]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
Merge from head up to r188941 (last revision before the USB stack switch)
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        512
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define CYCLEGRAPH_SBUF_SIZE    8192
158 #define FULLGRAPH_SBUF_SIZE     32768
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
187
188 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 #ifdef BLESSING
280 struct witness_blessed {
281         const char      *b_lock1;
282         const char      *b_lock2;
283 };
284 #endif
285
286 struct witness_pendhelp {
287         const char              *wh_type;
288         struct lock_object      *wh_lock;
289 };
290
291 struct witness_order_list_entry {
292         const char              *w_name;
293         struct lock_class       *w_class;
294 };
295
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303
304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307
308 static __inline int
309 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
310 {
311
312         return (key->from == 0 && key->to == 0);
313 }
314
315 static __inline int
316 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
317     const struct witness_lock_order_key *b)
318 {
319
320         return (a->from == b->from && a->to == b->to);
321 }
322
323 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
324                     const char *fname);
325 #ifdef KDB
326 static void     _witness_debugger(int cond, const char *msg);
327 #endif
328 static void     adopt(struct witness *parent, struct witness *child);
329 #ifdef BLESSING
330 static int      blessed(struct witness *, struct witness *);
331 #endif
332 static void     depart(struct witness *w);
333 static struct witness   *enroll(const char *description,
334                             struct lock_class *lock_class);
335 static struct lock_instance     *find_instance(struct lock_list_entry *list,
336                                     struct lock_object *lock);
337 static int      isitmychild(struct witness *parent, struct witness *child);
338 static int      isitmydescendant(struct witness *parent, struct witness *child);
339 static void     itismychild(struct witness *parent, struct witness *child);
340 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
341 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
342 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
343 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
344 #ifdef DDB
345 static void     witness_ddb_compute_levels(void);
346 static void     witness_ddb_display(void(*)(const char *fmt, ...));
347 static void     witness_ddb_display_descendants(void(*)(const char *fmt, ...),
348                     struct witness *, int indent);
349 static void     witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
350                     struct witness_list *list);
351 static void     witness_ddb_level_descendants(struct witness *parent, int l);
352 static void     witness_ddb_list(struct thread *td);
353 #endif
354 static void     witness_free(struct witness *m);
355 static struct witness   *witness_get(void);
356 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
357 static struct witness   *witness_hash_get(const char *key);
358 static void     witness_hash_put(struct witness *w);
359 static void     witness_init_hash_tables(void);
360 static void     witness_increment_graph_generation(void);
361 static void     witness_lock_list_free(struct lock_list_entry *lle);
362 static struct lock_list_entry   *witness_lock_list_get(void);
363 static int      witness_lock_order_add(struct witness *parent,
364                     struct witness *child);
365 static int      witness_lock_order_check(struct witness *parent,
366                     struct witness *child);
367 static struct witness_lock_order_data   *witness_lock_order_get(
368                                             struct witness *parent,
369                                             struct witness *child);
370 static void     witness_list_lock(struct lock_instance *instance);
371 static void     witness_setflag(struct lock_object *lock, int flag, int set);
372
373 #ifdef KDB
374 #define witness_debugger(c)     _witness_debugger(c, __func__)
375 #else
376 #define witness_debugger(c)
377 #endif
378
379 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
380
381 /*
382  * If set to 0, lock order checking is disabled.  If set to -1,
383  * witness is completely disabled.  Otherwise witness performs full
384  * lock order checking for all locks.  At runtime, lock order checking
385  * may be toggled.  However, witness cannot be reenabled once it is
386  * completely disabled.
387  */
388 static int witness_watch = 1;
389 TUNABLE_INT("debug.witness.watch", &witness_watch);
390 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
391     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
392
393 #ifdef KDB
394 /*
395  * When KDB is enabled and witness_kdb is 1, it will cause the system
396  * to drop into kdebug() when:
397  *      - a lock hierarchy violation occurs
398  *      - locks are held when going to sleep.
399  */
400 #ifdef WITNESS_KDB
401 int     witness_kdb = 1;
402 #else
403 int     witness_kdb = 0;
404 #endif
405 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
406 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
407
408 /*
409  * When KDB is enabled and witness_trace is 1, it will cause the system
410  * to print a stack trace:
411  *      - a lock hierarchy violation occurs
412  *      - locks are held when going to sleep.
413  */
414 int     witness_trace = 1;
415 TUNABLE_INT("debug.witness.trace", &witness_trace);
416 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
417 #endif /* KDB */
418
419 #ifdef WITNESS_SKIPSPIN
420 int     witness_skipspin = 1;
421 #else
422 int     witness_skipspin = 0;
423 #endif
424 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
425 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
426     0, "");
427
428 /*
429  * Call this to print out the relations between locks.
430  */
431 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
432     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
433
434 /*
435  * Call this to print out the witness faulty stacks.
436  */
437 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
438     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
439
440 static struct mtx w_mtx;
441
442 /* w_list */
443 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
444 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
445
446 /* w_typelist */
447 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
448 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
449
450 /* lock list */
451 static struct lock_list_entry *w_lock_list_free = NULL;
452 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
453 static u_int pending_cnt;
454
455 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
456 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
457 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
459     "");
460
461 static struct witness *w_data;
462 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
463 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
464 static struct witness_hash w_hash;      /* The witness hash table. */
465
466 /* The lock order data hash */
467 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
468 static struct witness_lock_order_data *w_lofree = NULL;
469 static struct witness_lock_order_hash w_lohash;
470 static int w_max_used_index = 0;
471 static unsigned int w_generation = 0;
472 static const char *w_notrunning = "Witness not running\n";
473 static const char *w_stillcold = "Witness is still cold\n";
474
475
476 static struct witness_order_list_entry order_lists[] = {
477         /*
478          * sx locks
479          */
480         { "proctree", &lock_class_sx },
481         { "allproc", &lock_class_sx },
482         { "allprison", &lock_class_sx },
483         { NULL, NULL },
484         /*
485          * Various mutexes
486          */
487         { "Giant", &lock_class_mtx_sleep },
488         { "pipe mutex", &lock_class_mtx_sleep },
489         { "sigio lock", &lock_class_mtx_sleep },
490         { "process group", &lock_class_mtx_sleep },
491         { "process lock", &lock_class_mtx_sleep },
492         { "session", &lock_class_mtx_sleep },
493         { "uidinfo hash", &lock_class_rw },
494 #ifdef  HWPMC_HOOKS
495         { "pmc-sleep", &lock_class_mtx_sleep },
496 #endif
497         { NULL, NULL },
498         /*
499          * Sockets
500          */
501         { "accept", &lock_class_mtx_sleep },
502         { "so_snd", &lock_class_mtx_sleep },
503         { "so_rcv", &lock_class_mtx_sleep },
504         { "sellck", &lock_class_mtx_sleep },
505         { NULL, NULL },
506         /*
507          * Routing
508          */
509         { "so_rcv", &lock_class_mtx_sleep },
510         { "radix node head", &lock_class_rw },
511         { "rtentry", &lock_class_mtx_sleep },
512         { "ifaddr", &lock_class_mtx_sleep },
513         { NULL, NULL },
514         /*
515          * Multicast - protocol locks before interface locks, after UDP locks.
