]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/subr_witness.c
Merge CK as of commit 255a47553aa5e8d0bb5f8eec63acac7f4c25a6d8, mostly
[FreeBSD/FreeBSD.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/syslog.h>
110 #include <sys/systm.h>
111
112 #ifdef DDB
113 #include <ddb/ddb.h>
114 #endif
115
116 #include <machine/stdarg.h>
117
118 #if !defined(DDB) && !defined(STACK)
119 #error "DDB or STACK options are required for WITNESS"
120 #endif
121
122 /* Note that these traces do not work with KTR_ALQ. */
123 #if 0
124 #define KTR_WITNESS     KTR_SUBSYS
125 #else
126 #define KTR_WITNESS     0
127 #endif
128
129 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
130 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
131 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
132
133 /* Define this to check for blessed mutexes */
134 #undef BLESSING
135
136 #ifndef WITNESS_COUNT
137 #define WITNESS_COUNT           1536
138 #endif
139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
140 #define WITNESS_PENDLIST        (1024 + MAXCPU)
141
142 /* Allocate 256 KB of stack data space */
143 #define WITNESS_LO_DATA_COUNT   2048
144
145 /* Prime, gives load factor of ~2 at full load */
146 #define WITNESS_LO_HASH_SIZE    1021
147
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define LOCK_NCHILDREN  5
154 #define LOCK_CHILDCOUNT 2048
155
156 #define MAX_W_NAME      64
157
158 #define FULLGRAPH_SBUF_SIZE     512
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 #ifdef BLESSING
280 struct witness_blessed {
281         const char      *b_lock1;
282         const char      *b_lock2;
283 };
284 #endif
285
286 struct witness_pendhelp {
287         const char              *wh_type;
288         struct lock_object      *wh_lock;
289 };
290
291 struct witness_order_list_entry {
292         const char              *w_name;
293         struct lock_class       *w_class;
294 };
295
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303
304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307
308 static __inline int
309 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
310     const struct witness_lock_order_key *b)
311 {
312
313         return (a->from == b->from && a->to == b->to);
314 }
315
316 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
317                     const char *fname);
318 static void     adopt(struct witness *parent, struct witness *child);
319 #ifdef BLESSING
320 static int      blessed(struct witness *, struct witness *);
321 #endif
322 static void     depart(struct witness *w);
323 static struct witness   *enroll(const char *description,
324                             struct lock_class *lock_class);
325 static struct lock_instance     *find_instance(struct lock_list_entry *list,
326                                     const struct lock_object *lock);
327 static int      isitmychild(struct witness *parent, struct witness *child);
328 static int      isitmydescendant(struct witness *parent, struct witness *child);
329 static void     itismychild(struct witness *parent, struct witness *child);
330 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
331 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
332 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
333 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
334 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
335 #ifdef DDB
336 static void     witness_ddb_compute_levels(void);
337 static void     witness_ddb_display(int(*)(const char *fmt, ...));
338 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
339                     struct witness *, int indent);
340 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
341                     struct witness_list *list);
342 static void     witness_ddb_level_descendants(struct witness *parent, int l);
343 static void     witness_ddb_list(struct thread *td);
344 #endif
345 static void     witness_debugger(int cond, const char *msg);
346 static void     witness_free(struct witness *m);
347 static struct witness   *witness_get(void);
348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness   *witness_hash_get(const char *key);
350 static void     witness_hash_put(struct witness *w);
351 static void     witness_init_hash_tables(void);
352 static void     witness_increment_graph_generation(void);
353 static void     witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry   *witness_lock_list_get(void);
355 static int      witness_lock_order_add(struct witness *parent,
356                     struct witness *child);
357 static int      witness_lock_order_check(struct witness *parent,
358                     struct witness *child);
359 static struct witness_lock_order_data   *witness_lock_order_get(
360                                             struct witness *parent,
361                                             struct witness *child);
362 static void     witness_list_lock(struct lock_instance *instance,
363                     int (*prnt)(const char *fmt, ...));
364 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
365 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
366 static void     witness_setflag(struct lock_object *lock, int flag, int set);
367
368 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
369     "Witness Locking");
370
371 /*
372  * If set to 0, lock order checking is disabled.  If set to -1,
373  * witness is completely disabled.  Otherwise witness performs full
374  * lock order checking for all locks.  At runtime, lock order checking
375  * may be toggled.  However, witness cannot be reenabled once it is
376  * completely disabled.
377  */
378 static int witness_watch = 1;
379 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
380     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
381
382 #ifdef KDB
383 /*
384  * When KDB is enabled and witness_kdb is 1, it will cause the system
385  * to drop into kdebug() when:
386  *      - a lock hierarchy violation occurs
387  *      - locks are held when going to sleep.
388  */
389 #ifdef WITNESS_KDB
390 int     witness_kdb = 1;
391 #else
392 int     witness_kdb = 0;
393 #endif
394 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
395 #endif /* KDB */
396
397 #if defined(DDB) || defined(KDB)
398 /*
399  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
400  * to print a stack trace:
401  *      - a lock hierarchy violation occurs
402  *      - locks are held when going to sleep.
403  */
404 int     witness_trace = 1;
405 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
406 #endif /* DDB || KDB */
407
408 #ifdef WITNESS_SKIPSPIN
409 int     witness_skipspin = 1;
410 #else
411 int     witness_skipspin = 0;
412 #endif
413 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
414
415 int badstack_sbuf_size;
416
417 int witness_count = WITNESS_COUNT;
418 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
419     &witness_count, 0, "");
420
421 /*
422  * Output channel for witness messages.  By default we print to the console.
423  */
424 enum witness_channel {
425         WITNESS_CONSOLE,
426         WITNESS_LOG,
427         WITNESS_NONE,
428 };
429
430 static enum witness_channel witness_channel = WITNESS_CONSOLE;
431 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
432     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
433     "Output channel for warnings");
434
435 /*
436  * Call this to print out the relations between locks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
440
441 /*
442  * Call this to print out the witness faulty stacks.
443  */
444 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
445     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
446
447 static struct mtx w_mtx;
448
449 /* w_list */
450 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
451 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
452
453 /* w_typelist */
454 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
455 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
456
457 /* lock list */
458 static struct lock_list_entry *w_lock_list_free = NULL;
459 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
460 static u_int pending_cnt;
461
462 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
463 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
464 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
465 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
466     "");
467
468 static struct witness *w_data;
469 static uint8_t **w_rmatrix;
470 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
471 static struct witness_hash w_hash;      /* The witness hash table. */
472
473 /* The lock order data hash */
474 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
475 static struct witness_lock_order_data *w_lofree = NULL;
476 static struct witness_lock_order_hash w_lohash;
477 static int w_max_used_index = 0;
478 static unsigned int w_generation = 0;
479 static const char w_notrunning[] = "Witness not running\n";
480 static const char w_stillcold[] = "Witness is still cold\n";
481
482
483 static struct witness_order_list_entry order_lists[] = {
484         /*
485          * sx locks
486          */
487         { "proctree", &lock_class_sx },
488         { "allproc", &lock_class_sx },
489         { "allprison", &lock_class_sx },
490         { NULL, NULL },
491         /*
492          * Various mutexes
493          */
494         { "Giant", &lock_class_mtx_sleep },
495         { "pipe mutex", &lock_class_mtx_sleep },
496         { "sigio lock", &lock_class_mtx_sleep },
497         { "process group", &lock_class_mtx_sleep },
498         { "process lock", &lock_class_mtx_sleep },
499         { "session", &lock_class_mtx_sleep },
500         { "uidinfo hash", &lock_class_rw },
501 #ifdef  HWPMC_HOOKS
502         { "pmc-sleep", &lock_class_mtx_sleep },
503 #endif
504         { "time lock", &lock_class_mtx_sleep },
505         { NULL, NULL },
506         /*
507          * umtx
508          */
509         { "umtx lock", &lock_class_mtx_sleep },
510         { NULL, NULL },
511         /*
512          * Sockets
513          */
514         { "accept", &lock_class_mtx_sleep },
515         { "so_snd", &lock_class_mtx_sleep },
516         { "so_rcv", &lock_class_mtx_sleep },
517         { "sellck", &lock_class_mtx_sleep },
518         { NULL, NULL },
519         /*
520          * Routing
521          */
522         { "so_rcv", &lock_class_mtx_sleep },
523         { "radix node head", &lock_class_rw },
524         { "rtentry", &lock_class_mtx_sleep },
525         { "ifaddr", &lock_class_mtx_sleep },
526         { NULL, NULL },
527         /*
528          * IPv4 multicast:
529          * protocol locks before interface locks, after UDP locks.
530          */
531         { "udpinp", &lock_class_rw },
532         { "in_multi_mtx", &lock_class_mtx_sleep },
533         { "igmp_mtx", &lock_class_mtx_sleep },
534         { "if_addr_lock", &lock_class_rw },
535         { NULL, NULL },
536         /*
537          * IPv6 multicast:
538          * protocol locks before interface locks, after UDP locks.
