
2337 #endif  /* INVARIANT_SUPPORT */
2338 }
2339
2340 static void
2341 witness_setflag(struct lock_object *lock, int flag, int set)
2342 {
2343         struct lock_list_entry *lock_list;
2344         struct lock_instance *instance;
2345         struct lock_class *class;
2346
2347         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2348                 return;
2349         class = LOCK_CLASS(lock);
2350         if (class->lc_flags & LC_SLEEPLOCK)
2351                 lock_list = curthread->td_sleeplocks;
2352         else {
2353                 if (witness_skipspin)
2354                         return;
2355                 lock_list = PCPU_GET(spinlocks);
2356         }
2357         instance = find_instance(lock_list, lock);
2358         if (instance == NULL) {
2359                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2360                     class->lc_name, lock->lo_name);
2361                 return;
2362         }
2363
2364         if (set)
2365                 instance->li_flags |= flag;
2366         else
2367                 instance->li_flags &= ~flag;
2368 }
2369
2370 void
2371 witness_norelease(struct lock_object *lock)
2372 {
2373
2374         witness_setflag(lock, LI_NORELEASE, 1);
2375 }
2376
2377 void
2378 witness_releaseok(struct lock_object *lock)
2379 {
2380
2381         witness_setflag(lock, LI_NORELEASE, 0);
2382 }
2383
2384 #ifdef DDB
2385 static void
2386 witness_ddb_list(struct thread *td)
2387 {
2388
2389         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2390         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2391
2392         if (witness_watch < 1)
2393                 return;
2394
2395         witness_list_locks(&td->td_sleeplocks, db_printf);
2396
2397         /*
2398          * We only handle spinlocks if td == curthread.  This is somewhat broken
2399          * if td is currently executing on some other CPU and holds spin locks
2400          * as we won't display those locks.  If we had a MI way of getting
2401          * the per-cpu data for a given cpu then we could use
2402          * td->td_oncpu to get the list of spinlocks for this thread
2403          * and "fix" this.
2404          *
2405          * That still wouldn't really fix this unless we locked the scheduler
2406          * lock or stopped the other CPU to make sure it wasn't changing the
2407          * list out from under us.  It is probably best to just not try to
2408          * handle threads on other CPU's for now.
2409          */
2410         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2411                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2412 }
2413
2414 DB_SHOW_COMMAND(locks, db_witness_list)
2415 {
2416         struct thread *td;
2417
2418         if (have_addr)
2419                 td = db_lookup_thread(addr, TRUE);
2420         else
2421                 td = kdb_thread;
2422         witness_ddb_list(td);
2423 }
2424
2425 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2426 {
2427         struct thread *td;
2428         struct proc *p;
2429
2430         /*
2431          * It would be nice to list only threads and processes that actually
2432          * held sleep locks, but that information is currently not exported
2433          * by WITNESS.
2434          */
2435         FOREACH_PROC_IN_SYSTEM(p) {
2436                 if (!witness_proc_has_locks(p))
2437                         continue;
2438                 FOREACH_THREAD_IN_PROC(p, td) {
2439                         if (!witness_thread_has_locks(td))
2440                                 continue;
2441                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2442                             p->p_comm, td, td->td_tid);
2443                         witness_ddb_list(td);
2444                         if (db_pager_quit)
2445                                 return;
2446                 }
2447         }
2448 }
2449 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2450
2451 DB_SHOW_COMMAND(witness, db_witness_display)
2452 {
2453
2454         witness_ddb_display(db_printf);
2455 }
2456 #endif
2457
2458 static int
2459 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2460 {
2461         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2462         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2463         struct sbuf *sb;
2464         u_int w_rmatrix1, w_rmatrix2;
2465         int error, generation, i, j;
2466
2467         tmp_data1 = NULL;
2468         tmp_data2 = NULL;
2469         tmp_w1 = NULL;
2470         tmp_w2 = NULL;
2471         if (witness_watch < 1) {
2472                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2473                 return (error);
2474         }
2475         if (witness_cold) {
2476                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2477                 return (error);
2478         }
2479         error = 0;
2480         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2481         if (sb == NULL)
2482                 return (ENOMEM);
2483
2484         /* Allocate and init temporary storage space. */