516          */
517         { "udpinp", &lock_class_rw },
518         { "in_multi_mtx", &lock_class_mtx_sleep },
519         { "igmp_mtx", &lock_class_mtx_sleep },
520         { "if_addr_mtx", &lock_class_mtx_sleep },
521         { NULL, NULL },
522         /*
523          * UNIX Domain Sockets
524          */
525         { "unp", &lock_class_mtx_sleep },
526         { "so_snd", &lock_class_mtx_sleep },
527         { NULL, NULL },
528         /*
529          * UDP/IP
530          */
531         { "udp", &lock_class_rw },
532         { "udpinp", &lock_class_rw },
533         { "so_snd", &lock_class_mtx_sleep },
534         { NULL, NULL },
535         /*
536          * TCP/IP
537          */
538         { "tcp", &lock_class_rw },
539         { "tcpinp", &lock_class_rw },
540         { "so_snd", &lock_class_mtx_sleep },
541         { NULL, NULL },
542         /*
543          * SLIP
544          */
545         { "slip_mtx", &lock_class_mtx_sleep },
546         { "slip sc_mtx", &lock_class_mtx_sleep },
547         { NULL, NULL },
548         /*
549          * netatalk
550          */
551         { "ddp_list_mtx", &lock_class_mtx_sleep },
552         { "ddp_mtx", &lock_class_mtx_sleep },
553         { NULL, NULL },
554         /*
555          * BPF
556          */
557         { "bpf global lock", &lock_class_mtx_sleep },
558         { "bpf interface lock", &lock_class_mtx_sleep },
559         { "bpf cdev lock", &lock_class_mtx_sleep },
560         { NULL, NULL },
561         /*
562          * NFS server
563          */
564         { "nfsd_mtx", &lock_class_mtx_sleep },
565         { "so_snd", &lock_class_mtx_sleep },
566         { NULL, NULL },
567
568         /*
569          * IEEE 802.11
570          */
571         { "802.11 com lock", &lock_class_mtx_sleep},
572         { NULL, NULL },
573         /*
574          * Network drivers
575          */
576         { "network driver", &lock_class_mtx_sleep},
577         { NULL, NULL },
578
579         /*
580          * Netgraph
581          */
582         { "ng_node", &lock_class_mtx_sleep },
583         { "ng_worklist", &lock_class_mtx_sleep },
584         { NULL, NULL },
585         /*
586          * CDEV
587          */
588         { "system map", &lock_class_mtx_sleep },
589         { "vm page queue mutex", &lock_class_mtx_sleep },
590         { "vnode interlock", &lock_class_mtx_sleep },
591         { "cdev", &lock_class_mtx_sleep },
592         { NULL, NULL },
593         /*
594          * kqueue/VFS interaction
595          */
596         { "kqueue", &lock_class_mtx_sleep },
597         { "struct mount mtx", &lock_class_mtx_sleep },
598         { "vnode interlock", &lock_class_mtx_sleep },
599         { NULL, NULL },
600         /*
601          * spin locks
602          */
603 #ifdef SMP
604         { "ap boot", &lock_class_mtx_spin },
605 #endif
606         { "rm.mutex_mtx", &lock_class_mtx_spin },
607         { "sio", &lock_class_mtx_spin },
608         { "scrlock", &lock_class_mtx_spin },
609 #ifdef __i386__
610         { "cy", &lock_class_mtx_spin },
611 #endif
612 #ifdef __sparc64__
613         { "pcib_mtx", &lock_class_mtx_spin },
614         { "rtc_mtx", &lock_class_mtx_spin },
615 #endif
616         { "scc_hwmtx", &lock_class_mtx_spin },
617         { "uart_hwmtx", &lock_class_mtx_spin },
618         { "fast_taskqueue", &lock_class_mtx_spin },
619         { "intr table", &lock_class_mtx_spin },
620 #ifdef  HWPMC_HOOKS
621         { "pmc-per-proc", &lock_class_mtx_spin },
622 #endif
623         { "process slock", &lock_class_mtx_spin },
624         { "sleepq chain", &lock_class_mtx_spin },
625         { "umtx lock", &lock_class_mtx_spin },
626         { "rm_spinlock", &lock_class_mtx_spin },
627         { "turnstile chain", &lock_class_mtx_spin },
628         { "turnstile lock", &lock_class_mtx_spin },
629         { "sched lock", &lock_class_mtx_spin },
630         { "td_contested", &lock_class_mtx_spin },
631         { "callout", &lock_class_mtx_spin },
632         { "entropy harvest mutex", &lock_class_mtx_spin },
633         { "syscons video lock", &lock_class_mtx_spin },
634         { "time lock", &lock_class_mtx_spin },
635 #ifdef SMP
636         { "smp rendezvous", &lock_class_mtx_spin },
637 #endif
638 #ifdef __powerpc__
639         { "tlb0", &lock_class_mtx_spin },
640 #endif
641         /*
642          * leaf locks
643          */
644         { "intrcnt", &lock_class_mtx_spin },
645         { "icu", &lock_class_mtx_spin },
646 #if defined(SMP) && defined(__sparc64__)
647         { "ipi", &lock_class_mtx_spin },
648 #endif
649 #ifdef __i386__
650         { "allpmaps", &lock_class_mtx_spin },
651         { "descriptor tables", &lock_class_mtx_spin },
652 #endif
653         { "clk", &lock_class_mtx_spin },
654         { "cpuset", &lock_class_mtx_spin },
655         { "mprof lock", &lock_class_mtx_spin },
656         { "zombie lock", &lock_class_mtx_spin },
657         { "ALD Queue", &lock_class_mtx_spin },
658 #ifdef __ia64__
659         { "MCA spin lock", &lock_class_mtx_spin },
660 #endif
661 #if defined(__i386__) || defined(__amd64__)
662         { "pcicfg", &lock_class_mtx_spin },
663         { "NDIS thread lock", &lock_class_mtx_spin },
664 #endif
665         { "tw_osl_io_lock", &lock_class_mtx_spin },
666         { "tw_osl_q_lock", &lock_class_mtx_spin },
667         { "tw_cl_io_lock", &lock_class_mtx_spin },
668         { "tw_cl_intr_lock", &lock_class_mtx_spin },
669         { "tw_cl_gen_lock", &lock_class_mtx_spin },
670 #ifdef  HWPMC_HOOKS
671         { "pmc-leaf", &lock_class_mtx_spin },
672 #endif
673         { "blocked lock", &lock_class_mtx_spin },
674         { NULL, NULL },
675         { NULL, NULL }
676 };
677
678 #ifdef BLESSING
679 /*
680  * Pairs of locks which have been blessed
681  * Don't complain about order problems with blessed locks
682  */
683 static struct witness_blessed blessed_list[] = {
684 };
685 static int blessed_count =
686         sizeof(blessed_list) / sizeof(struct witness_blessed);
687 #endif
688
689 /*
690  * This global is set to 0 once it becomes safe to use the witness code.
691  */
692 static int witness_cold = 1;
693
694 /*
695  * This global is set to 1 once the static lock orders have been enrolled
696  * so that a warning can be issued for any spin locks enrolled later.
697  */
698 static int witness_spin_warn = 0;
699
700 /*
701  * The WITNESS-enabled diagnostic code.  Note that the witness code does
702  * assume that the early boot is single-threaded at least until after this
703  * routine is completed.
704  */
705 static void
706 witness_initialize(void *dummy __unused)
707 {
708         struct lock_object *lock;
709         struct witness_order_list_entry *order;
710         struct witness *w, *w1;
711         int i;
712
713         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
714             M_NOWAIT | M_ZERO);
715
716         /*
717          * We have to release Giant before initializing its witness
718          * structure so that WITNESS doesn't get confused.
719          */
720         mtx_unlock(&Giant);
721         mtx_assert(&Giant, MA_NOTOWNED);
722
723         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
724         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
725             MTX_NOWITNESS | MTX_NOPROFILE);
726         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
727                 w = &w_data[i];
728                 memset(w, 0, sizeof(*w));
729                 w_data[i].w_index = i;  /* Witness index never changes. */
730                 witness_free(w);
731         }
732         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
733             ("%s: Invalid list of free witness objects", __func__));
734
735         /* Witness with index 0 is not used to aid in debugging. */
736         STAILQ_REMOVE_HEAD(&w_free, w_list);
737         w_free_cnt--;
738
739         memset(w_rmatrix, 0,
740             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
741
742         for (i = 0; i < LOCK_CHILDCOUNT; i++)
743                 witness_lock_list_free(&w_locklistdata[i]);
744         witness_init_hash_tables();
745
746         /* First add in all the specified order lists. */
747         for (order = order_lists; order->w_name != NULL; order++) {
748                 w = enroll(order->w_name, order->w_class);
749                 if (w == NULL)
750                         continue;
751                 w->w_file = "order list";
752                 for (order++; order->w_name != NULL; order++) {
753                         w1 = enroll(order->w_name, order->w_class);
754                         if (w1 == NULL)
755                                 continue;
756                         w1->w_file = "order list";
757                         itismychild(w, w1);
758                         w = w1;
759                 }
760         }
761         witness_spin_warn = 1;
762
763         /* Iterate through all locks and add them to witness. */
764         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
765                 lock = pending_locks[i].wh_lock;
766                 KASSERT(lock->lo_flags & LO_WITNESS,
767                     ("%s: lock %s is on pending list but not LO_WITNESS",
768                     __func__, lock->lo_name));
769                 lock->lo_witness = enroll(pending_locks[i].wh_type,
770                     LOCK_CLASS(lock));
771         }
772
773         /* Mark the witness code as being ready for use. */
774         witness_cold = 0;
775
776         mtx_lock(&Giant);
777 }
778 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
779     NULL);
780
781 void
782 witness_init(struct lock_object *lock, const char *type)
783 {
784         struct lock_class *class;
785
786         /* Various sanity checks. */
787         class = LOCK_CLASS(lock);
788         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
789             (class->lc_flags & LC_RECURSABLE) == 0)
790                 panic("%s: lock (%s) %s can not be recursable", __func__,
791                     class->lc_name, lock->lo_name);
792         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
793             (class->lc_flags & LC_SLEEPABLE) == 0)
794                 panic("%s: lock (%s) %s can not be sleepable", __func__,
795                     class->lc_name, lock->lo_name);
796         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
797             (class->lc_flags & LC_UPGRADABLE) == 0)
798                 panic("%s: lock (%s) %s can not be upgradable", __func__,
799                     class->lc_name, lock->lo_name);
800
801         /*
802          * If we shouldn't watch this lock, then just clear lo_witness.
803          * Otherwise, if witness_cold is set, then it is too early to
804          * enroll this lock, so defer it to witness_initialize() by adding
805          * it to the pending_locks list.  If it is not too early, then enroll
806          * the lock now.
807          */
808         if (witness_watch < 1 || panicstr != NULL ||
809             (lock->lo_flags & LO_WITNESS) == 0)
810                 lock->lo_witness = NULL;
811         else if (witness_cold) {
812                 pending_locks[pending_cnt].wh_lock = lock;
813                 pending_locks[pending_cnt++].wh_type = type;
814                 if (pending_cnt > WITNESS_PENDLIST)
815                         panic("%s: pending locks list is too small, bump it\n",
816                             __func__);
817         } else
818                 lock->lo_witness = enroll(type, class);
819 }
820
821 void
822 witness_destroy(struct lock_object *lock)
823 {
824         struct lock_class *class;
825         struct witness *w;
826
827         class = LOCK_CLASS(lock);
828
829         if (witness_cold)
830                 panic("lock (%s) %s destroyed while witness_cold",
831                     class->lc_name, lock->lo_name);
832
833         /* XXX: need to verify that no one holds the lock */
834         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
835                 return;
836         w = lock->lo_witness;
837
838         mtx_lock_spin(&w_mtx);
839         MPASS(w->w_refcount > 0);
840         w->w_refcount--;
841
842         if (w->w_refcount == 0)
843                 depart(w);
844         mtx_unlock_spin(&w_mtx);
845 }
846
847 #ifdef DDB
848 static void
849 witness_ddb_compute_levels(void)
850 {
851         struct witness *w;
852
853         /*
854          * First clear all levels.
855          */
856         STAILQ_FOREACH(w, &w_all, w_list)
857                 w->w_ddb_level = -1;
858
859         /*
860          * Look for locks with no parents and level all their descendants.