539          */
540         { "udpinp", &lock_class_rw },
541         { "in6_multi_mtx", &lock_class_mtx_sleep },
542         { "mld_mtx", &lock_class_mtx_sleep },
543         { "if_addr_lock", &lock_class_rw },
544         { NULL, NULL },
545         /*
546          * UNIX Domain Sockets
547          */
548         { "unp_link_rwlock", &lock_class_rw },
549         { "unp_list_lock", &lock_class_mtx_sleep },
550         { "unp", &lock_class_mtx_sleep },
551         { "so_snd", &lock_class_mtx_sleep },
552         { NULL, NULL },
553         /*
554          * UDP/IP
555          */
556         { "udp", &lock_class_rw },
557         { "udpinp", &lock_class_rw },
558         { "so_snd", &lock_class_mtx_sleep },
559         { NULL, NULL },
560         /*
561          * TCP/IP
562          */
563         { "tcp", &lock_class_rw },
564         { "tcpinp", &lock_class_rw },
565         { "so_snd", &lock_class_mtx_sleep },
566         { NULL, NULL },
567         /*
568          * BPF
569          */
570         { "bpf global lock", &lock_class_mtx_sleep },
571         { "bpf interface lock", &lock_class_rw },
572         { "bpf cdev lock", &lock_class_mtx_sleep },
573         { NULL, NULL },
574         /*
575          * NFS server
576          */
577         { "nfsd_mtx", &lock_class_mtx_sleep },
578         { "so_snd", &lock_class_mtx_sleep },
579         { NULL, NULL },
580
581         /*
582          * IEEE 802.11
583          */
584         { "802.11 com lock", &lock_class_mtx_sleep},
585         { NULL, NULL },
586         /*
587          * Network drivers
588          */
589         { "network driver", &lock_class_mtx_sleep},
590         { NULL, NULL },
591
592         /*
593          * Netgraph
594          */
595         { "ng_node", &lock_class_mtx_sleep },
596         { "ng_worklist", &lock_class_mtx_sleep },
597         { NULL, NULL },
598         /*
599          * CDEV
600          */
601         { "vm map (system)", &lock_class_mtx_sleep },
602         { "vm pagequeue", &lock_class_mtx_sleep },
603         { "vnode interlock", &lock_class_mtx_sleep },
604         { "cdev", &lock_class_mtx_sleep },
605         { NULL, NULL },
606         /*
607          * VM
608          */
609         { "vm map (user)", &lock_class_sx },
610         { "vm object", &lock_class_rw },
611         { "vm page", &lock_class_mtx_sleep },
612         { "vm pagequeue", &lock_class_mtx_sleep },
613         { "pmap pv global", &lock_class_rw },
614         { "pmap", &lock_class_mtx_sleep },
615         { "pmap pv list", &lock_class_rw },
616         { "vm page free queue", &lock_class_mtx_sleep },
617         { NULL, NULL },
618         /*
619          * kqueue/VFS interaction
620          */
621         { "kqueue", &lock_class_mtx_sleep },
622         { "struct mount mtx", &lock_class_mtx_sleep },
623         { "vnode interlock", &lock_class_mtx_sleep },
624         { NULL, NULL },
625         /*
626          * VFS namecache
627          */
628         { "ncvn", &lock_class_mtx_sleep },
629         { "ncbuc", &lock_class_rw },
630         { "vnode interlock", &lock_class_mtx_sleep },
631         { "ncneg", &lock_class_mtx_sleep },
632         { NULL, NULL },
633         /*
634          * ZFS locking
635          */
636         { "dn->dn_mtx", &lock_class_sx },
637         { "dr->dt.di.dr_mtx", &lock_class_sx },
638         { "db->db_mtx", &lock_class_sx },
639         { NULL, NULL },
640         /*
641          * spin locks
642          */
643 #ifdef SMP
644         { "ap boot", &lock_class_mtx_spin },
645 #endif
646         { "rm.mutex_mtx", &lock_class_mtx_spin },
647         { "sio", &lock_class_mtx_spin },
648 #ifdef __i386__
649         { "cy", &lock_class_mtx_spin },
650 #endif
651 #ifdef __sparc64__
652         { "pcib_mtx", &lock_class_mtx_spin },
653         { "rtc_mtx", &lock_class_mtx_spin },
654 #endif
655         { "scc_hwmtx", &lock_class_mtx_spin },
656         { "uart_hwmtx", &lock_class_mtx_spin },
657         { "fast_taskqueue", &lock_class_mtx_spin },
658         { "intr table", &lock_class_mtx_spin },
659 #ifdef  HWPMC_HOOKS
660         { "pmc-per-proc", &lock_class_mtx_spin },
661 #endif
662         { "process slock", &lock_class_mtx_spin },
663         { "syscons video lock", &lock_class_mtx_spin },
664         { "sleepq chain", &lock_class_mtx_spin },
665         { "rm_spinlock", &lock_class_mtx_spin },
666         { "turnstile chain", &lock_class_mtx_spin },
667         { "turnstile lock", &lock_class_mtx_spin },
668         { "sched lock", &lock_class_mtx_spin },
669         { "td_contested", &lock_class_mtx_spin },
670         { "callout", &lock_class_mtx_spin },
671         { "entropy harvest mutex", &lock_class_mtx_spin },
672 #ifdef SMP
673         { "smp rendezvous", &lock_class_mtx_spin },
674 #endif
675 #ifdef __powerpc__
676         { "tlb0", &lock_class_mtx_spin },
677 #endif
678         /*
679          * leaf locks
680          */
681         { "intrcnt", &lock_class_mtx_spin },
682         { "icu", &lock_class_mtx_spin },
683 #if defined(SMP) && defined(__sparc64__)
684         { "ipi", &lock_class_mtx_spin },
685 #endif
686 #ifdef __i386__
687         { "allpmaps", &lock_class_mtx_spin },
688         { "descriptor tables", &lock_class_mtx_spin },
689 #endif
690         { "clk", &lock_class_mtx_spin },
691         { "cpuset", &lock_class_mtx_spin },
692         { "mprof lock", &lock_class_mtx_spin },
693         { "zombie lock", &lock_class_mtx_spin },
694         { "ALD Queue", &lock_class_mtx_spin },
695 #if defined(__i386__) || defined(__amd64__)
696         { "pcicfg", &lock_class_mtx_spin },
697         { "NDIS thread lock", &lock_class_mtx_spin },
698 #endif
699         { "tw_osl_io_lock", &lock_class_mtx_spin },
700         { "tw_osl_q_lock", &lock_class_mtx_spin },
701         { "tw_cl_io_lock", &lock_class_mtx_spin },
702         { "tw_cl_intr_lock", &lock_class_mtx_spin },
703         { "tw_cl_gen_lock", &lock_class_mtx_spin },
704 #ifdef  HWPMC_HOOKS
705         { "pmc-leaf", &lock_class_mtx_spin },
706 #endif
707         { "blocked lock", &lock_class_mtx_spin },
708         { NULL, NULL },
709         { NULL, NULL }
710 };
711
712 #ifdef BLESSING
713 /*
714  * Pairs of locks which have been blessed
715  * Don't complain about order problems with blessed locks
716  */
717 static struct witness_blessed blessed_list[] = {
718 };
719 #endif
720
721 /*
722  * This global is set to 0 once it becomes safe to use the witness code.
723  */
724 static int witness_cold = 1;
725
726 /*
727  * This global is set to 1 once the static lock orders have been enrolled
728  * so that a warning can be issued for any spin locks enrolled later.
729  */
730 static int witness_spin_warn = 0;
731
732 /* Trim useless garbage from filenames. */
733 static const char *
734 fixup_filename(const char *file)
735 {
736
737         if (file == NULL)
738                 return (NULL);
739         while (strncmp(file, "../", 3) == 0)
740                 file += 3;
741         return (file);
742 }
743
744 /*
745  * The WITNESS-enabled diagnostic code.  Note that the witness code does
746  * assume that the early boot is single-threaded at least until after this
747  * routine is completed.
748  */
749 static void
750 witness_initialize(void *dummy __unused)
751 {
752         struct lock_object *lock;
753         struct witness_order_list_entry *order;
754         struct witness *w, *w1;
755         int i;
756
757         w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS,
758             M_WAITOK | M_ZERO);
759
760         w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1),
761             M_WITNESS, M_WAITOK | M_ZERO);
762
763         for (i = 0; i < witness_count + 1; i++) {
764                 w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) *
765                     (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO);
766         }
767         badstack_sbuf_size = witness_count * 256;
768
769         /*
770          * We have to release Giant before initializing its witness
771          * structure so that WITNESS doesn't get confused.
772          */
773         mtx_unlock(&Giant);
774         mtx_assert(&Giant, MA_NOTOWNED);
775
776         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
777         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
778             MTX_NOWITNESS | MTX_NOPROFILE);
779         for (i = witness_count - 1; i >= 0; i--) {
780                 w = &w_data[i];
781                 memset(w, 0, sizeof(*w));
782                 w_data[i].w_index = i;  /* Witness index never changes. */
783                 witness_free(w);
784         }
785         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
786             ("%s: Invalid list of free witness objects", __func__));
787
788         /* Witness with index 0 is not used to aid in debugging. */
789         STAILQ_REMOVE_HEAD(&w_free, w_list);
790         w_free_cnt--;
791
792         for (i = 0; i < witness_count; i++) {
793                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
794                     (witness_count + 1));
795         }
796
797         for (i = 0; i < LOCK_CHILDCOUNT; i++)
798                 witness_lock_list_free(&w_locklistdata[i]);
799         witness_init_hash_tables();
800
801         /* First add in all the specified order lists. */
802         for (order = order_lists; order->w_name != NULL; order++) {
803                 w = enroll(order->w_name, order->w_class);
804                 if (w == NULL)
805                         continue;
806                 w->w_file = "order list";
807                 for (order++; order->w_name != NULL; order++) {
808                         w1 = enroll(order->w_name, order->w_class);
809                         if (w1 == NULL)
810                                 continue;
811                         w1->w_file = "order list";
812                         itismychild(w, w1);
813                         w = w1;
814                 }
815         }
816         witness_spin_warn = 1;
817
818         /* Iterate through all locks and add them to witness. */
819         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
820                 lock = pending_locks[i].wh_lock;
821                 KASSERT(lock->lo_flags & LO_WITNESS,
822                     ("%s: lock %s is on pending list but not LO_WITNESS",
823                     __func__, lock->lo_name));
824                 lock->lo_witness = enroll(pending_locks[i].wh_type,
825                     LOCK_CLASS(lock));
826         }
827
828         /* Mark the witness code as being ready for use. */
829         witness_cold = 0;
830
831         mtx_lock(&Giant);
832 }
833 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
834     NULL);
835
836 void
837 witness_init(struct lock_object *lock, const char *type)
838 {
839         struct lock_class *class;
840
841         /* Various sanity checks. */
842         class = LOCK_CLASS(lock);
843         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
844             (class->lc_flags & LC_RECURSABLE) == 0)
845                 kassert_panic("%s: lock (%s) %s can not be recursable",
846                     __func__, class->lc_name, lock->lo_name);
847         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
848             (class->lc_flags & LC_SLEEPABLE) == 0)
849                 kassert_panic("%s: lock (%s) %s can not be sleepable",
850                     __func__, class->lc_name, lock->lo_name);
851         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
852             (class->lc_flags & LC_UPGRADABLE) == 0)
853                 kassert_panic("%s: lock (%s) %s can not be upgradable",
854                     __func__, class->lc_name, lock->lo_name);
855
856         /*
857          * If we shouldn't watch this lock, then just clear lo_witness.
858          * Otherwise, if witness_cold is set, then it is too early to
859          * enroll this lock, so defer it to witness_initialize() by adding
860          * it to the pending_locks list.  If it is not too early, then enroll
861          * the lock now.