2485         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2486         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2487         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2488             M_WAITOK | M_ZERO);
2489         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2490             M_WAITOK | M_ZERO);
2491         stack_zero(&tmp_data1->wlod_stack);
2492         stack_zero(&tmp_data2->wlod_stack);
2493
2494 restart:
2495         mtx_lock_spin(&w_mtx);
2496         generation = w_generation;
2497         mtx_unlock_spin(&w_mtx);
2498         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2499             w_lohash.wloh_count);
2500         for (i = 1; i < w_max_used_index; i++) {
2501                 mtx_lock_spin(&w_mtx);
2502                 if (generation != w_generation) {
2503                         mtx_unlock_spin(&w_mtx);
2504
2505                         /* The graph has changed, try again. */
2506                         req->oldidx = 0;
2507                         sbuf_clear(sb);
2508                         goto restart;
2509                 }
2510
2511                 w1 = &w_data[i];
2512                 if (w1->w_reversed == 0) {
2513                         mtx_unlock_spin(&w_mtx);
2514                         continue;
2515                 }
2516
2517                 /* Copy w1 locally so we can release the spin lock. */
2518                 *tmp_w1 = *w1;
2519                 mtx_unlock_spin(&w_mtx);
2520
2521                 if (tmp_w1->w_reversed == 0)
2522                         continue;
2523                 for (j = 1; j < w_max_used_index; j++) {
2524                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2525                                 continue;
2526
2527                         mtx_lock_spin(&w_mtx);
2528                         if (generation != w_generation) {
2529                                 mtx_unlock_spin(&w_mtx);
2530
2531                                 /* The graph has changed, try again. */
2532                                 req->oldidx = 0;
2533                                 sbuf_clear(sb);
2534                                 goto restart;
2535                         }
2536
2537                         w2 = &w_data[j];
2538                         data1 = witness_lock_order_get(w1, w2);
2539                         data2 = witness_lock_order_get(w2, w1);
2540
2541                         /*
2542                          * Copy information locally so we can release the
2543                          * spin lock.
2544                          */
2545                         *tmp_w2 = *w2;
2546                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2547                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2548
2549                         if (data1) {
2550                                 stack_zero(&tmp_data1->wlod_stack);
2551                                 stack_copy(&data1->wlod_stack,
2552                                     &tmp_data1->wlod_stack);
2553                         }
2554                         if (data2 && data2 != data1) {
2555                                 stack_zero(&tmp_data2->wlod_stack);
2556                                 stack_copy(&data2->wlod_stack,
2557                                     &tmp_data2->wlod_stack);
2558                         }
2559                         mtx_unlock_spin(&w_mtx);
2560
2561                         sbuf_printf(sb,
2562             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2563                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2564                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2565 #if 0
2566                         sbuf_printf(sb,
2567                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2568                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2569                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2570 #endif
2571                         if (data1) {
2572                                 sbuf_printf(sb,
2573                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2574                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2575                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2576                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2577                                 sbuf_printf(sb, "\n");
2578                         }
2579                         if (data2 && data2 != data1) {
2580                                 sbuf_printf(sb,
2581                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2582                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2583                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2584                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2585                                 sbuf_printf(sb, "\n");
2586                         }
2587                 }
2588         }
2589         mtx_lock_spin(&w_mtx);
2590         if (generation != w_generation) {
2591                 mtx_unlock_spin(&w_mtx);
2592
2593                 /*
2594                  * The graph changed while we were printing stack data,
2595                  * try again.