861          */
862         STAILQ_FOREACH(w, &w_all, w_list) {
863
864                 /* If the witness has ancestors (is not a root), skip it. */
865                 if (w->w_num_ancestors > 0)
866                         continue;
867                 witness_ddb_level_descendants(w, 0);
868         }
869 }
870
871 static void
872 witness_ddb_level_descendants(struct witness *w, int l)
873 {
874         int i;
875
876         if (w->w_ddb_level >= l)
877                 return;
878
879         w->w_ddb_level = l;
880         l++;
881
882         for (i = 1; i <= w_max_used_index; i++) {
883                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
884                         witness_ddb_level_descendants(&w_data[i], l);
885         }
886 }
887
888 static void
889 witness_ddb_display_descendants(void(*prnt)(const char *fmt, ...),
890     struct witness *w, int indent)
891 {
892         int i;
893
894         for (i = 0; i < indent; i++)
895                 prnt(" ");
896         prnt("%s (type: %s, depth: %d, active refs: %d)",
897              w->w_name, w->w_class->lc_name,
898              w->w_ddb_level, w->w_refcount);
899         if (w->w_displayed) {
900                 prnt(" -- (already displayed)\n");
901                 return;
902         }
903         w->w_displayed = 1;
904         if (w->w_file != NULL && w->w_line != 0)
905                 prnt(" -- last acquired @ %s:%d\n", w->w_file,
906                     w->w_line);
907         else
908                 prnt(" -- never acquired\n");
909         indent++;
910         WITNESS_INDEX_ASSERT(w->w_index);
911         for (i = 1; i <= w_max_used_index; i++) {
912                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
913                         witness_ddb_display_descendants(prnt, &w_data[i],
914                             indent);
915         }
916 }
917
918 static void
919 witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
920     struct witness_list *list)
921 {
922         struct witness *w;
923
924         STAILQ_FOREACH(w, list, w_typelist) {
925                 if (w->w_file == NULL || w->w_ddb_level > 0)
926                         continue;
927
928                 /* This lock has no anscestors - display its descendants. */
929                 witness_ddb_display_descendants(prnt, w, 0);
930         }
931 }
932         
933 static void
934 witness_ddb_display(void(*prnt)(const char *fmt, ...))
935 {
936         struct witness *w;
937
938         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
939         witness_ddb_compute_levels();
940
941         /* Clear all the displayed flags. */
942         STAILQ_FOREACH(w, &w_all, w_list)
943                 w->w_displayed = 0;
944
945         /*
946          * First, handle sleep locks which have been acquired at least
947          * once.
948          */
949         prnt("Sleep locks:\n");
950         witness_ddb_display_list(prnt, &w_sleep);
951         
952         /*
953          * Now do spin locks which have been acquired at least once.
954          */
955         prnt("\nSpin locks:\n");
956         witness_ddb_display_list(prnt, &w_spin);
957         
958         /*
959          * Finally, any locks which have not been acquired yet.
960          */
961         prnt("\nLocks which were never acquired:\n");
962         STAILQ_FOREACH(w, &w_all, w_list) {
963                 if (w->w_file != NULL || w->w_refcount == 0)
964                         continue;
965                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
966                     w->w_class->lc_name, w->w_ddb_level);
967         }
968 }
969 #endif /* DDB */
970
971 /* Trim useless garbage from filenames. */
972 static const char *
973 fixup_filename(const char *file)
974 {
975
976         if (file == NULL)
977                 return (NULL);
978         while (strncmp(file, "../", 3) == 0)
979                 file += 3;
980         return (file);
981 }
982
983 int
984 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
985 {
986
987         if (witness_watch == -1 || panicstr != NULL)
988                 return (0);
989
990         /* Require locks that witness knows about. */
991         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
992             lock2->lo_witness == NULL)
993                 return (EINVAL);
994
995         mtx_assert(&w_mtx, MA_NOTOWNED);
996         mtx_lock_spin(&w_mtx);
997
998         /*
999          * If we already have either an explicit or implied lock order that
1000          * is the other way around, then return an error.
1001          */
1002         if (witness_watch &&
1003             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1004                 mtx_unlock_spin(&w_mtx);
1005                 return (EDOOFUS);
1006         }
1007         
1008         /* Try to add the new order. */
1009         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1010             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1011         itismychild(lock1->lo_witness, lock2->lo_witness);
1012         mtx_unlock_spin(&w_mtx);
1013         return (0);
1014 }
1015
1016 void
1017 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1018     int line, struct lock_object *interlock)
1019 {
1020         struct lock_list_entry *lock_list, *lle;
1021         struct lock_instance *lock1, *lock2, *plock;
1022         struct lock_class *class;
1023         struct witness *w, *w1;
1024         struct thread *td;
1025         int i, j;
1026
1027         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1028             panicstr != NULL)
1029                 return;
1030
1031         w = lock->lo_witness;
1032         class = LOCK_CLASS(lock);
1033         td = curthread;
1034         file = fixup_filename(file);
1035
1036         if (class->lc_flags & LC_SLEEPLOCK) {
1037
1038                 /*
1039                  * Since spin locks include a critical section, this check
1040                  * implicitly enforces a lock order of all sleep locks before
1041                  * all spin locks.
1042                  */
1043                 if (td->td_critnest != 0 && !kdb_active)
1044                         panic("blockable sleep lock (%s) %s @ %s:%d",
1045                             class->lc_name, lock->lo_name, file, line);
1046
1047                 /*
1048                  * If this is the first lock acquired then just return as
1049                  * no order checking is needed.
1050                  */
1051                 lock_list = td->td_sleeplocks;
1052                 if (lock_list == NULL || lock_list->ll_count == 0)
1053                         return;
1054         } else {
1055
1056                 /*
1057                  * If this is the first lock, just return as no order
1058                  * checking is needed.  Avoid problems with thread
1059                  * migration pinning the thread while checking if
1060                  * spinlocks are held.  If at least one spinlock is held
1061                  * the thread is in a safe path and it is allowed to
1062                  * unpin it.
1063                  */
1064                 sched_pin();
1065                 lock_list = PCPU_GET(spinlocks);
1066                 if (lock_list == NULL || lock_list->ll_count == 0) {
1067                         sched_unpin();
1068                         return;
1069                 }
1070                 sched_unpin();
1071         }
1072
1073         /*
1074          * Check to see if we are recursing on a lock we already own.  If
1075          * so, make sure that we don't mismatch exclusive and shared lock
1076          * acquires.
1077          */
1078         lock1 = find_instance(lock_list, lock);
1079         if (lock1 != NULL) {
1080                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1081                     (flags & LOP_EXCLUSIVE) == 0) {
1082                         printf("shared lock of (%s) %s @ %s:%d\n",
1083                             class->lc_name, lock->lo_name, file, line);
1084                         printf("while exclusively locked from %s:%d\n",
1085                             lock1->li_file, lock1->li_line);
1086                         panic("share->excl");
1087                 }
1088                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1089                     (flags & LOP_EXCLUSIVE) != 0) {
1090                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1091                             class->lc_name, lock->lo_name, file, line);
1092                         printf("while share locked from %s:%d\n",
1093                             lock1->li_file, lock1->li_line);
1094                         panic("excl->share");
1095                 }
1096                 return;
1097         }
1098
1099         /*
1100          * Find the previously acquired lock, but ignore interlocks.
1101          */
1102         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1103         if (interlock != NULL && plock->li_lock == interlock) {
1104                 if (lock_list->ll_count > 1)
1105                         plock =
1106                             &lock_list->ll_children[lock_list->ll_count - 2];
1107                 else {
1108                         lle = lock_list->ll_next;
1109
1110                         /*
1111                          * The interlock is the only lock we hold, so
1112                          * simply return.
1113                          */
1114                         if (lle == NULL)
1115                                 return;
1116                         plock = &lle->ll_children[lle->ll_count - 1];
1117                 }
1118         }
1119         
1120         /*
1121          * Try to perform most checks without a lock.  If this succeeds we
1122          * can skip acquiring the lock and return success.
1123          */
1124         w1 = plock->li_lock->lo_witness;
1125         if (witness_lock_order_check(w1, w))
1126                 return;
1127
1128         /*
1129          * Check for duplicate locks of the same type.  Note that we only
1130          * have to check for this on the last lock we just acquired.  Any
1131          * other cases will be caught as lock order violations.
1132          */
1133         mtx_lock_spin(&w_mtx);
1134         witness_lock_order_add(w1, w);
1135         if (w1 == w) {
1136                 i = w->w_index;
1137                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1138                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1139                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1140                         w->w_reversed = 1;
1141                         mtx_unlock_spin(&w_mtx);
1142                         printf(
1143                             "acquiring duplicate lock of same type: \"%s\"\n", 
1144                             w->w_name);
1145                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1146                                plock->li_file, plock->li_line);
1147                         printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1148                         witness_debugger(1);
1149                     } else
1150                             mtx_unlock_spin(&w_mtx);
1151                 return;
1152         }
1153         mtx_assert(&w_mtx, MA_OWNED);
1154
1155         /*
1156          * If we know that the the lock we are acquiring comes after
1157          * the lock we most recently acquired in the lock order tree,
1158          * then there is no need for any further checks.
1159          */
1160         if (isitmychild(w1, w))
1161                 goto out;
1162
1163         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1164                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1165
1166                         MPASS(j < WITNESS_COUNT);
1167                         lock1 = &lle->ll_children[i];
1168
1169                         /*
1170                          * Ignore the interlock the first time we see it.
1171                          */
1172                         if (interlock != NULL && interlock == lock1->li_lock) {
1173                                 interlock = NULL;
1174                                 continue;
1175                         }
1176
1177                         /*
1178                          * If this lock doesn't undergo witness checking,
1179                          * then skip it.