862          */
863         if (witness_watch < 1 || panicstr != NULL ||
864             (lock->lo_flags & LO_WITNESS) == 0)
865                 lock->lo_witness = NULL;
866         else if (witness_cold) {
867                 pending_locks[pending_cnt].wh_lock = lock;
868                 pending_locks[pending_cnt++].wh_type = type;
869                 if (pending_cnt > WITNESS_PENDLIST)
870                         panic("%s: pending locks list is too small, "
871                             "increase WITNESS_PENDLIST\n",
872                             __func__);
873         } else
874                 lock->lo_witness = enroll(type, class);
875 }
876
877 void
878 witness_destroy(struct lock_object *lock)
879 {
880         struct lock_class *class;
881         struct witness *w;
882
883         class = LOCK_CLASS(lock);
884
885         if (witness_cold)
886                 panic("lock (%s) %s destroyed while witness_cold",
887                     class->lc_name, lock->lo_name);
888
889         /* XXX: need to verify that no one holds the lock */
890         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
891                 return;
892         w = lock->lo_witness;
893
894         mtx_lock_spin(&w_mtx);
895         MPASS(w->w_refcount > 0);
896         w->w_refcount--;
897
898         if (w->w_refcount == 0)
899                 depart(w);
900         mtx_unlock_spin(&w_mtx);
901 }
902
903 #ifdef DDB
904 static void
905 witness_ddb_compute_levels(void)
906 {
907         struct witness *w;
908
909         /*
910          * First clear all levels.
911          */
912         STAILQ_FOREACH(w, &w_all, w_list)
913                 w->w_ddb_level = -1;
914
915         /*
916          * Look for locks with no parents and level all their descendants.
917          */
918         STAILQ_FOREACH(w, &w_all, w_list) {
919
920                 /* If the witness has ancestors (is not a root), skip it. */
921                 if (w->w_num_ancestors > 0)
922                         continue;
923                 witness_ddb_level_descendants(w, 0);
924         }
925 }
926
927 static void
928 witness_ddb_level_descendants(struct witness *w, int l)
929 {
930         int i;
931
932         if (w->w_ddb_level >= l)
933                 return;
934
935         w->w_ddb_level = l;
936         l++;
937
938         for (i = 1; i <= w_max_used_index; i++) {
939                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
940                         witness_ddb_level_descendants(&w_data[i], l);
941         }
942 }
943
944 static void
945 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
946     struct witness *w, int indent)
947 {
948         int i;
949
950         for (i = 0; i < indent; i++)
951                 prnt(" ");
952         prnt("%s (type: %s, depth: %d, active refs: %d)",
953              w->w_name, w->w_class->lc_name,
954              w->w_ddb_level, w->w_refcount);
955         if (w->w_displayed) {
956                 prnt(" -- (already displayed)\n");
957                 return;
958         }
959         w->w_displayed = 1;
960         if (w->w_file != NULL && w->w_line != 0)
961                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
962                     w->w_line);
963         else
964                 prnt(" -- never acquired\n");
965         indent++;
966         WITNESS_INDEX_ASSERT(w->w_index);
967         for (i = 1; i <= w_max_used_index; i++) {
968                 if (db_pager_quit)
969                         return;
970                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
971                         witness_ddb_display_descendants(prnt, &w_data[i],
972                             indent);
973         }
974 }
975
976 static void
977 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
978     struct witness_list *list)
979 {
980         struct witness *w;
981
982         STAILQ_FOREACH(w, list, w_typelist) {
983                 if (w->w_file == NULL || w->w_ddb_level > 0)
984                         continue;
985
986                 /* This lock has no anscestors - display its descendants. */
987                 witness_ddb_display_descendants(prnt, w, 0);
988                 if (db_pager_quit)
989                         return;
990         }
991 }
992         
993 static void
994 witness_ddb_display(int(*prnt)(const char *fmt, ...))
995 {
996         struct witness *w;
997
998         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
999         witness_ddb_compute_levels();
1000
1001         /* Clear all the displayed flags. */
1002         STAILQ_FOREACH(w, &w_all, w_list)
1003                 w->w_displayed = 0;
1004
1005         /*
1006          * First, handle sleep locks which have been acquired at least
1007          * once.
1008          */
1009         prnt("Sleep locks:\n");
1010         witness_ddb_display_list(prnt, &w_sleep);
1011         if (db_pager_quit)
1012                 return;
1013         
1014         /*
1015          * Now do spin locks which have been acquired at least once.
1016          */
1017         prnt("\nSpin locks:\n");
1018         witness_ddb_display_list(prnt, &w_spin);
1019         if (db_pager_quit)
1020                 return;
1021         
1022         /*
1023          * Finally, any locks which have not been acquired yet.
1024          */
1025         prnt("\nLocks which were never acquired:\n");
1026         STAILQ_FOREACH(w, &w_all, w_list) {
1027                 if (w->w_file != NULL || w->w_refcount == 0)
1028                         continue;
1029                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1030                     w->w_class->lc_name, w->w_ddb_level);
1031                 if (db_pager_quit)
1032                         return;
1033         }
1034 }
1035 #endif /* DDB */
1036
1037 int
1038 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1039 {
1040
1041         if (witness_watch == -1 || panicstr != NULL)
1042                 return (0);
1043
1044         /* Require locks that witness knows about. */
1045         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1046             lock2->lo_witness == NULL)
1047                 return (EINVAL);
1048
1049         mtx_assert(&w_mtx, MA_NOTOWNED);
1050         mtx_lock_spin(&w_mtx);
1051
1052         /*
1053          * If we already have either an explicit or implied lock order that
1054          * is the other way around, then return an error.
1055          */
1056         if (witness_watch &&
1057             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1058                 mtx_unlock_spin(&w_mtx);
1059                 return (EDOOFUS);
1060         }
1061         
1062         /* Try to add the new order. */
1063         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1064             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1065         itismychild(lock1->lo_witness, lock2->lo_witness);
1066         mtx_unlock_spin(&w_mtx);
1067         return (0);
1068 }
1069
1070 void
1071 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1072     int line, struct lock_object *interlock)
1073 {
1074         struct lock_list_entry *lock_list, *lle;
1075         struct lock_instance *lock1, *lock2, *plock;
1076         struct lock_class *class, *iclass;
1077         struct witness *w, *w1;
1078         struct thread *td;
1079         int i, j;
1080
1081         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1082             panicstr != NULL)
1083                 return;
1084
1085         w = lock->lo_witness;
1086         class = LOCK_CLASS(lock);
1087         td = curthread;
1088
1089         if (class->lc_flags & LC_SLEEPLOCK) {
1090
1091                 /*
1092                  * Since spin locks include a critical section, this check
1093                  * implicitly enforces a lock order of all sleep locks before
1094                  * all spin locks.
1095                  */
1096                 if (td->td_critnest != 0 && !kdb_active)
1097                         kassert_panic("acquiring blockable sleep lock with "
1098                             "spinlock or critical section held (%s) %s @ %s:%d",
1099                             class->lc_name, lock->lo_name,
1100                             fixup_filename(file), line);
1101
1102                 /*
1103                  * If this is the first lock acquired then just return as
1104                  * no order checking is needed.
1105                  */
1106                 lock_list = td->td_sleeplocks;
1107                 if (lock_list == NULL || lock_list->ll_count == 0)
1108                         return;
1109         } else {
1110
1111                 /*
1112                  * If this is the first lock, just return as no order
1113                  * checking is needed.  Avoid problems with thread
1114                  * migration pinning the thread while checking if
1115                  * spinlocks are held.  If at least one spinlock is held
1116                  * the thread is in a safe path and it is allowed to
1117                  * unpin it.
1118                  */
1119                 sched_pin();
1120                 lock_list = PCPU_GET(spinlocks);
1121                 if (lock_list == NULL || lock_list->ll_count == 0) {
1122                         sched_unpin();
1123                         return;
1124                 }
1125                 sched_unpin();
1126         }
1127
1128         /*
1129          * Check to see if we are recursing on a lock we already own.  If
1130          * so, make sure that we don't mismatch exclusive and shared lock
1131          * acquires.
1132          */
1133         lock1 = find_instance(lock_list, lock);
1134         if (lock1 != NULL) {
1135                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1136                     (flags & LOP_EXCLUSIVE) == 0) {
1137                         witness_output("shared lock of (%s) %s @ %s:%d\n",
1138                             class->lc_name, lock->lo_name,
1139                             fixup_filename(file), line);
1140                         witness_output("while exclusively locked from %s:%d\n",
1141                             fixup_filename(lock1->li_file), lock1->li_line);
1142                         kassert_panic("excl->share");
1143                 }
1144                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1145                     (flags & LOP_EXCLUSIVE) != 0) {
1146                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1147                             class->lc_name, lock->lo_name,
1148                             fixup_filename(file), line);
1149                         witness_output("while share locked from %s:%d\n",
1150                             fixup_filename(lock1->li_file), lock1->li_line);
1151                         kassert_panic("share->excl");
1152                 }
1153                 return;
1154         }
1155
1156         /* Warn if the interlock is not locked exactly once. */
1157         if (interlock != NULL) {
1158                 iclass = LOCK_CLASS(interlock);
1159                 lock1 = find_instance(lock_list, interlock);
1160                 if (lock1 == NULL)
1161                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1162                             iclass->lc_name, interlock->lo_name,
1163                             fixup_filename(file), line);
1164                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1165                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1166                             iclass->lc_name, interlock->lo_name,
1167                             fixup_filename(file), line);
1168         }
1169
1170         /*
1171          * Find the previously acquired lock, but ignore interlocks.
1172          */
1173         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1174         if (interlock != NULL && plock->li_lock == interlock) {
1175                 if (lock_list->ll_count > 1)
1176                         plock =
1177                             &lock_list->ll_children[lock_list->ll_count - 2];
1178                 else {
1179                         lle = lock_list->ll_next;
1180
1181                         /*
1182                          * The interlock is the only lock we hold, so
1183                          * simply return.
1184                          */
1185                         if (lle == NULL)
1186                                 return;
1187                         plock = &lle->ll_children[lle->ll_count - 1];
1188                 }
1189         }
1190         
1191         /*
1192          * Try to perform most checks without a lock.  If this succeeds we
1193          * can skip acquiring the lock and return success.  Otherwise we redo
1194          * the check with the lock held to handle races with concurrent updates.
1195          */
1196         w1 = plock->li_lock->lo_witness;
1197         if (witness_lock_order_check(w1, w))
1198                 return;
1199
1200         mtx_lock_spin(&w_mtx);
1201         if (witness_lock_order_check(w1, w)) {
1202                 mtx_unlock_spin(&w_mtx);
1203                 return;
1204         }
1205         witness_lock_order_add(w1, w);
1206
1207         /*
1208          * Check for duplicate locks of the same type.  Note that we only
1209          * have to check for this on the last lock we just acquired.  Any
1210          * other cases will be caught as lock order violations.
1211          */
1212         if (w1 == w) {
1213                 i = w->w_index;
1214                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1215                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1216                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1217                         w->w_reversed = 1;
1218                         mtx_unlock_spin(&w_mtx);
1219                         witness_output(
1220                             "acquiring duplicate lock of same type: \"%s\"\n", 
1221                             w->w_name);
1222                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1223                             fixup_filename(plock->li_file), plock->li_line);
1224                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1225                             fixup_filename(file), line);
1226                         witness_debugger(1, __func__);
1227                 } else
1228                         mtx_unlock_spin(&w_mtx);
1229                 return;
1230         }
1231         mtx_assert(&w_mtx, MA_OWNED);
1232
1233         /*
1234          * If we know that the lock we are acquiring comes after
1235          * the lock we most recently acquired in the lock order tree,
1236          * then there is no need for any further checks.