2596                  */
2597                 req->oldidx = 0;
2598                 sbuf_clear(sb);
2599                 goto restart;
2600         }
2601         mtx_unlock_spin(&w_mtx);
2602
2603         /* Free temporary storage space. */
2604         free(tmp_data1, M_TEMP);
2605         free(tmp_data2, M_TEMP);
2606         free(tmp_w1, M_TEMP);
2607         free(tmp_w2, M_TEMP);
2608
2609         sbuf_finish(sb);
2610         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2611         sbuf_delete(sb);
2612
2613         return (error);
2614 }
2615
2616 static int
2617 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2618 {
2619         struct witness *w;
2620         struct sbuf *sb;
2621         int error;
2622
2623         if (witness_watch < 1) {
2624                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2625                 return (error);
2626         }
2627         if (witness_cold) {
2628                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2629                 return (error);
2630         }
2631         error = 0;
2632
2633         error = sysctl_wire_old_buffer(req, 0);
2634         if (error != 0)
2635                 return (error);
2636         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2637         if (sb == NULL)
2638                 return (ENOMEM);
2639         sbuf_printf(sb, "\n");
2640
2641         mtx_lock_spin(&w_mtx);
2642         STAILQ_FOREACH(w, &w_all, w_list)
2643                 w->w_displayed = 0;
2644         STAILQ_FOREACH(w, &w_all, w_list)
2645                 witness_add_fullgraph(sb, w);
2646         mtx_unlock_spin(&w_mtx);
2647
2648         /*
2649          * Close the sbuf and return to userland.
2650          */
2651         error = sbuf_finish(sb);
2652         sbuf_delete(sb);
2653
2654         return (error);
2655 }
2656
2657 static int
2658 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2659 {
2660         int error, value;
2661
2662         value = witness_watch;
2663         error = sysctl_handle_int(oidp, &value, 0, req);
2664         if (error != 0 || req->newptr == NULL)
2665                 return (error);
2666         if (value > 1 || value < -1 ||
2667             (witness_watch == -1 && value != witness_watch))
2668                 return (EINVAL);
2669         witness_watch = value;
2670         return (0);
2671 }
2672
2673 static void
2674 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2675 {
2676         int i;
2677
2678         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2679                 return;
2680         w->w_displayed = 1;
2681
2682         WITNESS_INDEX_ASSERT(w->w_index);
2683         for (i = 1; i <= w_max_used_index; i++) {
2684                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2685                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2686                             w_data[i].w_name);
2687                         witness_add_fullgraph(sb, &w_data[i]);
2688                 }
2689         }
2690 }
2691
2692 /*
2693  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2694  * interprets the key as a string and reads until the null
2695  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2696  * hash value computed from the key.
2697  */
2698 static uint32_t
2699 witness_hash_djb2(const uint8_t *key, uint32_t size)
2700 {
2701         unsigned int hash = 5381;
2702         int i;
2703
2704         /* hash = hash * 33 + key[i] */
2705         if (size)
2706                 for (i = 0; i < size; i++)
2707                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2708         else
2709                 for (i = 0; key[i] != 0; i++)
2710                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2711
2712         return (hash);
2713 }
2714
2715
2716 /*
2717  * Initializes the two witness hash tables. Called exactly once from
2718  * witness_initialize().
2719  */
2720 static void
2721 witness_init_hash_tables(void)
2722 {
2723         int i;
2724
2725         MPASS(witness_cold);
2726
2727         /* Initialize the hash tables. */
2728         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2729                 w_hash.wh_array[i] = NULL;
2730
2731         w_hash.wh_size = WITNESS_HASH_SIZE;
2732         w_hash.wh_count = 0;
2733
2734         /* Initialize the lock order data hash. */
2735         w_lofree = NULL;
2736         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2737                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2738                 w_lodata[i].wlod_next = w_lofree;
2739                 w_lofree = &w_lodata[i];
2740         }
2741         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2742         w_lohash.wloh_count = 0;
2743         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2744                 w_lohash.wloh_array[i] = NULL;