1180                          */
1181                         w1 = lock1->li_lock->lo_witness;
1182                         if (w1 == NULL) {
1183                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1184                                     ("lock missing witness structure"));
1185                                 continue;
1186                         }
1187
1188                         /*
1189                          * If we are locking Giant and this is a sleepable
1190                          * lock, then skip it.
1191                          */
1192                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1193                             lock == &Giant.lock_object)
1194                                 continue;
1195
1196                         /*
1197                          * If we are locking a sleepable lock and this lock
1198                          * is Giant, then skip it.
1199                          */
1200                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1201                             lock1->li_lock == &Giant.lock_object)
1202                                 continue;
1203
1204                         /*
1205                          * If we are locking a sleepable lock and this lock
1206                          * isn't sleepable, we want to treat it as a lock
1207                          * order violation to enfore a general lock order of
1208                          * sleepable locks before non-sleepable locks.
1209                          */
1210                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1211                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1212                                 goto reversal;
1213
1214                         /*
1215                          * If we are locking Giant and this is a non-sleepable
1216                          * lock, then treat it as a reversal.
1217                          */
1218                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1219                             lock == &Giant.lock_object)
1220                                 goto reversal;
1221
1222                         /*
1223                          * Check the lock order hierarchy for a reveresal.
1224                          */
1225                         if (!isitmydescendant(w, w1))
1226                                 continue;
1227                 reversal:
1228
1229                         /*
1230                          * We have a lock order violation, check to see if it
1231                          * is allowed or has already been yelled about.
1232                          */
1233 #ifdef BLESSING
1234
1235                         /*
1236                          * If the lock order is blessed, just bail.  We don't
1237                          * look for other lock order violations though, which
1238                          * may be a bug.
1239                          */
1240                         if (blessed(w, w1))
1241                                 goto out;
1242 #endif
1243
1244                         /* Bail if this violation is known */
1245                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1246                                 goto out;
1247
1248                         /* Record this as a violation */
1249                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1250                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1251                         w->w_reversed = w1->w_reversed = 1;
1252                         witness_increment_graph_generation();
1253                         mtx_unlock_spin(&w_mtx);
1254                         
1255                         /*
1256                          * Ok, yell about it.
1257                          */
1258                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1259                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1260                                 printf(
1261                 "lock order reversal: (sleepable after non-sleepable)\n");
1262                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1263                             && lock == &Giant.lock_object)
1264                                 printf(
1265                 "lock order reversal: (Giant after non-sleepable)\n");
1266                         else
1267                                 printf("lock order reversal:\n");
1268
1269                         /*
1270                          * Try to locate an earlier lock with
1271                          * witness w in our list.
1272                          */
1273                         do {
1274                                 lock2 = &lle->ll_children[i];
1275                                 MPASS(lock2->li_lock != NULL);
1276                                 if (lock2->li_lock->lo_witness == w)
1277                                         break;
1278                                 if (i == 0 && lle->ll_next != NULL) {
1279                                         lle = lle->ll_next;
1280                                         i = lle->ll_count - 1;
1281                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1282                                 } else
1283                                         i--;
1284                         } while (i >= 0);
1285                         if (i < 0) {
1286                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1287                                     lock1->li_lock, lock1->li_lock->lo_name,
1288                                     w1->w_name, lock1->li_file, lock1->li_line);
1289                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1290                                     lock->lo_name, w->w_name, file, line);
1291                         } else {
1292                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1293                                     lock2->li_lock, lock2->li_lock->lo_name,
1294                                     lock2->li_lock->lo_witness->w_name,
1295                                     lock2->li_file, lock2->li_line);
1296                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1297                                     lock1->li_lock, lock1->li_lock->lo_name,
1298                                     w1->w_name, lock1->li_file, lock1->li_line);
1299                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1300                                     lock->lo_name, w->w_name, file, line);
1301                         }
1302                         witness_debugger(1);
1303                         return;
1304                 }
1305         }
1306
1307         /*
1308          * If requested, build a new lock order.  However, don't build a new
1309          * relationship between a sleepable lock and Giant if it is in the
1310          * wrong direction.  The correct lock order is that sleepable locks
1311          * always come before Giant.
1312          */
1313         if (flags & LOP_NEWORDER &&
1314             !(plock->li_lock == &Giant.lock_object &&
1315             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1316                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1317                     w->w_name, plock->li_lock->lo_witness->w_name);
1318                 itismychild(plock->li_lock->lo_witness, w);
1319         }
1320 out:
1321         mtx_unlock_spin(&w_mtx);
1322 }
1323
1324 void
1325 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1326 {
1327         struct lock_list_entry **lock_list, *lle;
1328         struct lock_instance *instance;
1329         struct witness *w;
1330         struct thread *td;
1331
1332         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1333             panicstr != NULL)
1334                 return;
1335         w = lock->lo_witness;
1336         td = curthread;
1337         file = fixup_filename(file);
1338
1339         /* Determine lock list for this lock. */
1340         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1341                 lock_list = &td->td_sleeplocks;
1342         else
1343                 lock_list = PCPU_PTR(spinlocks);
1344
1345         /* Check to see if we are recursing on a lock we already own. */
1346         instance = find_instance(*lock_list, lock);
1347         if (instance != NULL) {
1348                 instance->li_flags++;
1349                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1350                     td->td_proc->p_pid, lock->lo_name,
1351                     instance->li_flags & LI_RECURSEMASK);
1352                 instance->li_file = file;
1353                 instance->li_line = line;
1354                 return;
1355         }
1356
1357         /* Update per-witness last file and line acquire. */
1358         w->w_file = file;
1359         w->w_line = line;
1360
1361         /* Find the next open lock instance in the list and fill it. */
1362         lle = *lock_list;
1363         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1364                 lle = witness_lock_list_get();
1365                 if (lle == NULL)
1366                         return;
1367                 lle->ll_next = *lock_list;
1368                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1369                     td->td_proc->p_pid, lle);
1370                 *lock_list = lle;
1371         }
1372         instance = &lle->ll_children[lle->ll_count++];
1373         instance->li_lock = lock;
1374         instance->li_line = line;
1375         instance->li_file = file;
1376         if ((flags & LOP_EXCLUSIVE) != 0)
1377                 instance->li_flags = LI_EXCLUSIVE;
1378         else
1379                 instance->li_flags = 0;
1380         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1381             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1382 }
1383
1384 void
1385 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1386 {
1387         struct lock_instance *instance;
1388         struct lock_class *class;
1389
1390         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1391         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1392                 return;
1393         class = LOCK_CLASS(lock);
1394         file = fixup_filename(file);
1395         if (witness_watch) {
1396                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1397                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1398                             class->lc_name, lock->lo_name, file, line);
1399                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1400                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1401                             class->lc_name, lock->lo_name, file, line);
1402         }
1403         instance = find_instance(curthread->td_sleeplocks, lock);
1404         if (instance == NULL)
1405                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1406                     class->lc_name, lock->lo_name, file, line);
1407         if (witness_watch) {
1408                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1409                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1410                             class->lc_name, lock->lo_name, file, line);
1411                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1412                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1413                             class->lc_name, lock->lo_name,
1414                             instance->li_flags & LI_RECURSEMASK, file, line);
1415         }
1416         instance->li_flags |= LI_EXCLUSIVE;
1417 }
1418
1419 void
1420 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1421     int line)
1422 {
1423         struct lock_instance *instance;
1424         struct lock_class *class;
1425
1426         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1427         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1428                 return;
1429         class = LOCK_CLASS(lock);
1430         file = fixup_filename(file);
1431         if (witness_watch) {
1432                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1433                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1434                             class->lc_name, lock->lo_name, file, line);
1435                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1436                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1437                             class->lc_name, lock->lo_name, file, line);
1438         }
1439         instance = find_instance(curthread->td_sleeplocks, lock);
1440         if (instance == NULL)
1441                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1442                     class->lc_name, lock->lo_name, file, line);
1443         if (witness_watch) {
1444                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1445                         panic("downgrade of shared lock (%s) %s @ %s:%d",
1446                             class->lc_name, lock->lo_name, file, line);
1447                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1448                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1449                             class->lc_name, lock->lo_name,
1450                             instance->li_flags & LI_RECURSEMASK, file, line);
1451         }
1452         instance->li_flags &= ~LI_EXCLUSIVE;
1453 }
1454
1455 void
1456 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1457 {
1458         struct lock_list_entry **lock_list, *lle;
1459         struct lock_instance *instance;
1460         struct lock_class *class;
1461         struct thread *td;
1462         register_t s;
1463         int i, j;
1464
1465         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1466                 return;
1467         td = curthread;
1468         class = LOCK_CLASS(lock);
1469         file = fixup_filename(file);
1470
1471         /* Find lock instance associated with this lock. */
1472         if (class->lc_flags & LC_SLEEPLOCK)
1473                 lock_list = &td->td_sleeplocks;
1474         else
1475                 lock_list = PCPU_PTR(spinlocks);
1476         lle = *lock_list;
1477         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1478                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1479                         instance = &(*lock_list)->ll_children[i];
1480                         if (instance->li_lock == lock)
1481                                 goto found;
1482                 }
1483
1484         /*
1485          * When disabling WITNESS through witness_watch we could end up in
1486          * having registered locks in the td_sleeplocks queue.
1487          * We have to make sure we flush these queues, so just search for
1488          * eventual register locks and remove them.