1237          */
1238         if (isitmychild(w1, w))
1239                 goto out;
1240
1241         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1242                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1243
1244                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1245                         lock1 = &lle->ll_children[i];
1246
1247                         /*
1248                          * Ignore the interlock.
1249                          */
1250                         if (interlock == lock1->li_lock)
1251                                 continue;
1252
1253                         /*
1254                          * If this lock doesn't undergo witness checking,
1255                          * then skip it.
1256                          */
1257                         w1 = lock1->li_lock->lo_witness;
1258                         if (w1 == NULL) {
1259                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1260                                     ("lock missing witness structure"));
1261                                 continue;
1262                         }
1263
1264                         /*
1265                          * If we are locking Giant and this is a sleepable
1266                          * lock, then skip it.
1267                          */
1268                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1269                             lock == &Giant.lock_object)
1270                                 continue;
1271
1272                         /*
1273                          * If we are locking a sleepable lock and this lock
1274                          * is Giant, then skip it.
1275                          */
1276                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1277                             lock1->li_lock == &Giant.lock_object)
1278                                 continue;
1279
1280                         /*
1281                          * If we are locking a sleepable lock and this lock
1282                          * isn't sleepable, we want to treat it as a lock
1283                          * order violation to enfore a general lock order of
1284                          * sleepable locks before non-sleepable locks.
1285                          */
1286                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1287                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1288                                 goto reversal;
1289
1290                         /*
1291                          * If we are locking Giant and this is a non-sleepable
1292                          * lock, then treat it as a reversal.
1293                          */
1294                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1295                             lock == &Giant.lock_object)
1296                                 goto reversal;
1297
1298                         /*
1299                          * Check the lock order hierarchy for a reveresal.
1300                          */
1301                         if (!isitmydescendant(w, w1))
1302                                 continue;
1303                 reversal:
1304
1305                         /*
1306                          * We have a lock order violation, check to see if it
1307                          * is allowed or has already been yelled about.
1308                          */
1309 #ifdef BLESSING
1310
1311                         /*
1312                          * If the lock order is blessed, just bail.  We don't
1313                          * look for other lock order violations though, which
1314                          * may be a bug.
1315                          */
1316                         if (blessed(w, w1))
1317                                 goto out;
1318 #endif
1319
1320                         /* Bail if this violation is known */
1321                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1322                                 goto out;
1323
1324                         /* Record this as a violation */
1325                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1326                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1327                         w->w_reversed = w1->w_reversed = 1;
1328                         witness_increment_graph_generation();
1329                         mtx_unlock_spin(&w_mtx);
1330
1331 #ifdef WITNESS_NO_VNODE
1332                         /*
1333                          * There are known LORs between VNODE locks. They are
1334                          * not an indication of a bug. VNODE locks are flagged
1335                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1336                          * is between 2 VNODE locks.
1337                          */
1338                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1339                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1340                                 return;
1341 #endif
1342
1343                         /*
1344                          * Ok, yell about it.
1345                          */
1346                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1347                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1348                                 witness_output(
1349                 "lock order reversal: (sleepable after non-sleepable)\n");
1350                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1351                             && lock == &Giant.lock_object)
1352                                 witness_output(
1353                 "lock order reversal: (Giant after non-sleepable)\n");
1354                         else
1355                                 witness_output("lock order reversal:\n");
1356
1357                         /*
1358                          * Try to locate an earlier lock with
1359                          * witness w in our list.
1360                          */
1361                         do {
1362                                 lock2 = &lle->ll_children[i];
1363                                 MPASS(lock2->li_lock != NULL);
1364                                 if (lock2->li_lock->lo_witness == w)
1365                                         break;
1366                                 if (i == 0 && lle->ll_next != NULL) {
1367                                         lle = lle->ll_next;
1368                                         i = lle->ll_count - 1;
1369                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1370                                 } else
1371                                         i--;
1372                         } while (i >= 0);
1373                         if (i < 0) {
1374                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1375                                     lock1->li_lock, lock1->li_lock->lo_name,
1376                                     w1->w_name, fixup_filename(lock1->li_file),
1377                                     lock1->li_line);
1378                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1379                                     lock->lo_name, w->w_name,
1380                                     fixup_filename(file), line);
1381                         } else {
1382                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1383                                     lock2->li_lock, lock2->li_lock->lo_name,
1384                                     lock2->li_lock->lo_witness->w_name,
1385                                     fixup_filename(lock2->li_file),
1386                                     lock2->li_line);
1387                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1388                                     lock1->li_lock, lock1->li_lock->lo_name,
1389                                     w1->w_name, fixup_filename(lock1->li_file),
1390                                     lock1->li_line);
1391                                 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1392                                     lock->lo_name, w->w_name,
1393                                     fixup_filename(file), line);
1394                         }
1395                         witness_debugger(1, __func__);
1396                         return;
1397                 }
1398         }
1399
1400         /*
1401          * If requested, build a new lock order.  However, don't build a new
1402          * relationship between a sleepable lock and Giant if it is in the
1403          * wrong direction.  The correct lock order is that sleepable locks
1404          * always come before Giant.
1405          */
1406         if (flags & LOP_NEWORDER &&
1407             !(plock->li_lock == &Giant.lock_object &&
1408             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1409                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1410                     w->w_name, plock->li_lock->lo_witness->w_name);
1411                 itismychild(plock->li_lock->lo_witness, w);
1412         }
1413 out:
1414         mtx_unlock_spin(&w_mtx);
1415 }
1416
1417 void
1418 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1419 {
1420         struct lock_list_entry **lock_list, *lle;
1421         struct lock_instance *instance;
1422         struct witness *w;
1423         struct thread *td;
1424
1425         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1426             panicstr != NULL)
1427                 return;
1428         w = lock->lo_witness;
1429         td = curthread;
1430
1431         /* Determine lock list for this lock. */
1432         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1433                 lock_list = &td->td_sleeplocks;
1434         else
1435                 lock_list = PCPU_PTR(spinlocks);
1436
1437         /* Check to see if we are recursing on a lock we already own. */
1438         instance = find_instance(*lock_list, lock);
1439         if (instance != NULL) {
1440                 instance->li_flags++;
1441                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1442                     td->td_proc->p_pid, lock->lo_name,
1443                     instance->li_flags & LI_RECURSEMASK);
1444                 instance->li_file = file;
1445                 instance->li_line = line;
1446                 return;
1447         }
1448
1449         /* Update per-witness last file and line acquire. */
1450         w->w_file = file;
1451         w->w_line = line;
1452
1453         /* Find the next open lock instance in the list and fill it. */
1454         lle = *lock_list;
1455         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1456                 lle = witness_lock_list_get();
1457                 if (lle == NULL)
1458                         return;
1459                 lle->ll_next = *lock_list;
1460                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1461                     td->td_proc->p_pid, lle);
1462                 *lock_list = lle;
1463         }
1464         instance = &lle->ll_children[lle->ll_count++];
1465         instance->li_lock = lock;
1466         instance->li_line = line;
1467         instance->li_file = file;
1468         if ((flags & LOP_EXCLUSIVE) != 0)
1469                 instance->li_flags = LI_EXCLUSIVE;
1470         else
1471                 instance->li_flags = 0;
1472         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1473             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1474 }
1475
1476 void
1477 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1478 {
1479         struct lock_instance *instance;
1480         struct lock_class *class;
1481
1482         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1483         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1484                 return;
1485         class = LOCK_CLASS(lock);
1486         if (witness_watch) {
1487                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1488                         kassert_panic(
1489                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1490                             class->lc_name, lock->lo_name,
1491                             fixup_filename(file), line);
1492                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1493                         kassert_panic(
1494                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1495                             class->lc_name, lock->lo_name,
1496                             fixup_filename(file), line);
1497         }
1498         instance = find_instance(curthread->td_sleeplocks, lock);
1499         if (instance == NULL) {
1500                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1501                     class->lc_name, lock->lo_name,
1502                     fixup_filename(file), line);
1503                 return;
1504         }
1505         if (witness_watch) {
1506                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1507                         kassert_panic(
1508                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1509                             class->lc_name, lock->lo_name,
1510                             fixup_filename(file), line);
1511                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1512                         kassert_panic(
1513                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1514                             class->lc_name, lock->lo_name,
1515                             instance->li_flags & LI_RECURSEMASK,
1516                             fixup_filename(file), line);
1517         }
1518         instance->li_flags |= LI_EXCLUSIVE;
1519 }
1520
1521 void
1522 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1523     int line)
1524 {
1525         struct lock_instance *instance;
1526         struct lock_class *class;
1527
1528         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1529         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1530                 return;
1531         class = LOCK_CLASS(lock);
1532         if (witness_watch) {
1533                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1534                         kassert_panic(
1535                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1536                             class->lc_name, lock->lo_name,
1537                             fixup_filename(file), line);
1538                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1539                         kassert_panic(
1540                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1541                             class->lc_name, lock->lo_name,
1542                             fixup_filename(file), line);
1543         }
1544         instance = find_instance(curthread->td_sleeplocks, lock);
1545         if (instance == NULL) {
1546                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1547                     class->lc_name, lock->lo_name,
1548                     fixup_filename(file), line);
1549                 return;
1550         }
1551         if (witness_watch) {
1552                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1553                         kassert_panic(
1554                             "downgrade of shared lock (%s) %s @ %s:%d",
1555                             class->lc_name, lock->lo_name,
1556                             fixup_filename(file), line);
1557                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1558                         kassert_panic(
1559                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1560                             class->lc_name, lock->lo_name,
1561                             instance->li_flags & LI_RECURSEMASK,
1562                             fixup_filename(file), line);
1563         }
1564         instance->li_flags &= ~LI_EXCLUSIVE;
1565 }
1566
1567 void
1568 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1569 {
1570         struct lock_list_entry **lock_list, *lle;
1571         struct lock_instance *instance;
1572         struct lock_class *class;
1573         struct thread *td;
1574         register_t s;
1575         int i, j;
1576
1577         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1578                 return;
1579         td = curthread;
1580         class = LOCK_CLASS(lock);
1581
1582         /* Find lock instance associated with this lock. */
1583         if (class->lc_flags & LC_SLEEPLOCK)
1584                 lock_list = &td->td_sleeplocks;
1585         else
1586                 lock_list = PCPU_PTR(spinlocks);
1587         lle = *lock_list;
1588         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1589                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1590                         instance = &(*lock_list)->ll_children[i];
1591                         if (instance->li_lock == lock)
1592                                 goto found;
1593                 }
1594
1595         /*
1596          * When disabling WITNESS through witness_watch we could end up in
1597          * having registered locks in the td_sleeplocks queue.