2745 }
2746
2747 static struct witness *
2748 witness_hash_get(const char *key)
2749 {
2750         struct witness *w;
2751         uint32_t hash;
2752         
2753         MPASS(key != NULL);
2754         if (witness_cold == 0)
2755                 mtx_assert(&w_mtx, MA_OWNED);
2756         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2757         w = w_hash.wh_array[hash];
2758         while (w != NULL) {
2759                 if (strcmp(w->w_name, key) == 0)
2760                         goto out;
2761                 w = w->w_hash_next;
2762         }
2763
2764 out:
2765         return (w);
2766 }
2767
2768 static void
2769 witness_hash_put(struct witness *w)
2770 {
2771         uint32_t hash;
2772
2773         MPASS(w != NULL);
2774         MPASS(w->w_name != NULL);
2775         if (witness_cold == 0)
2776                 mtx_assert(&w_mtx, MA_OWNED);
2777         KASSERT(witness_hash_get(w->w_name) == NULL,
2778             ("%s: trying to add a hash entry that already exists!", __func__));
2779         KASSERT(w->w_hash_next == NULL,
2780             ("%s: w->w_hash_next != NULL", __func__));
2781
2782         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2783         w->w_hash_next = w_hash.wh_array[hash];
2784         w_hash.wh_array[hash] = w;
2785         w_hash.wh_count++;
2786 }
2787
2788
2789 static struct witness_lock_order_data *
2790 witness_lock_order_get(struct witness *parent, struct witness *child)
2791 {
2792         struct witness_lock_order_data *data = NULL;
2793         struct witness_lock_order_key key;
2794         unsigned int hash;
2795
2796         MPASS(parent != NULL && child != NULL);
2797         key.from = parent->w_index;
2798         key.to = child->w_index;
2799         WITNESS_INDEX_ASSERT(key.from);
2800         WITNESS_INDEX_ASSERT(key.to);
2801         if ((w_rmatrix[parent->w_index][child->w_index]
2802             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2803                 goto out;
2804
2805         hash = witness_hash_djb2((const char*)&key,
2806             sizeof(key)) % w_lohash.wloh_size;
2807         data = w_lohash.wloh_array[hash];
2808         while (data != NULL) {
2809                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2810                         break;
2811                 data = data->wlod_next;
2812         }
2813
2814 out:
2815         return (data);
2816 }
2817
2818 /*
2819  * Verify that parent and child have a known relationship, are not the same,
2820  * and child is actually a child of parent.  This is done without w_mtx
2821  * to avoid contention in the common case.
2822  */
2823 static int
2824 witness_lock_order_check(struct witness *parent, struct witness *child)
2825 {
2826
2827         if (parent != child &&
2828             w_rmatrix[parent->w_index][child->w_index]
2829             & WITNESS_LOCK_ORDER_KNOWN &&
2830             isitmychild(parent, child))
2831                 return (1);
2832
2833         return (0);
2834 }
2835
2836 static int
2837 witness_lock_order_add(struct witness *parent, struct witness *child)
2838 {
2839         struct witness_lock_order_data *data = NULL;
2840         struct witness_lock_order_key key;
2841         unsigned int hash;
2842         
2843         MPASS(parent != NULL && child != NULL);
2844         key.from = parent->w_index;
2845         key.to = child->w_index;
2846         WITNESS_INDEX_ASSERT(key.from);
2847         WITNESS_INDEX_ASSERT(key.to);
2848         if (w_rmatrix[parent->w_index][child->w_index]
2849             & WITNESS_LOCK_ORDER_KNOWN)
2850                 return (1);
2851
2852         hash = witness_hash_djb2((const char*)&key,
2853             sizeof(key)) % w_lohash.wloh_size;
2854         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2855         data = w_lofree;
2856         if (data == NULL)
2857                 return (0);
2858         w_lofree = data->wlod_next;
2859         data->wlod_next = w_lohash.wloh_array[hash];
2860         data->wlod_key = key;
2861         w_lohash.wloh_array[hash] = data;
2862         w_lohash.wloh_count++;
2863         stack_zero(&data->wlod_stack);
2864         stack_save(&data->wlod_stack);
2865         return (1);
2866 }
2867
2868 /* Call this whenver the structure of the witness graph changes. */
2869 static void
2870 witness_increment_graph_generation(void)
2871 {
2872
2873         if (witness_cold == 0)
2874                 mtx_assert(&w_mtx, MA_OWNED);
2875         w_generation++;
2876 }
2877
2878 #ifdef KDB
2879 static void
2880 _witness_debugger(int cond, const char *msg)
2881 {
2882
2883         if (witness_trace && cond)
2884                 kdb_backtrace();
2885         if (witness_kdb && cond)
2886                 kdb_enter(KDB_WHY_WITNESS, msg);
2887 }
2888 #endif