1489          */
1490         if (witness_watch > 0)
1491                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1492                     lock->lo_name, file, line);
1493         else
1494                 return;
1495 found:
1496
1497         /* First, check for shared/exclusive mismatches. */
1498         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1499             (flags & LOP_EXCLUSIVE) == 0) {
1500                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1501                     lock->lo_name, file, line);
1502                 printf("while exclusively locked from %s:%d\n",
1503                     instance->li_file, instance->li_line);
1504                 panic("excl->ushare");
1505         }
1506         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1507             (flags & LOP_EXCLUSIVE) != 0) {
1508                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1509                     lock->lo_name, file, line);
1510                 printf("while share locked from %s:%d\n", instance->li_file,
1511                     instance->li_line);
1512                 panic("share->uexcl");
1513         }
1514         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1515                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1516                     lock->lo_name, file, line);
1517                 panic("lock marked norelease");
1518         }
1519
1520         /* If we are recursed, unrecurse. */
1521         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1522                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1523                     td->td_proc->p_pid, instance->li_lock->lo_name,
1524                     instance->li_flags);
1525                 instance->li_flags--;
1526                 return;
1527         }
1528
1529         /* Otherwise, remove this item from the list. */
1530         s = intr_disable();
1531         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1532             td->td_proc->p_pid, instance->li_lock->lo_name,
1533             (*lock_list)->ll_count - 1);
1534         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1535                 (*lock_list)->ll_children[j] =
1536                     (*lock_list)->ll_children[j + 1];
1537         (*lock_list)->ll_count--;
1538         intr_restore(s);
1539
1540         /*
1541          * In order to reduce contention on w_mtx, we want to keep always an
1542          * head object into lists so that frequent allocation from the 
1543          * free witness pool (and subsequent locking) is avoided.
1544          * In order to maintain the current code simple, when the head
1545          * object is totally unloaded it means also that we do not have
1546          * further objects in the list, so the list ownership needs to be
1547          * hand over to another object if the current head needs to be freed.
1548          */
1549         if ((*lock_list)->ll_count == 0) {
1550                 if (*lock_list == lle) {
1551                         if (lle->ll_next == NULL)
1552                                 return;
1553                 } else
1554                         lle = *lock_list;
1555                 *lock_list = lle->ll_next;
1556                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1557                     td->td_proc->p_pid, lle);
1558                 witness_lock_list_free(lle);
1559         }
1560 }
1561
1562 void
1563 witness_thread_exit(struct thread *td)
1564 {
1565         struct lock_list_entry *lle;
1566         int i, n;
1567
1568         lle = td->td_sleeplocks;
1569         if (lle == NULL || panicstr != NULL)
1570                 return;
1571         if (lle->ll_count != 0) {
1572                 for (n = 0; lle != NULL; lle = lle->ll_next)
1573                         for (i = lle->ll_count - 1; i >= 0; i--) {
1574                                 if (n == 0)
1575                 printf("Thread %p exiting with the following locks held:\n",
1576                                             td);
1577                                 n++;
1578                                 witness_list_lock(&lle->ll_children[i]);
1579                                 
1580                         }
1581                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
1582         }
1583         witness_lock_list_free(lle);
1584 }
1585
1586 /*
1587  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1588  * exempt Giant and sleepable locks from the checks as well.  If any
1589  * non-exempt locks are held, then a supplied message is printed to the
1590  * console along with a list of the offending locks.  If indicated in the
1591  * flags then a failure results in a panic as well.
1592  */
1593 int
1594 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1595 {
1596         struct lock_list_entry *lock_list, *lle;
1597         struct lock_instance *lock1;
1598         struct thread *td;
1599         va_list ap;
1600         int i, n;
1601
1602         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1603                 return (0);
1604         n = 0;
1605         td = curthread;
1606         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1607                 for (i = lle->ll_count - 1; i >= 0; i--) {
1608                         lock1 = &lle->ll_children[i];
1609                         if (lock1->li_lock == lock)
1610                                 continue;
1611                         if (flags & WARN_GIANTOK &&
1612                             lock1->li_lock == &Giant.lock_object)
1613                                 continue;
1614                         if (flags & WARN_SLEEPOK &&
1615                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1616                                 continue;
1617                         if (n == 0) {
1618                                 va_start(ap, fmt);
1619                                 vprintf(fmt, ap);
1620                                 va_end(ap);
1621                                 printf(" with the following");
1622                                 if (flags & WARN_SLEEPOK)
1623                                         printf(" non-sleepable");
1624                                 printf(" locks held:\n");
1625                         }
1626                         n++;
1627                         witness_list_lock(lock1);
1628                 }
1629
1630         /*
1631          * Pin the thread in order to avoid problems with thread migration.
1632          * Once that all verifies are passed about spinlocks ownership,
1633          * the thread is in a safe path and it can be unpinned.
1634          */
1635         sched_pin();
1636         lock_list = PCPU_GET(spinlocks);
1637         if (lock_list != NULL && lock_list->ll_count != 0) {
1638                 sched_unpin();
1639
1640                 /*
1641                  * We should only have one spinlock and as long as
1642                  * the flags cannot match for this locks class,
1643                  * check if the first spinlock is the one curthread
1644                  * should hold.
1645                  */
1646                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1647                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1648                     lock1->li_lock == lock && n == 0)
1649                         return (0);
1650
1651                 va_start(ap, fmt);
1652                 vprintf(fmt, ap);
1653                 va_end(ap);
1654                 printf(" with the following");
1655                 if (flags & WARN_SLEEPOK)
1656                         printf(" non-sleepable");
1657                 printf(" locks held:\n");
1658                 n += witness_list_locks(&lock_list);
1659         } else
1660                 sched_unpin();
1661         if (flags & WARN_PANIC && n)
1662                 panic("%s", __func__);
1663         else
1664                 witness_debugger(n);
1665         return (n);
1666 }
1667
1668 const char *
1669 witness_file(struct lock_object *lock)
1670 {
1671         struct witness *w;
1672
1673         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1674                 return ("?");
1675         w = lock->lo_witness;
1676         return (w->w_file);
1677 }
1678
1679 int
1680 witness_line(struct lock_object *lock)
1681 {
1682         struct witness *w;
1683
1684         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1685                 return (0);
1686         w = lock->lo_witness;
1687         return (w->w_line);
1688 }
1689
1690 static struct witness *
1691 enroll(const char *description, struct lock_class *lock_class)
1692 {
1693         struct witness *w;
1694         struct witness_list *typelist;
1695
1696         MPASS(description != NULL);
1697
1698         if (witness_watch == -1 || panicstr != NULL)
1699                 return (NULL);
1700         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1701                 if (witness_skipspin)
1702                         return (NULL);
1703                 else
1704                         typelist = &w_spin;
1705         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1706                 typelist = &w_sleep;
1707         else
1708                 panic("lock class %s is not sleep or spin",
1709                     lock_class->lc_name);
1710
1711         mtx_lock_spin(&w_mtx);
1712         w = witness_hash_get(description);
1713         if (w)
1714                 goto found;
1715         if ((w = witness_get()) == NULL)
1716                 return (NULL);
1717         MPASS(strlen(description) < MAX_W_NAME);
1718         strcpy(w->w_name, description);
1719         w->w_class = lock_class;
1720         w->w_refcount = 1;
1721         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1722         if (lock_class->lc_flags & LC_SPINLOCK) {
1723                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1724                 w_spin_cnt++;
1725         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1726                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1727                 w_sleep_cnt++;
1728         }
1729
1730         /* Insert new witness into the hash */
1731         witness_hash_put(w);
1732         witness_increment_graph_generation();
1733         mtx_unlock_spin(&w_mtx);
1734         return (w);
1735 found:
1736         w->w_refcount++;
1737         mtx_unlock_spin(&w_mtx);
1738         if (lock_class != w->w_class)
1739                 panic(
1740                         "lock (%s) %s does not match earlier (%s) lock",
1741                         description, lock_class->lc_name,
1742                         w->w_class->lc_name);
1743         return (w);
1744 }
1745
1746 static void
1747 depart(struct witness *w)
1748 {
1749         struct witness_list *list;
1750
1751         MPASS(w->w_refcount == 0);
1752         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1753                 list = &w_sleep;
1754                 w_sleep_cnt--;
1755         } else {
1756                 list = &w_spin;
1757                 w_spin_cnt--;
1758         }
1759         /*
1760          * Set file to NULL as it may point into a loadable module.
1761          */
1762         w->w_file = NULL;
1763         w->w_line = 0;
1764         witness_increment_graph_generation();
1765 }
1766
1767
1768 static void
1769 adopt(struct witness *parent, struct witness *child)
1770 {
1771         int pi, ci, i, j;
1772
1773         if (witness_cold == 0)
1774                 mtx_assert(&w_mtx, MA_OWNED);
1775
1776         /* If the relationship is already known, there's no work to be done. */
1777         if (isitmychild(parent, child))
1778                 return;
1779
1780         /* When the structure of the graph changes, bump up the generation. */
1781         witness_increment_graph_generation();
1782
1783         /*
1784          * The hard part ... create the direct relationship, then propagate all
1785          * indirect relationships.
1786          */
1787         pi = parent->w_index;
1788         ci = child->w_index;
1789         WITNESS_INDEX_ASSERT(pi);
1790         WITNESS_INDEX_ASSERT(ci);
1791         MPASS(pi != ci);
1792         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1793         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1794
1795         /*
1796          * If parent was not already an ancestor of child,
1797          * then we increment the descendant and ancestor counters.
1798          */
1799         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1800                 parent->w_num_descendants++;
1801                 child->w_num_ancestors++;
1802         }
1803
1804         /* 
1805          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1806          * an ancestor of 'pi' during this loop.
1807          */
1808         for (i = 1; i <= w_max_used_index; i++) {
1809                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1810                     (i != pi))
1811                         continue;
1812
1813                 /* Find each descendant of 'i' and mark it as a descendant. */
1814                 for (j = 1; j <= w_max_used_index; j++) {
1815
1816                         /* 
1817                          * Skip children that are already marked as
1818                          * descendants of 'i'.