1598          * We have to make sure we flush these queues, so just search for
1599          * eventual register locks and remove them.
1600          */
1601         if (witness_watch > 0) {
1602                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1603                     lock->lo_name, fixup_filename(file), line);
1604                 return;
1605         } else {
1606                 return;
1607         }
1608 found:
1609
1610         /* First, check for shared/exclusive mismatches. */
1611         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1612             (flags & LOP_EXCLUSIVE) == 0) {
1613                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1614                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1615                 witness_output("while exclusively locked from %s:%d\n",
1616                     fixup_filename(instance->li_file), instance->li_line);
1617                 kassert_panic("excl->ushare");
1618         }
1619         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1620             (flags & LOP_EXCLUSIVE) != 0) {
1621                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1622                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1623                 witness_output("while share locked from %s:%d\n",
1624                     fixup_filename(instance->li_file),
1625                     instance->li_line);
1626                 kassert_panic("share->uexcl");
1627         }
1628         /* If we are recursed, unrecurse. */
1629         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1630                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1631                     td->td_proc->p_pid, instance->li_lock->lo_name,
1632                     instance->li_flags);
1633                 instance->li_flags--;
1634                 return;
1635         }
1636         /* The lock is now being dropped, check for NORELEASE flag */
1637         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1638                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1639                     class->lc_name, lock->lo_name, fixup_filename(file), line);
1640                 kassert_panic("lock marked norelease");
1641         }
1642
1643         /* Otherwise, remove this item from the list. */
1644         s = intr_disable();
1645         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1646             td->td_proc->p_pid, instance->li_lock->lo_name,
1647             (*lock_list)->ll_count - 1);
1648         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1649                 (*lock_list)->ll_children[j] =
1650                     (*lock_list)->ll_children[j + 1];
1651         (*lock_list)->ll_count--;
1652         intr_restore(s);
1653
1654         /*
1655          * In order to reduce contention on w_mtx, we want to keep always an
1656          * head object into lists so that frequent allocation from the 
1657          * free witness pool (and subsequent locking) is avoided.
1658          * In order to maintain the current code simple, when the head
1659          * object is totally unloaded it means also that we do not have
1660          * further objects in the list, so the list ownership needs to be
1661          * hand over to another object if the current head needs to be freed.
1662          */
1663         if ((*lock_list)->ll_count == 0) {
1664                 if (*lock_list == lle) {
1665                         if (lle->ll_next == NULL)
1666                                 return;
1667                 } else
1668                         lle = *lock_list;
1669                 *lock_list = lle->ll_next;
1670                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1671                     td->td_proc->p_pid, lle);
1672                 witness_lock_list_free(lle);
1673         }
1674 }
1675
1676 void
1677 witness_thread_exit(struct thread *td)
1678 {
1679         struct lock_list_entry *lle;
1680         int i, n;
1681
1682         lle = td->td_sleeplocks;
1683         if (lle == NULL || panicstr != NULL)
1684                 return;
1685         if (lle->ll_count != 0) {
1686                 for (n = 0; lle != NULL; lle = lle->ll_next)
1687                         for (i = lle->ll_count - 1; i >= 0; i--) {
1688                                 if (n == 0)
1689                                         witness_output(
1690                     "Thread %p exiting with the following locks held:\n", td);
1691                                 n++;
1692                                 witness_list_lock(&lle->ll_children[i],
1693                                     witness_output);
1694                                 
1695                         }
1696                 kassert_panic(
1697                     "Thread %p cannot exit while holding sleeplocks\n", td);
1698         }
1699         witness_lock_list_free(lle);
1700 }
1701
1702 /*
1703  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1704  * exempt Giant and sleepable locks from the checks as well.  If any
1705  * non-exempt locks are held, then a supplied message is printed to the
1706  * output channel along with a list of the offending locks.  If indicated in the
1707  * flags then a failure results in a panic as well.
1708  */
1709 int
1710 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1711 {
1712         struct lock_list_entry *lock_list, *lle;
1713         struct lock_instance *lock1;
1714         struct thread *td;
1715         va_list ap;
1716         int i, n;
1717
1718         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1719                 return (0);
1720         n = 0;
1721         td = curthread;
1722         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1723                 for (i = lle->ll_count - 1; i >= 0; i--) {
1724                         lock1 = &lle->ll_children[i];
1725                         if (lock1->li_lock == lock)
1726                                 continue;
1727                         if (flags & WARN_GIANTOK &&
1728                             lock1->li_lock == &Giant.lock_object)
1729                                 continue;
1730                         if (flags & WARN_SLEEPOK &&
1731                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1732                                 continue;
1733                         if (n == 0) {
1734                                 va_start(ap, fmt);
1735                                 witness_voutput(fmt, ap);
1736                                 va_end(ap);
1737                                 witness_output(
1738                                     " with the following %slocks held:\n",
1739                                     (flags & WARN_SLEEPOK) != 0 ?
1740                                     "non-sleepable " : "");
1741                         }
1742                         n++;
1743                         witness_list_lock(lock1, witness_output);
1744                 }
1745
1746         /*
1747          * Pin the thread in order to avoid problems with thread migration.
1748          * Once that all verifies are passed about spinlocks ownership,
1749          * the thread is in a safe path and it can be unpinned.
1750          */
1751         sched_pin();
1752         lock_list = PCPU_GET(spinlocks);
1753         if (lock_list != NULL && lock_list->ll_count != 0) {
1754                 sched_unpin();
1755
1756                 /*
1757                  * We should only have one spinlock and as long as
1758                  * the flags cannot match for this locks class,
1759                  * check if the first spinlock is the one curthread
1760                  * should hold.
1761                  */
1762                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1763                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1764                     lock1->li_lock == lock && n == 0)
1765                         return (0);
1766
1767                 va_start(ap, fmt);
1768                 witness_voutput(fmt, ap);
1769                 va_end(ap);
1770                 witness_output(" with the following %slocks held:\n",
1771                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1772                 n += witness_list_locks(&lock_list, witness_output);
1773         } else
1774                 sched_unpin();
1775         if (flags & WARN_PANIC && n)
1776                 kassert_panic("%s", __func__);
1777         else
1778                 witness_debugger(n, __func__);
1779         return (n);
1780 }
1781
1782 const char *
1783 witness_file(struct lock_object *lock)
1784 {
1785         struct witness *w;
1786
1787         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1788                 return ("?");
1789         w = lock->lo_witness;
1790         return (w->w_file);
1791 }
1792
1793 int
1794 witness_line(struct lock_object *lock)
1795 {
1796         struct witness *w;
1797
1798         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1799                 return (0);
1800         w = lock->lo_witness;
1801         return (w->w_line);
1802 }
1803
1804 static struct witness *
1805 enroll(const char *description, struct lock_class *lock_class)
1806 {
1807         struct witness *w;
1808         struct witness_list *typelist;
1809
1810         MPASS(description != NULL);
1811
1812         if (witness_watch == -1 || panicstr != NULL)
1813                 return (NULL);
1814         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1815                 if (witness_skipspin)
1816                         return (NULL);
1817                 else
1818                         typelist = &w_spin;
1819         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1820                 typelist = &w_sleep;
1821         } else {
1822                 kassert_panic("lock class %s is not sleep or spin",
1823                     lock_class->lc_name);
1824                 return (NULL);
1825         }
1826
1827         mtx_lock_spin(&w_mtx);
1828         w = witness_hash_get(description);
1829         if (w)
1830                 goto found;
1831         if ((w = witness_get()) == NULL)
1832                 return (NULL);
1833         MPASS(strlen(description) < MAX_W_NAME);
1834         strcpy(w->w_name, description);
1835         w->w_class = lock_class;
1836         w->w_refcount = 1;
1837         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1838         if (lock_class->lc_flags & LC_SPINLOCK) {
1839                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1840                 w_spin_cnt++;
1841         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1842                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1843                 w_sleep_cnt++;
1844         }
1845
1846         /* Insert new witness into the hash */
1847         witness_hash_put(w);
1848         witness_increment_graph_generation();
1849         mtx_unlock_spin(&w_mtx);
1850         return (w);
1851 found:
1852         w->w_refcount++;
1853         mtx_unlock_spin(&w_mtx);
1854         if (lock_class != w->w_class)
1855                 kassert_panic(
1856                         "lock (%s) %s does not match earlier (%s) lock",
1857                         description, lock_class->lc_name,
1858                         w->w_class->lc_name);
1859         return (w);
1860 }
1861
1862 static void
1863 depart(struct witness *w)
1864 {
1865         struct witness_list *list;
1866
1867         MPASS(w->w_refcount == 0);
1868         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1869                 list = &w_sleep;
1870                 w_sleep_cnt--;
1871         } else {
1872                 list = &w_spin;
1873                 w_spin_cnt--;
1874         }
1875         /*
1876          * Set file to NULL as it may point into a loadable module.
1877          */
1878         w->w_file = NULL;
1879         w->w_line = 0;
1880         witness_increment_graph_generation();
1881 }
1882
1883
1884 static void
1885 adopt(struct witness *parent, struct witness *child)
1886 {
1887         int pi, ci, i, j;
1888
1889         if (witness_cold == 0)
1890                 mtx_assert(&w_mtx, MA_OWNED);
1891
1892         /* If the relationship is already known, there's no work to be done. */
1893         if (isitmychild(parent, child))
1894                 return;
1895
1896         /* When the structure of the graph changes, bump up the generation. */
1897         witness_increment_graph_generation();
1898
1899         /*
1900          * The hard part ... create the direct relationship, then propagate all
1901          * indirect relationships.
1902          */
1903         pi = parent->w_index;
1904         ci = child->w_index;
1905         WITNESS_INDEX_ASSERT(pi);
1906         WITNESS_INDEX_ASSERT(ci);
1907         MPASS(pi != ci);
1908         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1909         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1910
1911         /*
1912          * If parent was not already an ancestor of child,
1913          * then we increment the descendant and ancestor counters.
1914          */
1915         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1916                 parent->w_num_descendants++;
1917                 child->w_num_ancestors++;
1918         }
1919
1920         /* 
1921          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1922          * an ancestor of 'pi' during this loop.
1923          */
1924         for (i = 1; i <= w_max_used_index; i++) {
1925                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1926                     (i != pi))
1927                         continue;
1928
1929                 /* Find each descendant of 'i' and mark it as a descendant. */
1930                 for (j = 1; j <= w_max_used_index; j++) {
1931
1932                         /* 
1933                          * Skip children that are already marked as
1934                          * descendants of 'i'.