1819                          */
1820                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1821                                 continue;
1822
1823                         /*
1824                          * We are only interested in descendants of 'ci'. Note
1825                          * that 'ci' itself is counted as a descendant of 'ci'.
1826                          */
1827                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1828                             (j != ci))
1829                                 continue;
1830                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1831                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1832                         w_data[i].w_num_descendants++;
1833                         w_data[j].w_num_ancestors++;
1834
1835                         /* 
1836                          * Make sure we aren't marking a node as both an
1837                          * ancestor and descendant. We should have caught 
1838                          * this as a lock order reversal earlier.
1839                          */
1840                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1841                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1842                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1843                                     "both ancestor and descendant\n",
1844                                     i, j, w_rmatrix[i][j]); 
1845                                 kdb_backtrace();
1846                                 printf("Witness disabled.\n");
1847                                 witness_watch = -1;
1848                         }
1849                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1850                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1851                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1852                                     "both ancestor and descendant\n",
1853                                     j, i, w_rmatrix[j][i]); 
1854                                 kdb_backtrace();
1855                                 printf("Witness disabled.\n");
1856                                 witness_watch = -1;
1857                         }
1858                 }
1859         }
1860 }
1861
1862 static void
1863 itismychild(struct witness *parent, struct witness *child)
1864 {
1865
1866         MPASS(child != NULL && parent != NULL);
1867         if (witness_cold == 0)
1868                 mtx_assert(&w_mtx, MA_OWNED);
1869
1870         if (!witness_lock_type_equal(parent, child)) {
1871                 if (witness_cold == 0)
1872                         mtx_unlock_spin(&w_mtx);
1873                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1874                     "the same lock type", __func__, parent->w_name,
1875                     parent->w_class->lc_name, child->w_name,
1876                     child->w_class->lc_name);
1877         }
1878         adopt(parent, child);
1879 }
1880
1881 /*
1882  * Generic code for the isitmy*() functions. The rmask parameter is the
1883  * expected relationship of w1 to w2.
1884  */
1885 static int
1886 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1887 {
1888         unsigned char r1, r2;
1889         int i1, i2;
1890
1891         i1 = w1->w_index;
1892         i2 = w2->w_index;
1893         WITNESS_INDEX_ASSERT(i1);
1894         WITNESS_INDEX_ASSERT(i2);
1895         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1896         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1897
1898         /* The flags on one better be the inverse of the flags on the other */
1899         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1900                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1901                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1902                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1903                     "w_rmatrix[%d][%d] == %hhx\n",
1904                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1905                     i2, i1, r2);
1906                 kdb_backtrace();
1907                 printf("Witness disabled.\n");
1908                 witness_watch = -1;
1909         }
1910         return (r1 & rmask);
1911 }
1912
1913 /*
1914  * Checks if @child is a direct child of @parent.
1915  */
1916 static int
1917 isitmychild(struct witness *parent, struct witness *child)
1918 {
1919
1920         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1921 }
1922
1923 /*
1924  * Checks if @descendant is a direct or inderect descendant of @ancestor.
1925  */
1926 static int
1927 isitmydescendant(struct witness *ancestor, struct witness *descendant)
1928 {
1929
1930         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1931             __func__));
1932 }
1933
1934 #ifdef BLESSING
1935 static int
1936 blessed(struct witness *w1, struct witness *w2)
1937 {
1938         int i;
1939         struct witness_blessed *b;
1940
1941         for (i = 0; i < blessed_count; i++) {
1942                 b = &blessed_list[i];
1943                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1944                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1945                                 return (1);
1946                         continue;
1947                 }
1948                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1949                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1950                                 return (1);
1951         }
1952         return (0);
1953 }
1954 #endif
1955
1956 static struct witness *
1957 witness_get(void)
1958 {
1959         struct witness *w;
1960         int index;
1961
1962         if (witness_cold == 0)
1963                 mtx_assert(&w_mtx, MA_OWNED);
1964
1965         if (witness_watch == -1) {
1966                 mtx_unlock_spin(&w_mtx);
1967                 return (NULL);
1968         }
1969         if (STAILQ_EMPTY(&w_free)) {
1970                 witness_watch = -1;
1971                 mtx_unlock_spin(&w_mtx);
1972                 printf("WITNESS: unable to allocate a new witness object\n");
1973                 return (NULL);
1974         }
1975         w = STAILQ_FIRST(&w_free);
1976         STAILQ_REMOVE_HEAD(&w_free, w_list);
1977         w_free_cnt--;
1978         index = w->w_index;
1979         MPASS(index > 0 && index == w_max_used_index+1 &&
1980             index < WITNESS_COUNT);
1981         bzero(w, sizeof(*w));
1982         w->w_index = index;
1983         if (index > w_max_used_index)
1984                 w_max_used_index = index;
1985         return (w);
1986 }
1987
1988 static void
1989 witness_free(struct witness *w)
1990 {
1991
1992         STAILQ_INSERT_HEAD(&w_free, w, w_list);
1993         w_free_cnt++;
1994 }
1995
1996 static struct lock_list_entry *
1997 witness_lock_list_get(void)
1998 {
1999         struct lock_list_entry *lle;
2000
2001         if (witness_watch == -1)
2002                 return (NULL);
2003         mtx_lock_spin(&w_mtx);
2004         lle = w_lock_list_free;
2005         if (lle == NULL) {
2006                 witness_watch = -1;
2007                 mtx_unlock_spin(&w_mtx);
2008                 printf("%s: witness exhausted\n", __func__);
2009                 return (NULL);
2010         }
2011         w_lock_list_free = lle->ll_next;
2012         mtx_unlock_spin(&w_mtx);
2013         bzero(lle, sizeof(*lle));
2014         return (lle);
2015 }
2016                 
2017 static void
2018 witness_lock_list_free(struct lock_list_entry *lle)
2019 {
2020
2021         mtx_lock_spin(&w_mtx);
2022         lle->ll_next = w_lock_list_free;
2023         w_lock_list_free = lle;
2024         mtx_unlock_spin(&w_mtx);
2025 }
2026
2027 static struct lock_instance *
2028 find_instance(struct lock_list_entry *list, struct lock_object *lock)
2029 {
2030         struct lock_list_entry *lle;
2031         struct lock_instance *instance;
2032         int i;
2033
2034         for (lle = list; lle != NULL; lle = lle->ll_next)
2035                 for (i = lle->ll_count - 1; i >= 0; i--) {
2036                         instance = &lle->ll_children[i];
2037                         if (instance->li_lock == lock)
2038                                 return (instance);
2039                 }
2040         return (NULL);
2041 }
2042
2043 static void
2044 witness_list_lock(struct lock_instance *instance)
2045 {
2046         struct lock_object *lock;
2047
2048         lock = instance->li_lock;
2049         printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2050             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2051         if (lock->lo_witness->w_name != lock->lo_name)
2052                 printf(" (%s)", lock->lo_witness->w_name);
2053         printf(" r = %d (%p) locked @ %s:%d\n",
2054             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2055             instance->li_line);
2056 }
2057
2058 #ifdef DDB
2059 static int
2060 witness_thread_has_locks(struct thread *td)
2061 {
2062
2063         if (td->td_sleeplocks == NULL)
2064                 return (0);
2065         return (td->td_sleeplocks->ll_count != 0);
2066 }
2067
2068 static int
2069 witness_proc_has_locks(struct proc *p)
2070 {
2071         struct thread *td;
2072
2073         FOREACH_THREAD_IN_PROC(p, td) {
2074                 if (witness_thread_has_locks(td))
2075                         return (1);
2076         }
2077         return (0);
2078 }
2079 #endif
2080
2081 int
2082 witness_list_locks(struct lock_list_entry **lock_list)
2083 {
2084         struct lock_list_entry *lle;
2085         int i, nheld;
2086
2087         nheld = 0;
2088         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2089                 for (i = lle->ll_count - 1; i >= 0; i--) {
2090                         witness_list_lock(&lle->ll_children[i]);
2091                         nheld++;
2092                 }
2093         return (nheld);
2094 }
2095
2096 /*
2097  * This is a bit risky at best.  We call this function when we have timed
2098  * out acquiring a spin lock, and we assume that the other CPU is stuck
2099  * with this lock held.  So, we go groveling around in the other CPU's
2100  * per-cpu data to try to find the lock instance for this spin lock to
2101  * see when it was last acquired.
2102  */
2103 void
2104 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
2105 {
2106         struct lock_instance *instance;
2107         struct pcpu *pc;
2108
2109         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2110                 return;
2111         pc = pcpu_find(owner->td_oncpu);
2112         instance = find_instance(pc->pc_spinlocks, lock);
2113         if (instance != NULL)
2114                 witness_list_lock(instance);
2115 }
2116
2117 void
2118 witness_save(struct lock_object *lock, const char **filep, int *linep)
2119 {
2120         struct lock_list_entry *lock_list;
2121         struct lock_instance *instance;
2122         struct lock_class *class;
2123
2124         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2125         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2126                 return;
2127         class = LOCK_CLASS(lock);
2128         if (class->lc_flags & LC_SLEEPLOCK)
2129                 lock_list = curthread->td_sleeplocks;
2130         else {
2131                 if (witness_skipspin)
2132                         return;
2133                 lock_list = PCPU_GET(spinlocks);
2134         }
2135         instance = find_instance(lock_list, lock);
2136         if (instance == NULL)
2137                 panic("%s: lock (%s) %s not locked", __func__,
2138                     class->lc_name, lock->lo_name);
2139         *filep = instance->li_file;
2140         *linep = instance->li_line;
2141 }
2142
2143 void
2144 witness_restore(struct lock_object *lock, const char *file, int line)
2145 {
2146         struct lock_list_entry *lock_list;
2147         struct lock_instance *instance;
2148         struct lock_class *class;
2149
2150         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2151         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2152                 return;
2153         class = LOCK_CLASS(lock);
2154         if (class->lc_flags & LC_SLEEPLOCK)
2155                 lock_list = curthread->td_sleeplocks;
2156         else {
2157                 if (witness_skipspin)
2158                         return;
2159                 lock_list = PCPU_GET(spinlocks);
2160         }
2161         instance = find_instance(lock_list, lock);
2162         if (instance == NULL)
2163                 panic("%s: lock (%s) %s not locked", __func__,
2164                     class->lc_name, lock->lo_name);
2165         lock->lo_witness->w_file = file;
2166         lock->lo_witness->w_line = line;
2167         instance->li_file = file;
2168         instance->li_line = line;
2169 }
2170
2171 void
2172 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2173 {
2174 #ifdef INVARIANT_SUPPORT
2175         struct lock_instance *instance;
2176         struct lock_class *class;
2177
2178         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2179                 return;
2180         class = LOCK_CLASS(lock);
2181         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2182                 instance = find_instance(curthread->td_sleeplocks, lock);
2183         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2184                 instance = find_instance(PCPU_GET(spinlocks), lock);
2185         else {
2186                 panic("Lock (%s) %s is not sleep or spin!",
2187                     class->lc_name, lock->lo_name);
2188         }
2189         file = fixup_filename(file);
2190         switch (flags) {
2191         case LA_UNLOCKED:
2192                 if (instance != NULL)
2193                         panic("Lock (%s) %s locked @ %s:%d.",
2194                             class->lc_name, lock->lo_name, file, line);
2195                 break;
2196         case LA_LOCKED:
2197         case LA_LOCKED | LA_RECURSED:
2198         case LA_LOCKED | LA_NOTRECURSED:
2199         case LA_SLOCKED:
2200         case LA_SLOCKED | LA_RECURSED:
2201         case LA_SLOCKED | LA_NOTRECURSED:
2202         case LA_XLOCKED:
2203         case LA_XLOCKED | LA_RECURSED:
2204         case LA_XLOCKED | LA_NOTRECURSED:
2205                 if (instance == NULL) {
2206                         panic("Lock (%s) %s not locked @ %s:%d.",
2207                             class->lc_name, lock->lo_name, file, line);
2208                         break;
2209                 }
2210                 if ((flags & LA_XLOCKED) != 0 &&
2211                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2212                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2213                             class->lc_name, lock->lo_name, file, line);
2214                 if ((flags & LA_SLOCKED) != 0 &&
2215                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2216                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
2217                             class->lc_name, lock->lo_name, file, line);
2218                 if ((flags & LA_RECURSED) != 0 &&
2219                     (instance->li_flags & LI_RECURSEMASK) == 0)
2220                         panic("Lock (%s) %s not recursed @ %s:%d.",
2221                             class->lc_name, lock->lo_name, file, line);
2222                 if ((flags & LA_NOTRECURSED) != 0 &&
2223                     (instance->li_flags & LI_RECURSEMASK) != 0)
2224                         panic("Lock (%s) %s recursed @ %s:%d.",
2225                             class->lc_name, lock->lo_name, file, line);
2226                 break;
2227         default:
2228                 panic("Invalid lock assertion at %s:%d.", file, line);
2229
2230         }
2231 #endif  /* INVARIANT_SUPPORT */
2232 }
2233
2234 static void
2235 witness_setflag(struct lock_object *lock, int flag, int set)
2236 {
2237         struct lock_list_entry *lock_list;
2238         struct lock_instance *instance;
2239         struct lock_class *class;
2240
2241         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2242                 return;
2243         class = LOCK_CLASS(lock);
2244         if (class->lc_flags & LC_SLEEPLOCK)
2245                 lock_list = curthread->td_sleeplocks;
2246         else {
2247                 if (witness_skipspin)
2248                         return;
2249                 lock_list = PCPU_GET(spinlocks);
2250         }
2251         instance = find_instance(lock_list, lock);
2252         if (instance == NULL)
2253                 panic("%s: lock (%s) %s not locked", __func__,
2254                     class->lc_name, lock->lo_name);
2255
2256         if (set)
2257                 instance->li_flags |= flag;
2258         else
2259                 instance->li_flags &= ~flag;
2260 }
2261
2262 void
2263 witness_norelease(struct lock_object *lock)
2264 {
2265
2266         witness_setflag(lock, LI_NORELEASE, 1);
2267 }
2268
2269 void
2270 witness_releaseok(struct lock_object *lock)
2271 {
2272
2273         witness_setflag(lock, LI_NORELEASE, 0);
2274 }
2275
2276 #ifdef DDB
2277 static void
2278 witness_ddb_list(struct thread *td)
2279 {
2280
2281         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2282         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2283
2284         if (witness_watch < 1)
2285                 return;
2286
2287         witness_list_locks(&td->td_sleeplocks);
2288
2289         /*
2290          * We only handle spinlocks if td == curthread.  This is somewhat broken
2291          * if td is currently executing on some other CPU and holds spin locks
2292          * as we won't display those locks.  If we had a MI way of getting
2293          * the per-cpu data for a given cpu then we could use
2294          * td->td_oncpu to get the list of spinlocks for this thread
2295          * and "fix" this.
2296          *
2297          * That still wouldn't really fix this unless we locked the scheduler
2298          * lock or stopped the other CPU to make sure it wasn't changing the
2299          * list out from under us.  It is probably best to just not try to
2300          * handle threads on other CPU's for now.
2301          */
2302         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2303                 witness_list_locks(PCPU_PTR(spinlocks));
2304 }
2305
2306 DB_SHOW_COMMAND(locks, db_witness_list)
2307 {
2308         struct thread *td;
2309
2310         if (have_addr)
2311                 td = db_lookup_thread(addr, TRUE);
2312         else
2313                 td = kdb_thread;
2314         witness_ddb_list(td);
2315 }
2316
2317 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2318 {
2319         struct thread *td;
2320         struct proc *p;
2321
2322         /*
2323          * It would be nice to list only threads and processes that actually
2324          * held sleep locks, but that information is currently not exported
2325          * by WITNESS.
2326          */
2327         FOREACH_PROC_IN_SYSTEM(p) {
2328                 if (!witness_proc_has_locks(p))
2329                         continue;
2330                 FOREACH_THREAD_IN_PROC(p, td) {
2331                         if (!witness_thread_has_locks(td))
2332                                 continue;
2333                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2334                             p->p_comm, td, td->td_tid);
2335                         witness_ddb_list(td);
2336                 }
2337         }
2338 }
2339 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2340
2341 DB_SHOW_COMMAND(witness, db_witness_display)
2342 {
2343
2344         witness_ddb_display(db_printf);
2345 }
2346 #endif
2347
2348 static int
2349 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2350 {
2351         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2352         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2353         struct sbuf *sb;
2354         u_int w_rmatrix1, w_rmatrix2;
2355         int error, generation, i, j;
2356
2357         tmp_data1 = NULL;
2358         tmp_data2 = NULL;
2359         tmp_w1 = NULL;
2360         tmp_w2 = NULL;
2361         if (witness_watch < 1) {
2362                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2363                 return (error);
2364         }
2365         if (witness_cold) {
2366                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2367                 return (error);
2368         }
2369         error = 0;
2370         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2371         if (sb == NULL)
2372                 return (ENOMEM);
2373
2374         /* Allocate and init temporary storage space. */
2375         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2376         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2377         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2378             M_WAITOK | M_ZERO);
2379         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2380             M_WAITOK | M_ZERO);
2381         stack_zero(&tmp_data1->wlod_stack);
2382         stack_zero(&tmp_data2->wlod_stack);
2383
2384 restart:
2385         mtx_lock_spin(&w_mtx);
2386         generation = w_generation;
2387         mtx_unlock_spin(&w_mtx);
2388         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2389             w_lohash.wloh_count);
2390         for (i = 1; i < w_max_used_index; i++) {
2391                 mtx_lock_spin(&w_mtx);
2392                 if (generation != w_generation) {
2393                         mtx_unlock_spin(&w_mtx);
2394
2395                         /* The graph has changed, try again. */
2396                         req->oldidx = 0;
2397                         sbuf_clear(sb);
2398                         goto restart;
2399                 }
2400
2401                 w1 = &w_data[i];
2402                 if (w1->w_reversed == 0) {
2403                         mtx_unlock_spin(&w_mtx);
2404                         continue;
2405                 }
2406
2407                 /* Copy w1 locally so we can release the spin lock. */
2408                 *tmp_w1 = *w1;
2409                 mtx_unlock_spin(&w_mtx);
2410
2411                 if (tmp_w1->w_reversed == 0)
2412                         continue;
2413                 for (j = 1; j < w_max_used_index; j++) {
2414                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2415                                 continue;
2416
2417                         mtx_lock_spin(&w_mtx);
2418                         if (generation != w_generation) {
2419                                 mtx_unlock_spin(&w_mtx);
2420
2421                                 /* The graph has changed, try again. */
2422                                 req->oldidx = 0;
2423                                 sbuf_clear(sb);
2424                                 goto restart;
2425                         }
2426
2427                         w2 = &w_data[j];
2428                         data1 = witness_lock_order_get(w1, w2);
2429                         data2 = witness_lock_order_get(w2, w1);
2430
2431                         /*
2432                          * Copy information locally so we can release the
2433                          * spin lock.