1935                          */
1936                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1937                                 continue;
1938
1939                         /*
1940                          * We are only interested in descendants of 'ci'. Note
1941                          * that 'ci' itself is counted as a descendant of 'ci'.
1942                          */
1943                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1944                             (j != ci))
1945                                 continue;
1946                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1947                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1948                         w_data[i].w_num_descendants++;
1949                         w_data[j].w_num_ancestors++;
1950
1951                         /* 
1952                          * Make sure we aren't marking a node as both an
1953                          * ancestor and descendant. We should have caught 
1954                          * this as a lock order reversal earlier.
1955                          */
1956                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1957                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1958                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1959                                     "both ancestor and descendant\n",
1960                                     i, j, w_rmatrix[i][j]); 
1961                                 kdb_backtrace();
1962                                 printf("Witness disabled.\n");
1963                                 witness_watch = -1;
1964                         }
1965                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1966                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1967                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1968                                     "both ancestor and descendant\n",
1969                                     j, i, w_rmatrix[j][i]); 
1970                                 kdb_backtrace();
1971                                 printf("Witness disabled.\n");
1972                                 witness_watch = -1;
1973                         }
1974                 }
1975         }
1976 }
1977
1978 static void
1979 itismychild(struct witness *parent, struct witness *child)
1980 {
1981         int unlocked;
1982
1983         MPASS(child != NULL && parent != NULL);
1984         if (witness_cold == 0)
1985                 mtx_assert(&w_mtx, MA_OWNED);
1986
1987         if (!witness_lock_type_equal(parent, child)) {
1988                 if (witness_cold == 0) {
1989                         unlocked = 1;
1990                         mtx_unlock_spin(&w_mtx);
1991                 } else {
1992                         unlocked = 0;
1993                 }
1994                 kassert_panic(
1995                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1996                     "the same lock type", __func__, parent->w_name,
1997                     parent->w_class->lc_name, child->w_name,
1998                     child->w_class->lc_name);
1999                 if (unlocked)
2000                         mtx_lock_spin(&w_mtx);
2001         }
2002         adopt(parent, child);
2003 }
2004
2005 /*
2006  * Generic code for the isitmy*() functions. The rmask parameter is the
2007  * expected relationship of w1 to w2.
2008  */
2009 static int
2010 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2011 {
2012         unsigned char r1, r2;
2013         int i1, i2;
2014
2015         i1 = w1->w_index;
2016         i2 = w2->w_index;
2017         WITNESS_INDEX_ASSERT(i1);
2018         WITNESS_INDEX_ASSERT(i2);
2019         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2020         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2021
2022         /* The flags on one better be the inverse of the flags on the other */
2023         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2024             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2025                 /* Don't squawk if we're potentially racing with an update. */
2026                 if (!mtx_owned(&w_mtx))
2027                         return (0);
2028                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2029                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2030                     "w_rmatrix[%d][%d] == %hhx\n",
2031                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2032                     i2, i1, r2);
2033                 kdb_backtrace();
2034                 printf("Witness disabled.\n");
2035                 witness_watch = -1;
2036         }
2037         return (r1 & rmask);
2038 }
2039
2040 /*
2041  * Checks if @child is a direct child of @parent.
2042  */
2043 static int
2044 isitmychild(struct witness *parent, struct witness *child)
2045 {
2046
2047         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2048 }
2049
2050 /*
2051  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2052  */
2053 static int
2054 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2055 {
2056
2057         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2058             __func__));
2059 }
2060
2061 #ifdef BLESSING
2062 static int
2063 blessed(struct witness *w1, struct witness *w2)
2064 {
2065         int i;
2066         struct witness_blessed *b;
2067
2068         for (i = 0; i < nitems(blessed_list); i++) {
2069                 b = &blessed_list[i];
2070                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2071                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2072                                 return (1);
2073                         continue;
2074                 }
2075                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2076                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2077                                 return (1);
2078         }
2079         return (0);
2080 }
2081 #endif
2082
2083 static struct witness *
2084 witness_get(void)
2085 {
2086         struct witness *w;
2087         int index;
2088
2089         if (witness_cold == 0)
2090                 mtx_assert(&w_mtx, MA_OWNED);
2091
2092         if (witness_watch == -1) {
2093                 mtx_unlock_spin(&w_mtx);
2094                 return (NULL);
2095         }
2096         if (STAILQ_EMPTY(&w_free)) {
2097                 witness_watch = -1;
2098                 mtx_unlock_spin(&w_mtx);
2099                 printf("WITNESS: unable to allocate a new witness object\n");
2100                 return (NULL);
2101         }
2102         w = STAILQ_FIRST(&w_free);
2103         STAILQ_REMOVE_HEAD(&w_free, w_list);
2104         w_free_cnt--;
2105         index = w->w_index;
2106         MPASS(index > 0 && index == w_max_used_index+1 &&
2107             index < witness_count);
2108         bzero(w, sizeof(*w));
2109         w->w_index = index;
2110         if (index > w_max_used_index)
2111                 w_max_used_index = index;
2112         return (w);
2113 }
2114
2115 static void
2116 witness_free(struct witness *w)
2117 {
2118
2119         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2120         w_free_cnt++;
2121 }
2122
2123 static struct lock_list_entry *
2124 witness_lock_list_get(void)
2125 {
2126         struct lock_list_entry *lle;
2127
2128         if (witness_watch == -1)
2129                 return (NULL);
2130         mtx_lock_spin(&w_mtx);
2131         lle = w_lock_list_free;
2132         if (lle == NULL) {
2133                 witness_watch = -1;
2134                 mtx_unlock_spin(&w_mtx);
2135                 printf("%s: witness exhausted\n", __func__);
2136                 return (NULL);
2137         }
2138         w_lock_list_free = lle->ll_next;
2139         mtx_unlock_spin(&w_mtx);
2140         bzero(lle, sizeof(*lle));
2141         return (lle);
2142 }
2143                 
2144 static void
2145 witness_lock_list_free(struct lock_list_entry *lle)
2146 {
2147
2148         mtx_lock_spin(&w_mtx);
2149         lle->ll_next = w_lock_list_free;
2150         w_lock_list_free = lle;
2151         mtx_unlock_spin(&w_mtx);
2152 }
2153
2154 static struct lock_instance *
2155 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2156 {
2157         struct lock_list_entry *lle;
2158         struct lock_instance *instance;
2159         int i;
2160
2161         for (lle = list; lle != NULL; lle = lle->ll_next)
2162                 for (i = lle->ll_count - 1; i >= 0; i--) {
2163                         instance = &lle->ll_children[i];
2164                         if (instance->li_lock == lock)
2165                                 return (instance);
2166                 }
2167         return (NULL);
2168 }
2169
2170 static void
2171 witness_list_lock(struct lock_instance *instance,
2172     int (*prnt)(const char *fmt, ...))
2173 {
2174         struct lock_object *lock;
2175
2176         lock = instance->li_lock;
2177         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2178             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2179         if (lock->lo_witness->w_name != lock->lo_name)
2180                 prnt(" (%s)", lock->lo_witness->w_name);
2181         prnt(" r = %d (%p) locked @ %s:%d\n",
2182             instance->li_flags & LI_RECURSEMASK, lock,
2183             fixup_filename(instance->li_file), instance->li_line);
2184 }
2185
2186 static int
2187 witness_output(const char *fmt, ...)
2188 {
2189         va_list ap;
2190         int ret;
2191
2192         va_start(ap, fmt);
2193         ret = witness_voutput(fmt, ap);
2194         va_end(ap);
2195         return (ret);
2196 }
2197
2198 static int
2199 witness_voutput(const char *fmt, va_list ap)
2200 {
2201         int ret;
2202
2203         ret = 0;
2204         switch (witness_channel) {
2205         case WITNESS_CONSOLE:
2206                 ret = vprintf(fmt, ap);
2207                 break;
2208         case WITNESS_LOG:
2209                 vlog(LOG_NOTICE, fmt, ap);
2210                 break;
2211         case WITNESS_NONE:
2212                 break;
2213         }
2214         return (ret);
2215 }
2216
2217 #ifdef DDB
2218 static int
2219 witness_thread_has_locks(struct thread *td)
2220 {
2221
2222         if (td->td_sleeplocks == NULL)
2223                 return (0);
2224         return (td->td_sleeplocks->ll_count != 0);
2225 }
2226
2227 static int
2228 witness_proc_has_locks(struct proc *p)
2229 {
2230         struct thread *td;
2231
2232         FOREACH_THREAD_IN_PROC(p, td) {
2233                 if (witness_thread_has_locks(td))
2234                         return (1);
2235         }
2236         return (0);
2237 }
2238 #endif
2239
2240 int
2241 witness_list_locks(struct lock_list_entry **lock_list,
2242     int (*prnt)(const char *fmt, ...))
2243 {
2244         struct lock_list_entry *lle;
2245         int i, nheld;
2246
2247         nheld = 0;
2248         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2249                 for (i = lle->ll_count - 1; i >= 0; i--) {
2250                         witness_list_lock(&lle->ll_children[i], prnt);
2251                         nheld++;
2252                 }
2253         return (nheld);
2254 }
2255
2256 /*
2257  * This is a bit risky at best.  We call this function when we have timed
2258  * out acquiring a spin lock, and we assume that the other CPU is stuck
2259  * with this lock held.  So, we go groveling around in the other CPU's
2260  * per-cpu data to try to find the lock instance for this spin lock to
2261  * see when it was last acquired.
2262  */
2263 void
2264 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2265     int (*prnt)(const char *fmt, ...))
2266 {
2267         struct lock_instance *instance;
2268         struct pcpu *pc;
2269
2270         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2271                 return;
2272         pc = pcpu_find(owner->td_oncpu);
2273         instance = find_instance(pc->pc_spinlocks, lock);
2274         if (instance != NULL)
2275                 witness_list_lock(instance, prnt);
2276 }
2277
2278 void
2279 witness_save(struct lock_object *lock, const char **filep, int *linep)
2280 {
2281         struct lock_list_entry *lock_list;
2282         struct lock_instance *instance;
2283         struct lock_class *class;
2284
2285         /*
2286          * This function is used independently in locking code to deal with
2287          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2288          * is gone.
2289          */
2290         if (SCHEDULER_STOPPED())
2291                 return;
2292         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2293         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2294                 return;
2295         class = LOCK_CLASS(lock);
2296         if (class->lc_flags & LC_SLEEPLOCK)
2297                 lock_list = curthread->td_sleeplocks;
2298         else {
2299                 if (witness_skipspin)
2300                         return;
2301                 lock_list = PCPU_GET(spinlocks);
2302         }
2303         instance = find_instance(lock_list, lock);
2304         if (instance == NULL) {
2305                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2306                     class->lc_name, lock->lo_name);
2307                 return;
2308         }
2309         *filep = instance->li_file;
2310         *linep = instance->li_line;
2311 }
2312
2313 void
2314 witness_restore(struct lock_object *lock, const char *file, int line)
2315 {
2316         struct lock_list_entry *lock_list;
2317         struct lock_instance *instance;
2318         struct lock_class *class;
2319
2320         /*
2321          * This function is used independently in locking code to deal with
2322          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2323          * is gone.