2434                          */
2435                         *tmp_w2 = *w2;
2436                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2437                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2438
2439                         if (data1) {
2440                                 stack_zero(&tmp_data1->wlod_stack);
2441                                 stack_copy(&data1->wlod_stack,
2442                                     &tmp_data1->wlod_stack);
2443                         }
2444                         if (data2 && data2 != data1) {
2445                                 stack_zero(&tmp_data2->wlod_stack);
2446                                 stack_copy(&data2->wlod_stack,
2447                                     &tmp_data2->wlod_stack);
2448                         }
2449                         mtx_unlock_spin(&w_mtx);
2450
2451                         sbuf_printf(sb,
2452             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2453                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2454                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2455 #if 0
2456                         sbuf_printf(sb,
2457                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2458                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2459                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2460 #endif
2461                         if (data1) {
2462                                 sbuf_printf(sb,
2463                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2464                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2465                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2466                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2467                                 sbuf_printf(sb, "\n");
2468                         }
2469                         if (data2 && data2 != data1) {
2470                                 sbuf_printf(sb,
2471                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2472                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2473                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2474                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2475                                 sbuf_printf(sb, "\n");
2476                         }
2477                 }
2478         }
2479         mtx_lock_spin(&w_mtx);
2480         if (generation != w_generation) {
2481                 mtx_unlock_spin(&w_mtx);
2482
2483                 /*
2484                  * The graph changed while we were printing stack data,
2485                  * try again.
2486                  */
2487                 req->oldidx = 0;
2488                 sbuf_clear(sb);
2489                 goto restart;
2490         }
2491         mtx_unlock_spin(&w_mtx);
2492
2493         /* Free temporary storage space. */
2494         free(tmp_data1, M_TEMP);
2495         free(tmp_data2, M_TEMP);
2496         free(tmp_w1, M_TEMP);
2497         free(tmp_w2, M_TEMP);
2498
2499         sbuf_finish(sb);
2500         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2501         sbuf_delete(sb);
2502
2503         return (error);
2504 }
2505
2506 static int
2507 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2508 {
2509         struct witness *w;
2510         struct sbuf *sb;
2511         int error;
2512
2513         if (witness_watch < 1) {
2514                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2515                 return (error);
2516         }
2517         if (witness_cold) {
2518                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2519                 return (error);
2520         }
2521         error = 0;
2522         sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2523         if (sb == NULL)
2524                 return (ENOMEM);
2525         sbuf_printf(sb, "\n");
2526
2527         mtx_lock_spin(&w_mtx);
2528         STAILQ_FOREACH(w, &w_all, w_list)
2529                 w->w_displayed = 0;
2530         STAILQ_FOREACH(w, &w_all, w_list)
2531                 witness_add_fullgraph(sb, w);
2532         mtx_unlock_spin(&w_mtx);
2533
2534         /*
2535          * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2536          */
2537         if (sbuf_overflowed(sb)) {
2538                 sbuf_delete(sb);
2539                 panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2540                     __func__);
2541         }
2542
2543         /*
2544          * Close the sbuf and return to userland.
2545          */
2546         sbuf_finish(sb);
2547         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2548         sbuf_delete(sb);
2549
2550         return (error);
2551 }
2552
2553 static int
2554 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2555 {
2556         int error, value;
2557
2558         value = witness_watch;
2559         error = sysctl_handle_int(oidp, &value, 0, req);
2560         if (error != 0 || req->newptr == NULL)
2561                 return (error);
2562         if (value > 1 || value < -1 ||
2563             (witness_watch == -1 && value != witness_watch))
2564                 return (EINVAL);
2565         witness_watch = value;
2566         return (0);
2567 }
2568
2569 static void
2570 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2571 {
2572         int i;
2573
2574         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2575                 return;
2576         w->w_displayed = 1;
2577
2578         WITNESS_INDEX_ASSERT(w->w_index);
2579         for (i = 1; i <= w_max_used_index; i++) {
2580                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2581                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2582                             w_data[i].w_name);
2583                         witness_add_fullgraph(sb, &w_data[i]);
2584                 }
2585         }
2586 }
2587
2588 /*
2589  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2590  * interprets the key as a string and reads until the null
2591  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2592  * hash value computed from the key.
2593  */
2594 static uint32_t
2595 witness_hash_djb2(const uint8_t *key, uint32_t size)
2596 {
2597         unsigned int hash = 5381;
2598         int i;
2599
2600         /* hash = hash * 33 + key[i] */
2601         if (size)
2602                 for (i = 0; i < size; i++)
2603                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2604         else
2605                 for (i = 0; key[i] != 0; i++)
2606                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2607
2608         return (hash);
2609 }
2610
2611
2612 /*
2613  * Initializes the two witness hash tables. Called exactly once from
2614  * witness_initialize().
2615  */
2616 static void
2617 witness_init_hash_tables(void)
2618 {
2619         int i;
2620
2621         MPASS(witness_cold);
2622
2623         /* Initialize the hash tables. */
2624         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2625                 w_hash.wh_array[i] = NULL;
2626
2627         w_hash.wh_size = WITNESS_HASH_SIZE;
2628         w_hash.wh_count = 0;
2629
2630         /* Initialize the lock order data hash. */
2631         w_lofree = NULL;
2632         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2633                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2634                 w_lodata[i].wlod_next = w_lofree;
2635                 w_lofree = &w_lodata[i];
2636         }
2637         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2638         w_lohash.wloh_count = 0;
2639         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2640                 w_lohash.wloh_array[i] = NULL;
2641 }
2642
2643 static struct witness *
2644 witness_hash_get(const char *key)
2645 {
2646         struct witness *w;
2647         uint32_t hash;
2648         
2649         MPASS(key != NULL);
2650         if (witness_cold == 0)
2651                 mtx_assert(&w_mtx, MA_OWNED);
2652         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2653         w = w_hash.wh_array[hash];
2654         while (w != NULL) {
2655                 if (strcmp(w->w_name, key) == 0)
2656                         goto out;
2657                 w = w->w_hash_next;
2658         }
2659
2660 out:
2661         return (w);
2662 }
2663
2664 static void
2665 witness_hash_put(struct witness *w)
2666 {
2667         uint32_t hash;
2668
2669         MPASS(w != NULL);
2670         MPASS(w->w_name != NULL);
2671         if (witness_cold == 0)
2672                 mtx_assert(&w_mtx, MA_OWNED);
2673         KASSERT(witness_hash_get(w->w_name) == NULL,
2674             ("%s: trying to add a hash entry that already exists!", __func__));
2675         KASSERT(w->w_hash_next == NULL,
2676             ("%s: w->w_hash_next != NULL", __func__));
2677
2678         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2679         w->w_hash_next = w_hash.wh_array[hash];
2680         w_hash.wh_array[hash] = w;
2681         w_hash.wh_count++;
2682 }
2683
2684
2685 static struct witness_lock_order_data *
2686 witness_lock_order_get(struct witness *parent, struct witness *child)
2687 {
2688         struct witness_lock_order_data *data = NULL;
2689         struct witness_lock_order_key key;
2690         unsigned int hash;
2691
2692         MPASS(parent != NULL && child != NULL);
2693         key.from = parent->w_index;
2694         key.to = child->w_index;
2695         WITNESS_INDEX_ASSERT(key.from);
2696         WITNESS_INDEX_ASSERT(key.to);
2697         if ((w_rmatrix[parent->w_index][child->w_index]
2698             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2699                 goto out;
2700
2701         hash = witness_hash_djb2((const char*)&key,
2702             sizeof(key)) % w_lohash.wloh_size;
2703         data = w_lohash.wloh_array[hash];
2704         while (data != NULL) {
2705                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2706                         break;
2707                 data = data->wlod_next;
2708         }
2709
2710 out:
2711         return (data);
2712 }
2713
2714 /*
2715  * Verify that parent and child have a known relationship, are not the same,
2716  * and child is actually a child of parent.  This is done without w_mtx
2717  * to avoid contention in the common case.
2718  */
2719 static int
2720 witness_lock_order_check(struct witness *parent, struct witness *child)
2721 {
2722
2723         if (parent != child &&
2724             w_rmatrix[parent->w_index][child->w_index]
2725             & WITNESS_LOCK_ORDER_KNOWN &&
2726             isitmychild(parent, child))
2727                 return (1);
2728
2729         return (0);
2730 }
2731
2732 static int
2733 witness_lock_order_add(struct witness *parent, struct witness *child)
2734 {
2735         struct witness_lock_order_data *data = NULL;
2736         struct witness_lock_order_key key;
2737         unsigned int hash;
2738         
2739         MPASS(parent != NULL && child != NULL);
2740         key.from = parent->w_index;
2741         key.to = child->w_index;
2742         WITNESS_INDEX_ASSERT(key.from);
2743         WITNESS_INDEX_ASSERT(key.to);
2744         if (w_rmatrix[parent->w_index][child->w_index]
2745             & WITNESS_LOCK_ORDER_KNOWN)
2746                 return (1);
2747
2748         hash = witness_hash_djb2((const char*)&key,
2749             sizeof(key)) % w_lohash.wloh_size;
2750         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2751         data = w_lofree;
2752         if (data == NULL)
2753                 return (0);
2754         w_lofree = data->wlod_next;
2755         data->wlod_next = w_lohash.wloh_array[hash];
2756         data->wlod_key = key;
2757         w_lohash.wloh_array[hash] = data;
2758         w_lohash.wloh_count++;
2759         stack_zero(&data->wlod_stack);
2760         stack_save(&data->wlod_stack);
2761         return (1);
2762 }
2763
2764 /* Call this whenver the structure of the witness graph changes. */
2765 static void
2766 witness_increment_graph_generation(void)
2767 {
2768
2769         if (witness_cold == 0)
2770                 mtx_assert(&w_mtx, MA_OWNED);
2771         w_generation++;
2772 }
2773
2774 #ifdef KDB
2775 static void
2776 _witness_debugger(int cond, const char *msg)
2777 {
2778
2779         if (witness_trace && cond)
2780                 kdb_backtrace();
2781         if (witness_kdb && cond)
2782                 kdb_enter(KDB_WHY_WITNESS, msg);
2783 }
2784 #endif