2324          */
2325         if (SCHEDULER_STOPPED())
2326                 return;
2327         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2328         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2329                 return;
2330         class = LOCK_CLASS(lock);
2331         if (class->lc_flags & LC_SLEEPLOCK)
2332                 lock_list = curthread->td_sleeplocks;
2333         else {
2334                 if (witness_skipspin)
2335                         return;
2336                 lock_list = PCPU_GET(spinlocks);
2337         }
2338         instance = find_instance(lock_list, lock);
2339         if (instance == NULL)
2340                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2341                     class->lc_name, lock->lo_name);
2342         lock->lo_witness->w_file = file;
2343         lock->lo_witness->w_line = line;
2344         if (instance == NULL)
2345                 return;
2346         instance->li_file = file;
2347         instance->li_line = line;
2348 }
2349
2350 void
2351 witness_assert(const struct lock_object *lock, int flags, const char *file,
2352     int line)
2353 {
2354 #ifdef INVARIANT_SUPPORT
2355         struct lock_instance *instance;
2356         struct lock_class *class;
2357
2358         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2359                 return;
2360         class = LOCK_CLASS(lock);
2361         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2362                 instance = find_instance(curthread->td_sleeplocks, lock);
2363         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2364                 instance = find_instance(PCPU_GET(spinlocks), lock);
2365         else {
2366                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2367                     class->lc_name, lock->lo_name);
2368                 return;
2369         }
2370         switch (flags) {
2371         case LA_UNLOCKED:
2372                 if (instance != NULL)
2373                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2374                             class->lc_name, lock->lo_name,
2375                             fixup_filename(file), line);
2376                 break;
2377         case LA_LOCKED:
2378         case LA_LOCKED | LA_RECURSED:
2379         case LA_LOCKED | LA_NOTRECURSED:
2380         case LA_SLOCKED:
2381         case LA_SLOCKED | LA_RECURSED:
2382         case LA_SLOCKED | LA_NOTRECURSED:
2383         case LA_XLOCKED:
2384         case LA_XLOCKED | LA_RECURSED:
2385         case LA_XLOCKED | LA_NOTRECURSED:
2386                 if (instance == NULL) {
2387                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2388                             class->lc_name, lock->lo_name,
2389                             fixup_filename(file), line);
2390                         break;
2391                 }
2392                 if ((flags & LA_XLOCKED) != 0 &&
2393                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2394                         kassert_panic(
2395                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2396                             class->lc_name, lock->lo_name,
2397                             fixup_filename(file), line);
2398                 if ((flags & LA_SLOCKED) != 0 &&
2399                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2400                         kassert_panic(
2401                             "Lock (%s) %s exclusively locked @ %s:%d.",
2402                             class->lc_name, lock->lo_name,
2403                             fixup_filename(file), line);
2404                 if ((flags & LA_RECURSED) != 0 &&
2405                     (instance->li_flags & LI_RECURSEMASK) == 0)
2406                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2407                             class->lc_name, lock->lo_name,
2408                             fixup_filename(file), line);
2409                 if ((flags & LA_NOTRECURSED) != 0 &&
2410                     (instance->li_flags & LI_RECURSEMASK) != 0)
2411                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2412                             class->lc_name, lock->lo_name,
2413                             fixup_filename(file), line);
2414                 break;
2415         default:
2416                 kassert_panic("Invalid lock assertion at %s:%d.",
2417                     fixup_filename(file), line);
2418
2419         }
2420 #endif  /* INVARIANT_SUPPORT */
2421 }
2422
2423 static void
2424 witness_setflag(struct lock_object *lock, int flag, int set)
2425 {
2426         struct lock_list_entry *lock_list;
2427         struct lock_instance *instance;
2428         struct lock_class *class;
2429
2430         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2431                 return;
2432         class = LOCK_CLASS(lock);
2433         if (class->lc_flags & LC_SLEEPLOCK)
2434                 lock_list = curthread->td_sleeplocks;
2435         else {
2436                 if (witness_skipspin)
2437                         return;
2438                 lock_list = PCPU_GET(spinlocks);
2439         }
2440         instance = find_instance(lock_list, lock);
2441         if (instance == NULL) {
2442                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2443                     class->lc_name, lock->lo_name);
2444                 return;
2445         }
2446
2447         if (set)
2448                 instance->li_flags |= flag;
2449         else
2450                 instance->li_flags &= ~flag;
2451 }
2452
2453 void
2454 witness_norelease(struct lock_object *lock)
2455 {
2456
2457         witness_setflag(lock, LI_NORELEASE, 1);
2458 }
2459
2460 void
2461 witness_releaseok(struct lock_object *lock)
2462 {
2463
2464         witness_setflag(lock, LI_NORELEASE, 0);
2465 }
2466
2467 #ifdef DDB
2468 static void
2469 witness_ddb_list(struct thread *td)
2470 {
2471
2472         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2473         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2474
2475         if (witness_watch < 1)
2476                 return;
2477
2478         witness_list_locks(&td->td_sleeplocks, db_printf);
2479
2480         /*
2481          * We only handle spinlocks if td == curthread.  This is somewhat broken
2482          * if td is currently executing on some other CPU and holds spin locks
2483          * as we won't display those locks.  If we had a MI way of getting
2484          * the per-cpu data for a given cpu then we could use
2485          * td->td_oncpu to get the list of spinlocks for this thread
2486          * and "fix" this.
2487          *
2488          * That still wouldn't really fix this unless we locked the scheduler
2489          * lock or stopped the other CPU to make sure it wasn't changing the
2490          * list out from under us.  It is probably best to just not try to
2491          * handle threads on other CPU's for now.
2492          */
2493         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2494                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2495 }
2496
2497 DB_SHOW_COMMAND(locks, db_witness_list)
2498 {
2499         struct thread *td;
2500
2501         if (have_addr)
2502                 td = db_lookup_thread(addr, true);
2503         else
2504                 td = kdb_thread;
2505         witness_ddb_list(td);
2506 }
2507
2508 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2509 {
2510         struct thread *td;
2511         struct proc *p;
2512
2513         /*
2514          * It would be nice to list only threads and processes that actually
2515          * held sleep locks, but that information is currently not exported
2516          * by WITNESS.
2517          */
2518         FOREACH_PROC_IN_SYSTEM(p) {
2519                 if (!witness_proc_has_locks(p))
2520                         continue;
2521                 FOREACH_THREAD_IN_PROC(p, td) {
2522                         if (!witness_thread_has_locks(td))
2523                                 continue;
2524                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2525                             p->p_comm, td, td->td_tid);
2526                         witness_ddb_list(td);
2527                         if (db_pager_quit)
2528                                 return;
2529                 }
2530         }
2531 }
2532 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2533
2534 DB_SHOW_COMMAND(witness, db_witness_display)
2535 {
2536
2537         witness_ddb_display(db_printf);
2538 }
2539 #endif
2540
2541 static int
2542 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2543 {
2544         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2545         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2546         struct sbuf *sb;
2547         u_int w_rmatrix1, w_rmatrix2;
2548         int error, generation, i, j;
2549
2550         tmp_data1 = NULL;
2551         tmp_data2 = NULL;
2552         tmp_w1 = NULL;
2553         tmp_w2 = NULL;
2554         if (witness_watch < 1) {
2555                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2556                 return (error);
2557         }
2558         if (witness_cold) {
2559                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2560                 return (error);
2561         }
2562         error = 0;
2563         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2564         if (sb == NULL)
2565                 return (ENOMEM);
2566
2567         /* Allocate and init temporary storage space. */
2568         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2569         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2570         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2571             M_WAITOK | M_ZERO);
2572         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2573             M_WAITOK | M_ZERO);
2574         stack_zero(&tmp_data1->wlod_stack);
2575         stack_zero(&tmp_data2->wlod_stack);
2576
2577 restart:
2578         mtx_lock_spin(&w_mtx);
2579         generation = w_generation;
2580         mtx_unlock_spin(&w_mtx);
2581         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2582             w_lohash.wloh_count);
2583         for (i = 1; i < w_max_used_index; i++) {
2584                 mtx_lock_spin(&w_mtx);
2585                 if (generation != w_generation) {
2586                         mtx_unlock_spin(&w_mtx);
2587
2588                         /* The graph has changed, try again. */
2589                         req->oldidx = 0;
2590                         sbuf_clear(sb);
2591                         goto restart;
2592                 }
2593
2594                 w1 = &w_data[i];
2595                 if (w1->w_reversed == 0) {
2596                         mtx_unlock_spin(&w_mtx);
2597                         continue;
2598                 }
2599
2600                 /* Copy w1 locally so we can release the spin lock. */
2601                 *tmp_w1 = *w1;
2602                 mtx_unlock_spin(&w_mtx);
2603
2604                 if (tmp_w1->w_reversed == 0)
2605                         continue;
2606                 for (j = 1; j < w_max_used_index; j++) {
2607                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2608                                 continue;
2609
2610                         mtx_lock_spin(&w_mtx);
2611                         if (generation != w_generation) {
2612                                 mtx_unlock_spin(&w_mtx);
2613
2614                                 /* The graph has changed, try again. */
2615                                 req->oldidx = 0;
2616                                 sbuf_clear(sb);
2617                                 goto restart;
2618                         }
2619
2620                         w2 = &w_data[j];
2621                         data1 = witness_lock_order_get(w1, w2);
2622                         data2 = witness_lock_order_get(w2, w1);
2623
2624                         /*
2625                          * Copy information locally so we can release the
2626                          * spin lock.
2627                          */
2628                         *tmp_w2 = *w2;
2629                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2630                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2631
2632                         if (data1) {
2633                                 stack_zero(&tmp_data1->wlod_stack);
2634                                 stack_copy(&data1->wlod_stack,
2635                                     &tmp_data1->wlod_stack);
2636                         }
2637                         if (data2 && data2 != data1) {
2638                                 stack_zero(&tmp_data2->wlod_stack);
2639                                 stack_copy(&data2->wlod_stack,
2640                                     &tmp_data2->wlod_stack);
2641                         }
2642                         mtx_unlock_spin(&w_mtx);
2643
2644                         sbuf_printf(sb,
2645             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2646                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2647                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2648                         if (data1) {
2649                                 sbuf_printf(sb,
2650                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2651                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2652                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2653                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2654                                 sbuf_printf(sb, "\n");
2655                         }
2656                         if (data2 && data2 != data1) {
2657                                 sbuf_printf(sb,
2658                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2659                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2660                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2661                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2662                                 sbuf_printf(sb, "\n");
2663                         }
2664                 }
2665         }
2666         mtx_lock_spin(&w_mtx);
2667         if (generation != w_generation) {
2668                 mtx_unlock_spin(&w_mtx);
2669
2670                 /*
2671                  * The graph changed while we were printing stack data,
2672                  * try again.
2673                  */
2674                 req->oldidx = 0;
2675                 sbuf_clear(sb);
2676                 goto restart;
2677         }
2678         mtx_unlock_spin(&w_mtx);
2679
2680         /* Free temporary storage space. */
2681         free(tmp_data1, M_TEMP);
2682         free(tmp_data2, M_TEMP);
2683         free(tmp_w1, M_TEMP);
2684         free(tmp_w2, M_TEMP);
2685
2686         sbuf_finish(sb);
2687         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2688         sbuf_delete(sb);
2689
2690         return (error);
2691 }
2692
2693 static int
2694 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2695 {
2696         static const struct {
2697                 enum witness_channel channel;
2698                 const char *name;
2699         } channels[] = {
2700                 { WITNESS_CONSOLE, "console" },
2701                 { WITNESS_LOG, "log" },
2702                 { WITNESS_NONE, "none" },
2703         };
2704         char buf[16];
2705         u_int i;
2706         int error;
2707
2708         buf[0] = '\0';
2709         for (i = 0; i < nitems(channels); i++)
2710                 if (witness_channel == channels[i].channel) {
2711                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
2712                         break;
2713                 }
2714
2715         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2716         if (error != 0 || req->newptr == NULL)
2717                 return (error);
2718
2719         error = EINVAL;
2720         for (i = 0; i < nitems(channels); i++)
2721                 if (strcmp(channels[i].name, buf) == 0) {
2722                         witness_channel = channels[i].channel;
2723                         error = 0;
2724                         break;
2725                 }
2726         return (error);
2727 }
2728
2729 static int
2730 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2731 {
2732         struct witness *w;
2733         struct sbuf *sb;
2734         int error;
2735
2736         if (witness_watch < 1) {
2737                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2738                 return (error);
2739         }
2740         if (witness_cold) {
2741                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2742                 return (error);
2743         }
2744         error = 0;
2745
2746         error = sysctl_wire_old_buffer(req, 0);
2747         if (error != 0)
2748                 return (error);
2749         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2750         if (sb == NULL)
2751                 return (ENOMEM);
2752         sbuf_printf(sb, "\n");
2753
2754         mtx_lock_spin(&w_mtx);
2755         STAILQ_FOREACH(w, &w_all, w_list)
2756                 w->w_displayed = 0;
2757         STAILQ_FOREACH(w, &w_all, w_list)
2758                 witness_add_fullgraph(sb, w);
2759         mtx_unlock_spin(&w_mtx);
2760
2761         /*
2762          * Close the sbuf and return to userland.
2763          */
2764         error = sbuf_finish(sb);
2765         sbuf_delete(sb);
2766
2767         return (error);
2768 }
2769
2770 static int
2771 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2772 {
2773         int error, value;
2774
2775         value = witness_watch;
2776         error = sysctl_handle_int(oidp, &value, 0, req);
2777         if (error != 0 || req->newptr == NULL)
2778                 return (error);
2779         if (value > 1 || value < -1 ||
2780             (witness_watch == -1 && value != witness_watch))
2781                 return (EINVAL);
2782         witness_watch = value;
2783         return (0);
2784 }
2785
2786 static void
2787 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2788 {
2789         int i;
2790
2791         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2792                 return;
2793         w->w_displayed = 1;
2794
2795         WITNESS_INDEX_ASSERT(w->w_index);
2796         for (i = 1; i <= w_max_used_index; i++) {
2797                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2798                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2799                             w_data[i].w_name);
2800                         witness_add_fullgraph(sb, &w_data[i]);
2801                 }
2802         }
2803 }
2804
2805 /*
2806  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2807  * interprets the key as a string and reads until the null
2808  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2809  * hash value computed from the key.
2810  */
2811 static uint32_t
2812 witness_hash_djb2(const uint8_t *key, uint32_t size)
2813 {
2814         unsigned int hash = 5381;
2815         int i;
2816
2817         /* hash = hash * 33 + key[i] */
2818         if (size)
2819                 for (i = 0; i < size; i++)
2820                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2821         else
2822                 for (i = 0; key[i] != 0; i++)
2823                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2824
2825         return (hash);
2826 }
2827
2828
2829 /*
2830  * Initializes the two witness hash tables. Called exactly once from
2831  * witness_initialize().
2832  */
2833 static void
2834 witness_init_hash_tables(void)
2835 {
2836         int i;
2837
2838         MPASS(witness_cold);
2839
2840         /* Initialize the hash tables. */
2841         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2842                 w_hash.wh_array[i] = NULL;
2843
2844         w_hash.wh_size = WITNESS_HASH_SIZE;
2845         w_hash.wh_count = 0;
2846
2847         /* Initialize the lock order data hash. */
2848         w_lofree = NULL;
2849         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2850                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2851                 w_lodata[i].wlod_next = w_lofree;
2852                 w_lofree = &w_lodata[i];
2853         }
2854         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2855         w_lohash.wloh_count = 0;
2856         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2857                 w_lohash.wloh_array[i] = NULL;
2858 }
2859
2860 static struct witness *
2861 witness_hash_get(const char *key)
2862 {
2863         struct witness *w;
2864         uint32_t hash;
2865         
2866         MPASS(key != NULL);
2867         if (witness_cold == 0)
2868                 mtx_assert(&w_mtx, MA_OWNED);
2869         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2870         w = w_hash.wh_array[hash];
2871         while (w != NULL) {
2872                 if (strcmp(w->w_name, key) == 0)
2873                         goto out;
2874                 w = w->w_hash_next;
2875         }
2876
2877 out:
2878         return (w);
2879 }
2880
2881 static void
2882 witness_hash_put(struct witness *w)
2883 {
2884         uint32_t hash;
2885
2886         MPASS(w != NULL);
2887         MPASS(w->w_name != NULL);
2888         if (witness_cold == 0)
2889                 mtx_assert(&w_mtx, MA_OWNED);
2890         KASSERT(witness_hash_get(w->w_name) == NULL,
2891             ("%s: trying to add a hash entry that already exists!", __func__));
2892         KASSERT(w->w_hash_next == NULL,
2893             ("%s: w->w_hash_next != NULL", __func__));
2894
2895         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2896         w->w_hash_next = w_hash.wh_array[hash];
2897         w_hash.wh_array[hash] = w;
2898         w_hash.wh_count++;
2899 }
2900
2901
2902 static struct witness_lock_order_data *
2903 witness_lock_order_get(struct witness *parent, struct witness *child)
2904 {
2905         struct witness_lock_order_data *data = NULL;
2906         struct witness_lock_order_key key;
2907         unsigned int hash;
2908
2909         MPASS(parent != NULL && child != NULL);
2910         key.from = parent->w_index;
2911         key.to = child->w_index;
2912         WITNESS_INDEX_ASSERT(key.from);
2913         WITNESS_INDEX_ASSERT(key.to);
2914         if ((w_rmatrix[parent->w_index][child->w_index]
2915             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2916                 goto out;
2917
2918         hash = witness_hash_djb2((const char*)&key,
2919             sizeof(key)) % w_lohash.wloh_size;
2920         data = w_lohash.wloh_array[hash];
2921         while (data != NULL) {
2922                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2923                         break;
2924                 data = data->wlod_next;
2925         }
2926
2927 out:
2928         return (data);
2929 }
2930
2931 /*
2932  * Verify that parent and child have a known relationship, are not the same,
2933  * and child is actually a child of parent.  This is done without w_mtx
2934  * to avoid contention in the common case.
2935  */
2936 static int
2937 witness_lock_order_check(struct witness *parent, struct witness *child)
2938 {
2939
2940         if (parent != child &&
2941             w_rmatrix[parent->w_index][child->w_index]
2942             & WITNESS_LOCK_ORDER_KNOWN &&
2943             isitmychild(parent, child))
2944                 return (1);
2945
2946         return (0);
2947 }
2948
2949 static int
2950 witness_lock_order_add(struct witness *parent, struct witness *child)
2951 {
2952         struct witness_lock_order_data *data = NULL;
2953         struct witness_lock_order_key key;
2954         unsigned int hash;
2955         
2956         MPASS(parent != NULL && child != NULL);
2957         key.from = parent->w_index;
2958         key.to = child->w_index;
2959         WITNESS_INDEX_ASSERT(key.from);
2960         WITNESS_INDEX_ASSERT(key.to);
2961         if (w_rmatrix[parent->w_index][child->w_index]
2962             & WITNESS_LOCK_ORDER_KNOWN)
2963                 return (1);
2964
2965         hash = witness_hash_djb2((const char*)&key,
2966             sizeof(key)) % w_lohash.wloh_size;
2967         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2968         data = w_lofree;
2969         if (data == NULL)
2970                 return (0);
2971         w_lofree = data->wlod_next;
2972         data->wlod_next = w_lohash.wloh_array[hash];
2973         data->wlod_key = key;
2974         w_lohash.wloh_array[hash] = data;
2975         w_lohash.wloh_count++;
2976         stack_zero(&data->wlod_stack);
2977         stack_save(&data->wlod_stack);
2978         return (1);
2979 }
2980
2981 /* Call this whenever the structure of the witness graph changes. */
2982 static void
2983 witness_increment_graph_generation(void)
2984 {
2985
2986         if (witness_cold == 0)
2987                 mtx_assert(&w_mtx, MA_OWNED);
2988         w_generation++;
2989 }
2990
2991 static int
2992 witness_output_drain(void *arg __unused, const char *data, int len)
2993 {
2994
2995         witness_output("%.*s", len, data);
2996         return (len);
2997 }
2998
2999 static void
3000 witness_debugger(int cond, const char *msg)
3001 {
3002         char buf[32];
3003         struct sbuf sb;
3004         struct stack st;
3005
3006         if (!cond)
3007                 return;
3008
3009         if (witness_trace) {
3010                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3011                 sbuf_set_drain(&sb, witness_output_drain, NULL);
3012
3013                 stack_zero(&st);
3014                 stack_save(&st);
3015                 witness_output("stack backtrace:\n");
3016                 stack_sbuf_print_ddb(&sb, &st);
3017
3018                 sbuf_finish(&sb);
3019         }
3020
3021 #ifdef KDB
3022         if (witness_kdb)
3023                 kdb_enter(KDB_WHY_WITNESS, msg);
3024 #endif
3025 }